Research article Special Issues

A microRNA disease signature associated with lymph node metastasis of lung adenocarcinoma

  • Received: 24 December 2019 Accepted: 19 February 2020 Published: 27 February 2020
  • Background: Lymph node metastasis (LNM) of lung cancer is an important factor associated with prognosis. Dysregulated microRNAs (miRNAs) are becoming a new powerful tool to characterize tumorigenesis and metastasis. We have developed and validated a miRNA disease signature to predict LNM in lung adenocarcinoma (LUAD). Method: LUAD miRNAs and clinical data from The Cancer Genome Atlas (TCGA) were obtained and divided randomly into training (n = 259) and validation (n = 83) cohorts. A miRNA signature was built using least absolute shrinkage and selection operator (LASSO) (λ = -1.268) and logistic regression model. The performance of the miRNA signature was evaluated using the area under curve (AUC) of receiver operating characteristic curve (ROC). We performed decision curve analysis (DCA) to assess the clinical usefulness of the signature. We also conducted a miRNA-regulatory network analysis to look for potential genes engaged in LNM in LUAD. Result: Thirteen miRNAs were selected to build our miRNA disease signature. The model showed good calibration in the training cohort, with an AUC of 0.782 (95% CI: 0.725-0.839). In the validation cohort, AUC was 0.691 (95% CI: 0.575-0.806). DCA demonstrated that the miRNA signature was clinically useful. Conclusion: The miRNA disease signature can be used as a noninvasive method to predict LNM in patients with lung adenocarcinoma objectively and the signature achieved high accuracy for prediction.

    Citation: Shuyi Cen, Kaiyou Fu, Yue Shi, Hanliang Jiang, Jiawei Shou, Liangkun You, Weidong Han, Hongming Pan, Zhen Liu. A microRNA disease signature associated with lymph node metastasis of lung adenocarcinoma[J]. Mathematical Biosciences and Engineering, 2020, 17(3): 2557-2568. doi: 10.3934/mbe.2020140

    Related Papers:

  • Background: Lymph node metastasis (LNM) of lung cancer is an important factor associated with prognosis. Dysregulated microRNAs (miRNAs) are becoming a new powerful tool to characterize tumorigenesis and metastasis. We have developed and validated a miRNA disease signature to predict LNM in lung adenocarcinoma (LUAD). Method: LUAD miRNAs and clinical data from The Cancer Genome Atlas (TCGA) were obtained and divided randomly into training (n = 259) and validation (n = 83) cohorts. A miRNA signature was built using least absolute shrinkage and selection operator (LASSO) (λ = -1.268) and logistic regression model. The performance of the miRNA signature was evaluated using the area under curve (AUC) of receiver operating characteristic curve (ROC). We performed decision curve analysis (DCA) to assess the clinical usefulness of the signature. We also conducted a miRNA-regulatory network analysis to look for potential genes engaged in LNM in LUAD. Result: Thirteen miRNAs were selected to build our miRNA disease signature. The model showed good calibration in the training cohort, with an AUC of 0.782 (95% CI: 0.725-0.839). In the validation cohort, AUC was 0.691 (95% CI: 0.575-0.806). DCA demonstrated that the miRNA signature was clinically useful. Conclusion: The miRNA disease signature can be used as a noninvasive method to predict LNM in patients with lung adenocarcinoma objectively and the signature achieved high accuracy for prediction.


    加载中


    [1] K. X. Sun, R. S. Zheng, H. M. Zeng, S. W. Zhang, X. N. Zou, X. Y. Gu, et al., The incidence and mortality of lung cancer in China, 2014, Zhonghua Zhong Liu Za Zhi, 40 (2018), 805-811.
    [2] R. L. Siegel, K. D. Miller, A. Jemal, Cancer statistics, 2018, CA Cancer J. Clin., 68 (2018), 7-30.
    [3] A. McIntyre, A. K. Ganti, Lung cancer-a global perspective, J. Surg. Oncol, 115 (2017), 550-554.
    [4] A. Jemal, M. M. Center, C. DeSantis, E. M. Ward, Global patterns of cancer incidence and mortality rates and trends, Cancer Epidemiol. Biomarkers Prev., 19 (2010), 1893-1907.
    [5] M. J. Duffy, Clinical uses of tumor markers: A critical review, Crit. Rev. Clin. Lab. Sci., 38 (2001), 225-262.
    [6] P. Goldstraw, K. Chansky, J. Crowley, R. R. Porta, H. Asamura, W. E. Eberhardt, et al., The IASLC lung cancer staging project: Proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM classification for lung cancer, J. Thorac. Oncol, 11 (2016), 39-51.
    [7] A. Matsuda, K. Katanoda, Five-year relative survival rate of lung cancer in the USA, Europe and Japan, Jpn J. Clin. Oncol, 43 (2013), 1287-1288.
    [8] Y. Cai, X. Yu, S. Hu, J. Yu, A brief review on the mechanisms of miRNA regulation, Genomics, Proteomics Bioinf., 7 (2009), 147-154.
    [9] E. Chan, D. E. Prado, J. B. Weidhaas, Cancer microRNAs: From subtype profiling to predictors of response to therapy, Trends Mol. Med., 17 (2011), 235-243.
    [10] J. Ma, K. Mannoor, L. Gao, A. Tan, M. A. Guarnera, M. Zhan, et al., Characterization of microRNA transcriptome in lung cancer by next-generation deep sequencing, Mol. Oncol, 8 (2014), 1208-1219.
    [11] A. E. Kerscher, F. J. Slack, Oncomirs-microRNAs with a role in cancer, Nat. Rev. Cancer, 6 (2006), 259-269.
    [12] C. Sanfiorenzo, M. I. Ilie, A. Belaid, F. Barlesi, J. Mouroux, C. H. Marquette, et al., Two panels of plasma microRNAs as non-invasive biomarkers for prediction of recurrence in resectable NSCLC, PLoS One, 8 (2013), e54596.
    [13] J. Y. Kwan, P. Psarianos, J. P. Bruce, K. W. Yip, F. F. Liu, The complexity of microRNAs in human cancer, J. Radiat. Res., 57 (2016), i106-i111.
    [14] R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Stat. Soc. B, 58 (1996), 267-288.
    [15] C. Chen, H. Chen, Y. He, R Xia, TBtools, a toolkit for biologists integrating various HTS-data handling tools with a user-friendly interface, Bio. Rxiv, (2018), 289660.
    [16] H. Dweep, N. Gretz, miRWalk2. 0: A comprehensive atlas of microRNA-target interactions, Nat. Methods, 12 (2015), 697.
    [17] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, et al., Cytoscape: A software environment for integrated models of biomolecular interaction networks, Genome Res., 13 (2003), 2498-2504.
    [18] F. Yang, K. Wei, Z. Qin, W. Liu, C, Shao, C. Wang, et al., MiR-598 suppresses invasion and migration by negative regulation of derlin-1 and epithelial-mesenchymal transition in non-small cell lung cancer, Cell Physiol. Biochem., 47 (2018), 245-256.
    [19] H. Y. Lee, S. S. Han, S. Y. Song, Serum microRNAs as potential biomarkers for lung cancer, Ann. Oncol., 27 (2016).
    [20] X. H. Wang, Y. Lu, J. J. Liang, J. X. Cao, Y. Q. Jin, G. S. An, et al., MiR-509-3-5p causes aberrant mitosis and anti-proliferative effect by suppression of PLK1 in human lung cancer A549 cells, Biochem. Biophy. Res. Commun., 478 (2016), 676-682.
    [21] Y. Z. Wang, J. M. Li, H. M. Chen, Y. Mo, H. Ye, Y. Luo, et al., Down-regulation of miR-133a as a poor prognosticator in non-small cell lung cancer, Gene, 591 (2016), 333-337.
    [22] F. Bray, J. Ferlay, I. Soerjomataram, L. A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin., 68 (2018), 394-424.
    [23] M. Cao, W. Chen, Epidemiology of lung cancer in China, Thorac. Cancer, 10 (2019), 3-7.
    [24] F. R. Vamos, J. Tovari, J. Fillinger, J. Timar, S. Paku, I. Kenessey, et al., Lymphangiogenesis correlates with lymph node metastasis, prognosis, and angiogenic phenotype in human non-small cell lung cancer, Clin. Cancer Res., 11 (2005), 7344-7353.
    [25] S. L. Yu, H. Y. Chen, G. C. Chang, et al., MicroRNA signature predicts survival and relapse in lung cancer, Cancer Cell, 13 (2008), 48-57.
    [26] S. Y. Sathipati, S. Y. Ho, Identifying the miRNA signature associated with survival time in patients with lung adenocarcinoma using miRNA expression profiles, Sci. Rep., 7 (2017).
    [27] L. Fang, J. Cai, B. Chen, S. Wu, R, Li, X. Xu, et al., Aberrantly expressed miR-582-3p maintains lung cancer stem cell-like traits by activating Wnt/β-catenin signalling, Nat. Commun., 6 (2015), 8640.
    [28] J. Liu, S. Liu, X. Deng, J. Rao, K. Huang, G. Xu, et al., MicroRNA-582-5p suppresses non-small cell lung cancer cells growth and invasion via downregulating NOTCH1, PLoS One, 14 (2019), e0217652.
    [29] L. L. Wang, M. Zhang, miR-582-5p is a potential prognostic marker in human non-small cell lung cancer and functions as a tumor suppressor by targeting MAP3K2, Eur. Rev. Med. Pharmacol. Sci., 22 (2018), 7760-7767.
    [30] K. Skrzypek, M. Tertil, S. Golda, M. Ciesla, K. Weglarczyk, G. Collet, et al., Interplay between heme oxygenase-1 and miR-378 affects non-small cell lung carcinoma growth, vascularization, and metastasis, Antioxid. Redox Signaling, 19 (2013), 644-660.
    [31] H. Y. Lee, S. S. Han, H. Rhee, J. H. Park, J. S. Lee, Y. M. Oh, et al., Differential expression of microRNAs and their target genes in non-small-cell lung cancer, Mol. Med. Rep., 11 (2015), 2034-2040.
    [32] H. Y. Lee, S. S. Han, S. Y. Song, Serum microRNAs as potential biomarkers for lung cancer, Ann. Oncol., 27 (2016).
    [33] X. H. Wang, Y. Lu, J. J. Liang, J. X. Cao, Y. Q. Jin, G. S. An, et al., MiR-509-3-5p causes aberrant mitosis and anti-proliferative effect by suppression of PLK1 in human lung cancer A549 cells, Biochem. Biophys. Res. Commun., 478 (2016), 676-682.
    [34] F. Xing, S. Sharma, Y. Liu, Y. Y. Mo, K. Wu, Y. Y. Zhang, et al., miR-509 suppresses brain metastasis of breast cancer cells by modulating RhoC and TNF-α, Oncogene, 34 (2015), 4890.
    [35] Q. Zhai, L. Zhou, C. Zhao, J Wan, Z. Yu, X. Guo, et al., Identification of miR-508-3p and miR-509-3p that are associated with cell invasion and migration and involved in the apoptosis of renal cell carcinoma, Biochem. Biophys. Res. Commun., 419 (2012), 621-626.
    [36] G. Korkmaz, C. Le Sage, K. A. Tekirdag, R. Agami, D. Gozuacik, miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1, Autophagy, 8 (2012), 165-176.
    [37] D. Chen, W. Guo, Z. Qiu, Q. Wang, Y. Li, L. Liang, et al., MicroRNA-30d-5p inhibits tumour cell proliferation and motility by directly targeting CCNE2 in non-small cell lung cancer, Cancer Lett., 362 (2015), 208-217.
    [38] Y. Li, P. Chen, L. Zu, B. Liu, M. Wang, Q. Zhou, MicroRNA-338-3p suppresses metastasis of lung cancer cells by targeting the EMT regulator Sox4, Am. J. Cancer Res., 6 (2016), 127-140.
    [39] X. Chen, L. Wei, S. Zhao, miR-338 inhibits the metastasis of lung cancer by targeting integrin beta3, Oncol. Rep., 36 (2016), 1467-1474.
    [40] P. Zhang, G. Shao, X. Lin, Y. Liu, Z. Yang, MiR-338-3p inhibits the growth and invasion of non-small cell lung cancer cells by targeting IRS2, Am. J. Cancer Res., 7 (2017), 53-63.
    [41] J. Sui, S. Y. Xu, J. Han, S. R. Yang, C. Y. Li, L. H. Yin, et al., Integrated analysis of competing endogenous RNA network revealing lncRNAs as potential prognostic biomarkers in human lung squamous cell carcinoma, Oncotarget, 8 (2017), 65997-66018.
    [42] X. Zhu, S. Ju, F. Yuan, G. Chen, Y. Shu, C. Li, et al., microRNA-664 enhances proliferation, migration and invasion of lung cancer cells, Exp. The.r Med., 13 (2017), 3555-3562.
    [43] F. Yang, K. Wei, Z. Qin, W. Liu, C. Shao, C. Wang, et al., MiR-598 suppresses invasion and migration by negative regulation of derlin-1 and epithelial-mesenchymal transition in non-small cell lung cancer, Cell Physiol. Biochem., 47 (2018), 245-256.
    [44] X. Tong, P. Su, H. Yang, F. Chi, L. Shen, X. Feng, et al., MicroRNA-598 inhibits the proliferation and invasion of non-small cell lung cancer cells by directly targeting ZEB2, Exp. Ther. Med., 16 (2018), 5417-5423.
    [45] L. Xu, B. Wei, H. Hui, Y. Sun, Y. Liu, X. Yu, et al., Positive feedback loop of lncRNA LINC01296/miR-598/Twist1 promotes non-small cell lung cancer tumorigenesis, J. Cell Physiol., 234 (2019), 4563-4571.
    [46] J. Kim, N. J. Lim, S. G. Jang, H. K. Kim, G. K. Lee, miR-592 and miR-552 can distinguish between primary lung adenocarcinoma and colorectal cancer metastases in the lung, Anticancer Res., 34 (2014), 2297-2302.
    [47] J. Cao, X. R. Yan, T. Liu, X. B. Han, J. J. Yu, S. H. Liu, et al., MicroRNA-552 promotes tumor cell proliferation and migration by directly targeting DACH1 via the Wnt/beta-catenin signaling pathway in colorectal cancer, Oncol. Lett., 14 (2017), 3795-3802.
    [48] N. Wang, W. Liu, Increased expression of miR-552 acts as a potential predictor biomarker for poor prognosis of colorectal cancer, Eur. Rev. Med. Pharmacol. Sci., 22 (2018), 412-416.
    [49] M. Xu, Y. Z. Wang, miR133a suppresses cell proliferation, migration and invasion in human lung cancer by targeting MMP14, Oncol. Rep., 30 (2013), 1398-1404.
    [50] L. K. Wang, T. H. Hsiao, T. M. Hong, H. Y. Chen, S. H. Kao, W. L. Wang, et al., MicroRNA-133a suppresses multiple oncogenic membrane receptors and cell invasion in non-small cell lung carcinoma, PLoS One, 9 (2014), e96765.
    [51] Y. Wang, J. Li, H. Chen, Y. Mo, H. Ye, Y. Luo, et al., Down-regulation of miR-133a as a poor prognosticator in non-small cell lung cancer, Gene, 591 (2016), 333-337.
    [52] D. Schmitt, L. M. Da Silva, W. Zhang, Z. Liu, R. Arora, S. Lim, et al., ErbB2-intronic microRNA-4728: A novel tumor suppressor and antagonist of oncogenic MAPK signaling, Cell Death Dis., 6 (2015), e1742.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4563) PDF downloads(438) Cited by(4)

Article outline

Figures and Tables

Figures(3)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog