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Abstract: Background: Lymph node metastasis (LNM) of lung cancer is an important factor 

associated with prognosis. Dysregulated microRNAs (miRNAs) are becoming a new powerful 

tool to characterize tumorigenesis and metastasis. We have developed and validated a miRNA 

disease signature to predict LNM in lung adenocarcinoma (LUAD). Method: LUAD miRNAs 

and clinical data from The Cancer Genome Atlas (TCGA) were obtained and divided randomly 

into training (n = 259) and validation (n = 83) cohorts. A miRNA signature was built using least 

absolute shrinkage and selection operator (LASSO) (λ = -1.268) and logistic regression model. The 

performance of the miRNA signature was evaluated using the area under curve (AUC) of receiver 

operating characteristic curve (ROC). We performed decision curve analysis (DCA) to assess the 

clinical usefulness of the signature. We also conducted a miRNA-regulatory network analysis to look 

for potential genes engaged in LNM in LUAD. Result: Thirteen miRNAs were selected to build our 

miRNA disease signature. The model showed good calibration in the training cohort, with an AUC of 

0.782 (95% CI: 0.725–0.839). In the validation cohort, AUC was 0.691 (95% CI: 0.575–0.806). DCA 

demonstrated that the miRNA signature was clinically useful. Conclusion: The miRNA disease 

signature can be used as a noninvasive method to predict LNM in patients with lung adenocarcinoma 

objectively and the signature achieved high accuracy for prediction. 
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1. Introduction  

Lung cancer is one of the leading causes of cancer deaths globally, accounting for 24% cases of all 

cancer deaths [1,2]. The mortality-to-incidence ratio of lung cancer is 0.87 globally, indicating the poor 

outcomes of lung cancer [3]. Non-small cell lung cancer (NSCLC) accounts for about 85% cases of lung 

cancers, of which lung adenocarcinoma (LUAD) is the most common subtype [4]. Lung cancer is often 

diagnosed at a late stage with concomitant poor prognosis [5]. The prognosis of lung cancer is associated 

with lymph node metastasis (LNM). It was reported that 5-year survival of lung adenocarcinoma patients 

with LNM was only 26–53% while 5-year survival of early-stage lung adenocarcinoma without LNM 

was over 95% [6,7]. Therefore, screening specific markers of lymph node metastasis of early-stage lung 

adenocarcinoma would be helpful for cancer diagnosis and treatment. 

Various biomolecules such as proteins, mRNA, miRNA, methylated DNA, lncRNA, etc. have 

been implemented as cancer biomarkers. Among which miRNA is emerging as a useful tool. The 

miRNAs are a class of non-coding RNAs that post-transcriptionally control gene expression via 

either translational repression or mRNA degradation. Evidence reveals that miRNAs play significant 

roles in regulatory mechanisms including tumorigenesis [8,9]. Multiple studies have shown that 

tumor-derived miRNAs can persist in human plasma in a very stable form, thus serving as potential 

biomarkers to facilitate the early detection of lung cancer [10,11]. Compared with single miRNA 

biomarker, a miRNA signature comprising multiple miRNAs may improve prediction accuracy and 

would be more powerful in classifying cancer subtypes [12,13]. To our knowledge, no studies have 

worked on LNM prediction in LUAD using miRNA signatures. Therefore, we constructed a miRNA 

signature to predict metastasis of lymph node in LUAD and hypothesized that the signature achieves 

high accuracy for prediction.  

2. Methods 

2.1. TCGA microRNA expression profiles 

Transcriptome data including microRNA expression and mRNA expression for lung 

adenocarcinoma patients were downloaded from The Cancer Genome Atlas (TCGA) 

(https://portal.gdc.cancer.gov/) on July 3rd 2019. Tumor staging, sex and other corresponding clinical 

data were obtained from TCGA clinical information. MiRNA expressions were available for 342 

patients without distant metastases. Only miRNAs with a trimmed mean of 95% larger than 5 counts 

were retained in the profile. 

2.2. Model construction and validation 

Patients were randomly partitioned into training and validation cohorts, with t-test, Fisher’s 

exact test and chi-square test proving no significant difference of patients’ characteristics between 

two cohorts. Least absolute shrinkage and selection operator (LASSO) regression analysis was used 

in training cohort to minimize multicollinearity [14]. The 10-fold cross validation was applied in 
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LASSO to select the optimal tuning parameters (λ) via the minimum criteria, and the optimal λ value of 

0.054 with log(λ) = −1.268 was chosen. Logistic regression model was used to construct the final miRNA 

disease signature to determine patients with lymph node metastasis. The logistic regression formula 

formed in the training cohort was then applied to validation cohort. Receiver operator characteristic 

(ROC) curve was constructed and the area under ROC curve (AUC) value was calculated to validate the 

performance of LMN prediction. To evaluate the clinical application value of signature, decision curve 

analysis (DCA) was conducted by R studio. A heatmap was plotted using TB tools 

(https://github.com/CJ-Chen/TBtools) to differentiate miRNA expression between the patients with or 

without LMN [15]. All statistical analysis were conducted using SPSS Version 23.0 software or package 

“rmda” within the R statistical software version 3.6.0. Two-tailed tests and p values < 0.05 for 

significance were used. 

 

Figure 1. Selection of features by the least absolute shrinkage and selection operator 

(LASSO) binary logistic regression model and miRNA signature for the prediction of LNM. 

(A) Tuning parameters (λ) selected in the LASSO model applied 10-fold cross-validation via 

the minimum criteria. The Y-axis indicates the binomial deviances. The lower X-axis 

indicates the log(λ). Numbers along the upper X-axis represent the average number of 

predictors. Red dots indicate average deviance values for each model with a given λ. Vertical 

bars through the red dots show the upper and lower limits of the deviances. Dotted vertical 

lines were drawn at the optimal values using the minimum criteria with 1 standard error (the 

1-SE criteria). Theoptimal λ value of 0.054 with log(λ) = −1.268 was chosen; (B, C) the 

ROC curve of the radiomics signature. ROC, receiver operator characteristic. (D) DCA for 

the miRNA disease signature. The Y-axis represents net benefit. The X-axis represents 

threshold probability. The threshold probability is where the expected benefit of treatment is 

equal to the expected benefit of avoiding treatment. The red line represents 13-miRNA 

signature model. The blue line represents the hypothesis that all patients have lymph node 

metastases (LNM). The black line represents the hypothesis that no patients had LNM. 

https://github.com/CJ-Chen/TBtools
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2.3. Gene signature analysis 

miRWalk database (http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/) was used to predict 

the transcriptional target-genes of identified miRNAs [16]. We conducted miRNA-target gene 

interaction networks with miRNA-target gene interacting pairs, and the miRNA-mRNA interaction 

network was visualized by Cytoscape (version 3.7.1) software (http://cytoscape.org/) [17]. 

3. Results 

3.1. Characteristics of patients in the training and the validation cohorts 

TCGA-LUAD cohort was randomly divided into a training set (n = 259) and a validation set 

(n = 83). The mean age of all patients in the study was 65.2 ± 9.9, 174 (50.9%) females, 168 (49.1%) 

males and 123 (36.0%) had lymph node metastasis. The demographics of training and validation 

cohorts were well balanced, as shown in Table 1. 

3.2. Construction of miRNA disease signature 

In the training cohort, a total of 387 miRNAs were put into the LASSO logistic regression 

program and 10 of them had non-zero coefficients as potential predictors (Figure 1A). The selected 

10 miRNAs were hsa-miR-30d, hsa-miR-338, hsa-miR-582, hsa-miR-378a, hsa-miR-3065, 

hsa-miR-664a, hsa-miR-552, hsa-miR-3653, hsa-miR-4728 and hsa-miR-376b. To simplify the 

signature, each miRNA was removed from the disease signature sequentially to analyze AUC in 

testing cohort. Based on the fact that the removal of has-miR-3653 led to greater AUC, we excluded 

it in our signature. Given hsa-miR-598 [18], hsa-miR-891a [19], hsa-miR-509-3 [20] and 

hsa-miR-133a [21] have been reported to have significant prognostic value in LUAD, we then 

included them. A 13-miRNA signature was established using logistic regression. The patient risk 

score was derived by the summation of each miRNA expression levels times its corresponding 

coefficient. The risk score for lymph node metastasis was calculated as follows: Risk score = 

(0.00002 × miR-30d) + (-0.000053 × miR-338) + (0.000113 × miR-582) + (0.000412 × miR-378a) + 

(-0.000767 × miR-3065) + (-0.002072 × miR-664a) + (-0.006408 × miR-598) + (-0.002753 × 

miR-552) + (0.002608 × miR-891a) + (0.007073 × miR-5093) + (-0.016114 × miR-133a1) + 

(-0.009681 × miR-4728) + (0.042837 × miR-376b) - 0.456838. 

3.3. The prediction accuracy of miRNA disease signature in training cohort and validation cohorts 

We evaluated the accuracy of the 13-miRNA signature in training cohort and validation cohort, the 

area under the curve (AUC) value were 0.782 (95% CI, 0.725–0.839) and 0.691 (95% CI, 0.575–0.806) 

respectively (Figure 1B,C). We calculated the AUC values of different sex, age and T-stage subgroup to 

validate the performance of our miRNA signature in these diverse subsets. As shown in Table 2, the AUC 

value was high in all subgroups ranging from 0.600 to 0.811. Notably, the AUC value reached 0.811 in 

patients aged over 80 years old. Hence, the signature showed good performance in both training and 

validation cohorts. Decision Curve Analysis (DCA) is shown in Figure 1D. If the threshold probability of 

a patient was between 0.2 and 0.6, the miRNA signature for predicting LNM would be more beneficial 
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than the strategies “treat all” or “treat none”. For example, at the 0.25 threshold, the net benefit was 

14.6% (95% CI, 7.6–22.0%) in the treat-all model, 20.7% (95% CI, 15.7–27.0%) in our disease signature 

model. The net benefit of the disease signature model was significantly higher compared with the 

treat-none strategy at thresholds ≤ 0.63. Thus, our signature was considered clinically valuable. The 

differences of thirteen-miRNA expression between patients with LNM or without LNM were shown in 

Figure 2. The expression levels of miR-30d, miR-376b, miR-378a, miR-503-9, miR-582 and miR-891a 

in patients with LNM were relatively higher than patients without LNM, while the expression levels of 

the miR-133a, miR-3065, miR-338, miR-4728, miR-552, miR-598 and miR-664a were lower in patients 

with LNM. Therefore, the results of DCA and gene expression distribution both proved our miRNAs 

signature had good predict validation. 

 

Figure 2. Expression of miRNAs in signature in the lymph node metastasis group versus 

non-lymph node metastasis group. Red indicates high relative expression and green 

indicates low relative expression. 

3.4. The construction and analysis of differentially expressed mRNAs and miRNAs regulatory 

network associated with lung adenocarcinoma metastasis 

A total of 8968 mRNAs were identified from the TCGA database, of which 325 mRNAs were 

differentially expressed between lung adenocarcinoma patients with LNM and those without LNM (fold 

change > 20, P < 0.05). The next step was to deduce mRNAs targeted by miRNAs. We focused on the 13 

miRNAs in our signature and 27 out of 325 differentially expressed mRNAs were identified as potential 

targets using miRWalk database. 

Based on the data collected, we constructed a miRNA-mRNA regulatory network using 

Cytoscape 3.7 (Figure 3). A total of 184 interactions were identified in this network. Among them, 

hsa-miR-378a, hsa-miR-4728, hsa-miR-598, hsa-miR-3065, hsa-miR-338, hsa-miR-509-3, hsa-miR-552, 

hsa-miR-664a, hsa-miR-891a regulated the most target mRNAs. LIPF, NEUROD4, PSG4, PPPIR3A, 

DAZ2, CRAISP1 were putatively regulated by most miRNAs and may have a potential role in lymph 

node metastasis in lung adenocarcinoma patients. 
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Table 1. Clinical characteristic of the training and validation cohorts. 

Characteristics Training cohort Validation cohort p Value 

N 259 83  

LNM 89 (34.4%) 34 (41%) 0.295(a) 

Age 65.29 ± 9.97 65.06 ± 9.83 0.864(b) 

Sex    

female 134 (51.7%) 40 (48.2%)   

male 125 (48.3%) 43 (51.8%) 0.615(b) 

T stage    

T1 81 (31.1%) 21 (25.3%) 0.686(c) 

T2 147 (56.8%) 49 (59%)  

T3 21 (8.8%) 9 (10.8%)  

T4 10 (4.1%) 4 (4.9%)  

Cigarettes smoked per year(d) 39.85 ± 23.12 42.07 ± 27.54 0.609(a) 

Event    

alive 149 (57.5%) 56 (67.5%) 0.207(c) 

dead 103 (39.8%) 25 (30.1%)  

unknown 9 (2.7%) 2 (2.4%)  

(a)The p value was calculated by Fisher’s exact test. (b)The p value was calculated by the t test. (c)The p value was 

calculated by the χ2 test. (d)Number of packets of cigarettes smoked per year by the patients. 

Table 2. AUC value and 95% Confidence Intervals (CI) in different sex, age and T-stage 

subgroups. 

 N AUC 95% CI 

Overall 342 0.757 （0.705，0.809） 

Age    

≤ 49 22 0.709 （0.483，0.935） 

50–59 71 0.694 （0.568，0.820） 

60–69 108 0.753 （0.657，0.849） 

≥ 70 122 0.811 （0.733，0.889） 

Sex    

M 168 0.774 （0.703，0.844） 

F 174 0.738 （0.661，0.816） 

T-stage    

T1 102 0.697 （0.569，0.825） 

T2 196 0.765 （0.699，0.831） 

T3 30 0.787 （0.623，0.952） 

T4 14 0.600 （0.284，0.916） 
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Figure 3. The proposed regulatory network between DEMIs and DEMs associated with 

lymph node metastasis in lung adenocarcinoma. The rectangular and ellipses represent 

the miRNAs and mRNAs, respectively. The red and green rings indicated relatively 

up-regulated and down-regulated expression in lung adenocarcinoma patients with LNM, 

respectively.  

4. Discussion 

Lung cancer is a leading cause of cancer deaths worldwide, contributing to 1.8 million deaths in 

2018 alone [22,23]. Involvement of the regional lymph nodes is a characteristic feature of early stage of 

tumor growth in NSCLC, and “N status” is a major factor clinical management of this subtype [24]. 

NSCLC patients with LNM often have poor prognosis and high mortality. It was reported that 5-year 

survival of lung adenocarcinoma patients without LNM was over 95% while 5-year survival of 

mid-stage or late-stage cancer patients with LNM was only 30% [7]. Therefore, lymph node 

metastasis is closely associated with prognosis of lung adenocarcinoma and its accurate prediction is 

helpful to instigate early treatment to improve patient outcomes. 

MiRNA signatures of lung cancer are commonly used to predict the survival time of cancer 

patients [25,26]. However, survival time is easily swayed by healthcare qualities, psychological 

condition and treatment options etc. Lymph nodes metastases is just a status of cancer disease, which 

is highly related to gene expressions. Thus, prediction of lymph nodes metastases with miRNA is 

more reasonable and objective compared to prediction of survival time. For the first time, we 

developed a miRNA disease signature to predict lymph node metastasis in patients with lung 

adenocarcinoma. Although previous studies have identified miRNA signatures that correlate with 

overall survival, their clinical use was limited owing to LUAD patients’ significant heterogeneity 

from multiple aspects like pathology, treatment plans, surgical options, healthcare services and 

psychological conditions. Each of these aspects may significantly influence patients’ overall survival 

rates, thus contributing to the unreliability of survival prediction. Using the TCGA lung 

adenocarcinoma cohort, we constructed a 13-miRNA signature with satisfying AUC values to predict 
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LNM of LUAD. Our signature focused on the factors associated with lymph node metastasis instead 

of overall survival, whose evaluation were more objective, thereby conceiving great clinical value. 

More importantly, the prediction of lymph node metastasis serves as a distinct approach to the 

evaluation of patients’ prognosis and could be implemented as an important indicator for physicians 

to pick proper treatment plans. For patients at T1 and T2 stage, the signature had AUC values of 

0.697 and 0.765 respectively, indicating its good performance in early stage lung adenocarcinoma. 

And the higher T stage, the better prediction accuracy was achieved. In addition, our signature 

worked better in elder populations, as patients above 50 years old had a higher AUC value compared 

to younger patients.  

The miRNAs in our signature were known to function in oncogenesis in lung cancer, or have 

reported to have prognostic value. In our signature, miR-582, miR-378a, miR-891a, miR-509-3, 

miR-376b were upregulated in LUAD patients with lymph node metastasis. Fang et al. reported that 

in NSCLC, miR-582-3p had an activating effect on Wnt/β-catenin signaling and the overexpression 

of which targets several negative receptors, AXIN2, DKK3 and SFRP1, in the pathway, thereby 

promoting tumorigenesis and tumor recurrence [27]. Contrarily, miR-582-5p was also reported to 

suppress the growth and invasion of NSCLC cell by targeting NOTCH1 and MAP3K2 [28,29]. 

MiR-378 overexpression could decrease the expression of HMOX1 and p53 while enhancing that of 

MUC5AC, vascular endothelial growth factor, interleukin-8, and Ang-1, thereby promoting 

proliferation, migration, and stimulation of endothelial cells in NSCLC cell lines [30]. 

Overexpression of miR-891a was observed in NSCLC and it negatively regulated HOXA5, a tumor 

suppressor gene whose gene product could up-regulate the expression of the TP53 tumor suppressor 

gene [31]. The result was further proved by a study, showing miR-891a-5p was found to present at 

significantly higher level in lung cancer compared with control sample [32]. MiR-509-3 could 

repress PLK1 expression for inhibiting cancer proliferation and sensitizes cells to DNA damage 

agents, which provides insights into future optimization of chemotherapy [33]. In breast cancer 

and renal cell carcinoma, miR-509-3 played a similar role in suppressing cell invasion and 

migration [34,35]. Korkmaz et al. found that overexpression of miR-376b lowered the levels of 

ATG4C and BECN1 to control autophagy [36].  

On the other hand, miR-30d, miR-338, miR-3065, miR-664a, miR-598, miR-552, miR-133a-1, 

mirR4728 were down-regulated in LUAD patients with lymph node metastasis. MiR-30d-5p, an 

often down-regulated miRNA in NSCLC tissues, could target cyclin E2 (CCNE2) to inhibit the 

growth, distribution and motility of NSCLC cells [37]. Similarly, miR-338-3p could suppress the 

migration and invasion of NSCLC cells by targeting integrin β3, a metastasis related protein or Sox4, 

an epithelial-mesenchymal transition (EMT)-related transcription factor [38,39]. A negative 

correlation was observed between the expression of miR-338-3p and insulin receptor substrate 2, an 

oncogene, suggesting a new way for miR-338-3p to suppress tumor [40]. MiR-3065 was reported to 

target some lung squamous cell carcinoma lncRNAs, but its role in oncogenesis has not yet been 

studied in lung adenocarcinoma [41]. The presence of miR-664 may enhance the proliferation and 

migration in lung cancer cell lines while inhibiting apoptosis [42]. Overexpression of miR-598 could 

inhibit tumor cell metastasis in NSCLC in vivo and negatively regulates Derlin-1 and EMT to 

suppress cancer cell invasion and metastasis in vitro [43]. Inhibitory effect of miR-598 

overexpression to LNM was also observed in NSCLC cells by targeting zinc finger E-box-binding 

homeobox 2 [44]. Xu et al. found a positive feedback loop between LINC01296, Twist1 and 

miR-598, indicating a potential target for therapeutic strategy [45]. MiR-552 was mainly reported in 



2565 

Mathematical Biosciences and Engineering  Volume 17, Issue 3, 2557–2568. 

colorectal cancer as a negative prognostic indicator and may potentially be used to predict the origin 

of lung carcinoma, namely differentiating primary lung adenocarcinoma and colorectal cancer 

metastases [46–48]. Studies have also concluded that overexpression of miR-133a could suppress 

cell proliferation, invasion and metastasis in lung cancer cell lines by suppressing the expressions of 

matrix metalloproteinase MMP14 and oncogenic receptors including insulin-like growth factor 1 receptor 

(IGF-1R), TGF-beta receptor type-1 (TGFBR1), and epidermal growth factor receptor (EGFR) [49,50]. 

Clinical studies also confirmed that the expression of miR-133a negatively associated with the status 

of N classification and MMP-14 expression [51]. The role of mir-4728 in lung cancer has yet been 

reported, but it served as a negative regulator for of MAPK signaling through directly targeting the 

ERK upstream kinase MST4 to suppress cancer cell proliferation in vitro [52].  

These studies demonstrated the association between expression of these miRNAs and lymph 

node metastasis. Identified miRNAs in our signature and the interactions between miRNA and 

mRNA is helpful to increase our understanding for the pathogenesis and lymph node metastasis of 

LUAD. Moreover, determination of these miRNAs and pathways could serve as potential therapeutic 

targets for treatments in lung cancer and provide insights into future clinical use. 

It should be noted that although miRNAs in our signature have demonstrated functions in cell 

migration, invasion and other developmental processes, there was little overlap between our miRNAs 

and the ones reported in other signatures that predicted overall survival, possibly due to different 

methodology and distinct expected outcomes. Concerning that mRNAs reported in our 

miRNA-mRNA regulatory network have yet been reported, investigations are warranted to look into 

these genes. One other limitation is that both our training and validation cohorts were obtained from 

TCGA database. External validation sets and experimental validation in biological function of these 

miRNAs may suggest further implications of lymph node metastasis in lung adenocarcinoma. 

Acknowledgements 

This work was supported by Zhejiang Medical and Health Project (2019334185), Zhejiang 

Natural Sciences Foundation Grant (LQ17H160011, LY17H160029, LY18H160007), the National 

Natural Science Foundation of China (81602635, 81703072), Zhejiang Medical Innovative 

Discipline Construction Project-2016 and the Innovation research grant program for 8-year-system 

medical students at Zhejiang University (No.119000-5405A1). 

Conflict of interest 

The authors declare no competing interests. 

References  

1. K. X. Sun, R. S. Zheng, H. M. Zeng, S. W. Zhang, X. N. Zou, X. Y. Gu, et al., The incidence and 

mortality of lung cancer in China, 2014, Zhonghua Zhong Liu Za Zhi, 40 (2018), 805–811. 

2. R. L. Siegel, K. D. Miller, A. Jemal, Cancer statistics, 2018, CA Cancer J. Clin., 68 (2018), 

7–30. 

3. A. McIntyre, A. K. Ganti, Lung cancer—a global perspective, J. Surg. Oncol, 115 (2017), 

550–554. 



2566 

Mathematical Biosciences and Engineering  Volume 17, Issue 3, 2557–2568. 

4. A. Jemal, M. M. Center, C. DeSantis, E. M. Ward, Global patterns of cancer incidence and 

mortality rates and trends, Cancer Epidemiol. Biomarkers Prev., 19 (2010), 1893–1907. 

5. M. J. Duffy, Clinical uses of tumor markers: A critical review, Crit. Rev. Clin. Lab. Sci., 38 

(2001), 225–262. 

6. P. Goldstraw, K. Chansky, J. Crowley, R. R. Porta, H. Asamura, W. E. Eberhardt, et al., The 

IASLC lung cancer staging project: Proposals for revision of the TNM stage groupings in the 

forthcoming (eighth) edition of the TNM classification for lung cancer, J. Thorac. Oncol, 11 

(2016), 39–51. 

7. A. Matsuda, K. Katanoda, Five-year relative survival rate of lung cancer in the USA, Europe 

and Japan, Jpn J. Clin .Oncol, 43 (2013), 1287–1288. 

8. Y. Cai, X. Yu, S. Hu, J. Yu, A brief review on the mechanisms of miRNA regulation, Genomics, 

Proteomics Bioinf., 7 (2009), 147–154. 

9. E. Chan, D. E. Prado, J. B. Weidhaas, Cancer microRNAs: From subtype profiling to predictors 

of response to therapy, Trends Mol. Med., 17 (2011), 235–243. 

10. J. Ma, K. Mannoor, L. Gao, A. Tan, M. A. Guarnera, M. Zhan, et al., Characterization of 

microRNA transcriptome in lung cancer by next-generation deep sequencing, Mol. Oncol, 8 

(2014), 1208–1219. 

11. A. E. Kerscher, F. J. Slack, Oncomirs-microRNAs with a role in cancer, Nat. Rev. Cancer, 6 

(2006), 259–269. 

12. C. Sanfiorenzo, M. I. Ilie, A. Belaid, F. Barlesi, J. Mouroux, C. H. Marquette, et al., Two panels 

of plasma microRNAs as non-invasive biomarkers for prediction of recurrence in resectable 

NSCLC, PLoS One, 8 (2013), e54596. 

13. J. Y. Kwan, P. Psarianos, J. P. Bruce, K. W. Yip, F. F. Liu, The complexity of microRNAs in 

human cancer, J. Radiat. Res., 57 (2016), i106–i111. 

14. R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Stat. Soc. B, 58 (1996), 

267–288. 

15. C. Chen, H. Chen, Y. He, R Xia, TBtools, a toolkit for biologists integrating various HTS-data 

handling tools with a user-friendly interface, Bio. Rxiv, (2018), 289660. 

16. H. Dweep, N. Gretz, miRWalk2. 0: A comprehensive atlas of microRNA-target interactions, Nat. 

Methods, 12 (2015), 697. 

17. P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, et al., Cytoscape: A 

software environment for integrated models of biomolecular interaction networks, Genome Res., 

13 (2003), 2498–2504. 

18. F. Yang, K. Wei, Z. Qin, W. Liu, C, Shao, C. Wang, et al., MiR-598 suppresses invasion and 

migration by negative regulation of derlin-1 and epithelial-mesenchymal transition in non-small 

cell lung cancer, Cell Physiol. Biochem., 47 (2018), 245–256. 

19. H. Y. Lee, S. S. Han, S. Y. Song, Serum microRNAs as potential biomarkers for lung cancer, 

Ann. Oncol., 27 (2016). 

20. X. H. Wang, Y. Lu, J. J. Liang, J. X. Cao, Y. Q. Jin, G. S. An, et al., MiR-509-3-5p causes 

aberrant mitosis and anti-proliferative effect by suppression of PLK1 in human lung cancer 

A549 cells, Biochem. Biophy. Res. Commun., 478 (2016), 676–682. 

21. Y. Z. Wang, J. M. Li, H. M. Chen, Y. Mo, H. Ye, Y. Luo, et al., Down-regulation of miR-133a as 

a poor prognosticator in non-small cell lung cancer, Gene, 591 (2016), 333–337. 



2567 

Mathematical Biosciences and Engineering  Volume 17, Issue 3, 2557–2568. 

22. F. Bray, J. Ferlay, I. Soerjomataram, L. A. Torre, A. Jemal, Global cancer statistics 2018: 

GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, 

CA Cancer J. Clin., 68 (2018), 394–424. 

23. M. Cao, W. Chen, Epidemiology of lung cancer in China, Thorac. Cancer, 10 (2019), 3–7. 

24. F. R. Vamos, J. Tovari, J. Fillinger, J. Timar, S. Paku, I. Kenessey, et al., Lymphangiogenesis 

correlates with lymph node metastasis, prognosis, and angiogenic phenotype in human 

non-small cell lung cancer, Clin. Cancer Res., 11 (2005), 7344–7353. 

25. S. L. Yu, H. Y. Chen, G. C. Chang, et al., MicroRNA signature predicts survival and relapse in 

lung cancer, Cancer Cell, 13 (2008), 48–57. 

26. S. Y. Sathipati, S. Y. Ho, Identifying the miRNA signature associated with survival time in 

patients with lung adenocarcinoma using miRNA expression profiles, Sci. Rep., 7 (2017). 

27. L. Fang, J. Cai, B. Chen, S. Wu, R, Li, X. Xu, et al., Aberrantly expressed miR-582-3p 

maintains lung cancer stem cell-like traits by activating Wnt/β-catenin signalling, Nat. Commun., 

6 (2015), 8640. 

28. J. Liu, S. Liu, X. Deng, J. Rao, K. Huang, G. Xu, et al., MicroRNA-582-5p suppresses 

non-small cell lung cancer cells growth and invasion via downregulating NOTCH1, PLoS One, 

14 (2019), e0217652. 

29. L. L. Wang, M. Zhang, miR-582-5p is a potential prognostic marker in human non-small cell 

lung cancer and functions as a tumor suppressor by targeting MAP3K2, Eur. Rev. Med. 

Pharmacol. Sci., 22 (2018), 7760–7767. 

30. K. Skrzypek, M. Tertil, S. Golda, M. Ciesla, K. Weglarczyk, G. Collet, et al., Interplay between 

heme oxygenase-1 and miR-378 affects non-small cell lung carcinoma growth, vascularization, 

and metastasis, Antioxid. Redox Signaling, 19 (2013), 644–660. 

31. H. Y. Lee, S. S. Han, H. Rhee, J. H. Park, J. S. Lee, Y. M. Oh, et al., Differential expression of 

microRNAs and their target genes in non-small-cell lung cancer, Mol. Med. Rep., 11 (2015), 

2034–2040. 

32. H. Y. Lee, S. S. Han, S. Y. Song, Serum microRNAs as potential biomarkers for lung cancer, 

Ann. Oncol., 27 (2016). 

33. X. H. Wang, Y. Lu, J. J. Liang, J. X. Cao, Y. Q. Jin, G. S. An, et al., MiR-509-3-5p causes 

aberrant mitosis and anti-proliferative effect by suppression of PLK1 in human lung cancer 

A549 cells, Biochem. Biophys. Res. Commun., 478 (2016), 676–682. 

34. F. Xing, S. Sharma, Y. Liu, Y. Y. Mo, K. Wu, Y. Y. Zhang, et al., miR-509 suppresses brain 

metastasis of breast cancer cells by modulating RhoC and TNF-α, Oncogene, 34 (2015), 4890. 

35. Q. Zhai, L. Zhou, C. Zhao, J Wan, Z. Yu, X. Guo, et al., Identification of miR-508-3p and 

miR-509-3p that are associated with cell invasion and migration and involved in the apoptosis of 

renal cell carcinoma, Biochem. Biophys. Res. Commun., 419 (2012), 621–626. 

36. G. Korkmaz, C. Le Sage, K. A. Tekirdag, R. Agami, D. Gozuacik, miR-376b controls starvation 

and mTOR inhibition-related autophagy by targeting ATG4C and BECN1, Autophagy, 8 (2012), 

165–176. 

37. D. Chen, W. Guo, Z. Qiu, Q. Wang, Y. Li, L. Liang, et al., MicroRNA-30d-5p inhibits tumour 

cell proliferation and motility by directly targeting CCNE2 in non-small cell lung cancer, 

Cancer Lett., 362 (2015), 208–217. 

38. Y. Li, P. Chen, L. Zu, B. Liu, M. Wang, Q. Zhou, MicroRNA-338-3p suppresses metastasis of 

lung cancer cells by targeting the EMT regulator Sox4, Am. J. Cancer Res., 6 (2016), 127–140. 



2568 

Mathematical Biosciences and Engineering  Volume 17, Issue 3, 2557–2568. 

39. X. Chen, L. Wei, S. Zhao, miR-338 inhibits the metastasis of lung cancer by targeting integrin 

beta3, Oncol. Rep., 36 (2016), 1467–1474. 

40. P. Zhang, G. Shao, X. Lin, Y. Liu, Z. Yang, MiR-338-3p inhibits the growth and invasion of 

non-small cell lung cancer cells by targeting IRS2, Am. J. Cancer Res., 7 (2017), 53–63. 

41. J. Sui, S. Y. Xu, J. Han, S. R. Yang, C. Y. Li, L. H. Yin, et al., Integrated analysis of competing 

endogenous RNA network revealing lncRNAs as potential prognostic biomarkers in human lung 

squamous cell carcinoma, Oncotarget, 8 (2017), 65997–66018. 

42. X. Zhu, S. Ju, F. Yuan, G. Chen, Y. Shu, C. Li, et al., microRNA-664 enhances proliferation, 

migration and invasion of lung cancer cells, Exp. The.r Med., 13 (2017), 3555–3562. 

43. F. Yang, K. Wei, Z. Qin, W. Liu, C. Shao, C. Wang, et al., MiR-598 suppresses invasion and 

migration by negative regulation of derlin-1 and epithelial-mesenchymal transition in non-small 

cell lung cancer, Cell Physiol. Biochem., 47 (2018), 245–256. 

44. X. Tong, P. Su, H. Yang, F. Chi, L. Shen, X. Feng, et al., MicroRNA-598 inhibits the 

proliferation and invasion of non-small cell lung cancer cells by directly targeting ZEB2, Exp. 

Ther. Med., 16 (2018), 5417–5423. 

45. L. Xu, B. Wei, H. Hui, Y. Sun, Y. Liu, X. Yu, et al., Positive feedback loop of lncRNA 

LINC01296/miR-598/Twist1 promotes non-small cell lung cancer tumorigenesis, J. Cell 

Physiol., 234 (2019), 4563–4571. 

46. J. Kim, N. J. Lim, S. G. Jang, H. K. Kim, G. K. Lee, miR-592 and miR-552 can distinguish 

between primary lung adenocarcinoma and colorectal cancer metastases in the lung, Anticancer 

Res., 34 (2014), 2297–2302. 

47. J. Cao, X. R. Yan, T. Liu, X. B. Han, J. J. Yu, S. H. Liu, et al., MicroRNA-552 promotes tumor 

cell proliferation and migration by directly targeting DACH1 via the Wnt/beta-catenin signaling 

pathway in colorectal cancer, Oncol. Lett., 14 (2017), 3795–3802. 

48. N. Wang, W. Liu, Increased expression of miR-552 acts as a potential predictor biomarker for 

poor prognosis of colorectal cancer, Eur. Rev. Med. Pharmacol. Sci., 22 (2018), 412–416. 

49. M. Xu, Y. Z. Wang, miR133a suppresses cell proliferation, migration and invasion in human 

lung cancer by targeting MMP14, Oncol. Rep., 30 (2013), 1398–1404. 

50. L. K. Wang, T. H. Hsiao, T. M. Hong, H. Y. Chen, S. H. Kao, W. L. Wang, et al., 

MicroRNA-133a suppresses multiple oncogenic membrane receptors and cell invasion in 

non-small cell lung carcinoma, PLoS One, 9 (2014), e96765. 

51. Y. Wang, J. Li, H. Chen, Y. Mo, H. Ye, Y. Luo, et al., Down-regulation of miR-133a as a poor 

prognosticator in non-small cell lung cancer, Gene, 591 (2016), 333–337. 

52. D. Schmitt, L. M. Da Silva, W. Zhang, Z. Liu, R. Arora, S. Lim, et al., ErbB2-intronic 

microRNA-4728: A novel tumor suppressor and antagonist of oncogenic MAPK signaling, Cell 

Death Dis., 6 (2015), e1742. 

 

©2020 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 


