Let $ \mathcal{L} = -\Delta+V $ be the Schrödinger operators on $ \mathbb{R}^n $ with nonnegative potential $ V $ belonging to the reverse Hölder class $ RH_q $ for some $ q \geq \frac{n}{2} $. We prove the boundedness of fractional integral operator $ \mathcal{I}_\alpha $ related to the Schrödinger operators $ \mathcal{L} $ from strong and weak variable exponent Lebesgue spaces into suitable variable exponent Lipschitz type spaces.
Citation: Huali Wang, Ping Li. Fractional integral associated with the Schrödinger operators on variable exponent space[J]. Electronic Research Archive, 2023, 31(11): 6833-6843. doi: 10.3934/era.2023345
Let $ \mathcal{L} = -\Delta+V $ be the Schrödinger operators on $ \mathbb{R}^n $ with nonnegative potential $ V $ belonging to the reverse Hölder class $ RH_q $ for some $ q \geq \frac{n}{2} $. We prove the boundedness of fractional integral operator $ \mathcal{I}_\alpha $ related to the Schrödinger operators $ \mathcal{L} $ from strong and weak variable exponent Lebesgue spaces into suitable variable exponent Lipschitz type spaces.
[1] | Z. Shen, $ L^{p} $ estimates for Schrödinger operators with certain potentials, in Annales de l'institut Fourier, 45 (1995), 513–546. https://doi.org/10.5802/aif.1463 |
[2] | L. Tang, Weighted norm inequalities for Schrödinger type operators, Forum Math., 27 (2015), 2491–2532. |
[3] | E. Harboure, O. Salinas, B. Viviani, Boundedness of the fractional integral on weighted Lebesgue and Lipschitz spaces, Trans. Am. Math. Soc., 349 (1997), 235–255. https://doi.org/10.1090/S0002-9947-97-01644-9 doi: 10.1090/S0002-9947-97-01644-9 |
[4] | B. Bongioanni, E. Harboure, O. Salinas, Weighted inequalities for negative powers of Schrödinger operators, J. Math. Anal. Appl., 348 (2008), 12–27. https://doi.org/10.1016/j.jmaa.2008.06.045 doi: 10.1016/j.jmaa.2008.06.045 |
[5] | W. Wu, J. Zhou, Two-weight norm inequalities for some fractional type operators related to Schrödinger operator on weighted Morrey spaces, Turk. J. Math., 45 (2021), 2646–2663. https://doi.org/10.3906/mat-2105-64 doi: 10.3906/mat-2105-64 |
[6] | Q. Zhang, L. Tang, Variation operators on weighted Hardy and BMO spaces in the Schrödinger setting, Bull. Malays. Math. Sci. Soc., 45 (2022), 2285–2312. https://doi.org/10.1007/s40840-022-01339-4 doi: 10.1007/s40840-022-01339-4 |
[7] | L. Yang, P. Li, Boundedness and compactness of commutators related with Schrödinger operators on Heisenberg groups, J. Pseudo-Differ. Oper. Appl., 14 (2023), 8. https://doi.org/10.1007/s11868-022-00504-4 doi: 10.1007/s11868-022-00504-4 |
[8] | M. Ramseyer, O. Salinas, B. Viviani, Lipschitz type smoothness of the fractional integral on variable exponent spaces, J. Math. Anal. Appl., 403 (2013), 95–106. https://doi.org/10.1016/j.jmaa.2012.12.074 doi: 10.1016/j.jmaa.2012.12.074 |
[9] | O. Kováčik, J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czech. Math. J., 41 (1991), 592–618. https://doi.org/10.21136/CMJ.1991.102493 doi: 10.21136/CMJ.1991.102493 |
[10] | L. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, 2011. https://doi.org/10.1007/978-3-642-18363-8 |
[11] | J. Dziubański, J. Zienkiewicz, Hardy spaces $H^{1}$ associated to Schrödinger operators with potential satisfying reverse Hölder inequality, Rev. Mat. Iberoam., 15 (1999), 277–295. |
[12] | K. Kurata, An estimate on the heat kernel of magnetic Schrödinger operators and uniformly elliptic operators with non-negative potentials, J. London Math. Soc., 62 (2000), 885–903. https://doi.org/10.1112/S002461070000137X doi: 10.1112/S002461070000137X |
[13] | J. Dziubański, J. Zienkiewicz, $H_{p}$ spaces associated with Schrödinger operator with potential from reverse Hölder classes, Colloq. Math., 98 (2003), 5–38. https://doi.org/10.4064/cm98-1-2 doi: 10.4064/cm98-1-2 |