Citation: Zongwei Ma, Hongying Shu. Viral infection dynamics in a spatial heterogeneous environment with cell-free and cell-to-cell transmissions[J]. Mathematical Biosciences and Engineering, 2020, 17(3): 2569-2591. doi: 10.3934/mbe.2020141
[1] | S. Bonhoeffer, R. M. May, G. M. Shaw, M. A. Nowak, Virus dynamics and drug therapy, Proc. Natl. Acad. Sci. USA, 94 (1997), 6971-6976. |
[2] | M. Y. Li, H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections, SIAM J. Appl. Math., 70 (2010), 2434-2448. |
[3] | A. S. Perelson, D. E. Kirschner, R. de Boer, Dynamics of HIV infection of CD4 T cells, Math. Biosci., 114 (1993), 81-125. |
[4] | A. S. Perelson, P. W. Nelson, Mathematical analysis of HIV-I dynamics in vivo, SIAM Rev., 41 (1999), 3-44. |
[5] | A. S. Perelson, A. U. Neumann, M. Markowitz, M. J. Leonard, D. D. Ho, HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science, 271 (1996), 1582-1586. |
[6] | H. Shu, L. Wang, J. Watmough, Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses, SIAM J. Appl. Math., 73 (2013), 1280-1302. |
[7] | H. Shu, L. Wang, J. Watmough, Sustained and transient oscillations and chaos induced by delayed antiviral immune response in an immunosuppressive infection model, J. Math. Biol., 68 (2014), 477-503. |
[8] | H. Shu, Y. Chen, L. Wang, Impacts of the cell-free and cell-to-cell infection modes on viral dynamics, J. Dyn. Diff. Equat., 30 (2018), 1817-1836. |
[9] | N. M. Dixit, M. Markowitz, D. D. Ho, A. S. Perelson, Estimates of intracellular delay and average drug efficacy from viral load data of HIV-infected individuals under antiretroviral therapy, Antivir. Ther., 9 (2004), 237-246. |
[10] | M. A. Nowak, S. Bonhoeffer, A. M. Hill, R. Boehme, H. C. Thomas, Viral dynamics in hepatitis B virusinfection, Proc. Natl. Acad. Sci. USA, 93 (1996), 4398-4402. |
[11] | F. Wang, Y. Huang, X. Zou, Global dynamics of a PDE in-host viral model, Appl. Anal., 93 (2014), 2312-2329. |
[12] | Y. Wu, X. Zou, Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates, J. Differential Equations, 264 (2018), 4989-5024. |
[13] | N. Martin, Q. Sattentau, Cell-to-cell HIV-1 spread and its implications for immune evasion, Curr. Opin. HIV AIDS, 4 (2009), 143-149. |
[14] | Q. Sattentau, Avoiding the void: cell-to-cell spread of human viruses, Nat. Rev. Microbiol., 6 (2008), 28-41. |
[15] | W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordan, F. Y. S. Chuang, et al., Quantitative 3D video microscopy of HIV transfer across T cell virological synapses, Science, 323 (2009), 1743-1747. |
[16] | H. L. Smith, Monotone Dynamical Systems: an introduction to the theory of competitive and cooperative systems, American Mathematical Society, Providence, 1995. |
[17] | A. Pazy, Semigroups of linear operators and application to partial differential equations, Springer, Berlin, 1983. |
[18] | R. Jr. Martin, H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. AMS, 321 (1990), 1-44. |
[19] | C. V. Pao, Nonlinear parabolic and elliptic equations, Plenum, New York, 1992. |
[20] | M. W. Hirsch, The dynamical systems approach to differential equations, Bull. Am. Math. Soc., 11 (1984), 1-64. |
[21] | M. H. Protter, H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. |
[22] | H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211. |
[23] | W. Wang, X-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673. |
[24] | I. D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, Berlin, 1983. |
[25] | J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, 1988. |
[26] | K.-J. Engel, R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000. |
[27] | X.-Q. Zhao, Dynamical systems in population biology, Second edition, CMS Books in Mathematics, Springer, Cham, 2017. |
[28] | L. J. S. Allen, B. M. Bolker, Y. Lou, A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20. |
[29] | H. L. Smith, X-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001), 6169-6179. |
[30] | H. R. Thieme, Convergence results and Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763. |
[31] | P. Magal, X-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275. |