Research article

Development of metastasis-associated seven gene signature for predicting lung adenocarcinoma prognosis using single-cell RNA sequencing data

  • Received: 18 May 2021 Accepted: 23 June 2021 Published: 01 July 2021
  • Metastasis is the primary cause of lung adenocarcinoma (LUAD)-related death. This study evaluated the metastasis-associated genes (MAGs) in single-cell RNA sequencing (scRNA-seq) data from LUAD tissues and developed a MAG signature to predict overall survival (OS) of LUAD patients. The LUAD scRNA-seq data was downloaded from the Gene Expression Omnibus (GEO) Database and MAGs were identified from LUAD scRNA-seq data. The LUAD transcriptomic and clinical data were obtained from The Cancer Genome Atlas (TCGA). Cox and LASSO regression analyses were performed to identify differentially expressed MAGs (DEMAGs) with prognostic value that were then used to construct a MAG signature and MAG-nomogram model. Finally, a functional enrichment analysis was performed via Gene Set Enrichment Analysis (GSEA). 414 MAGs and 22 prognostic DEMAGs were revealed in the study. Multivariate Cox proportional hazards regression analysis was utilized to construct a 7-MAG signature for predicting the OS of LUAD patients. Patients with high risk scores had a significantly worse OS than those with low risk scores in the training group (n = 236), and the 7-MAG signature was successfully confirmed in the testing group (n = 232) and the entire TCGA-LUAD cohort (n = 468). Furthermore, univariate and multivariate Cox regression suggested that the 7-MAG signature was an independent prognostic indicator. Additionally, based on the 7-MAG signature, a nomogram was established that could more intuitively help to predict the OS of LUAD patients. The GSEA revealed the underlying molecular mechanisms of the 7-MAG signature in LUAD metastasis. In conclusion, a 7-MAG signature was developed based on LUAD scRNA-seq data that could effectively predict LUAD patient prognosis and provide novel insights for therapeutic targets and the potential molecular mechanism of metastatic LUAD.

    Citation: Jinqi He, Wenjing Zhang, Faxiang Li, Yan Yu. Development of metastasis-associated seven gene signature for predicting lung adenocarcinoma prognosis using single-cell RNA sequencing data[J]. Mathematical Biosciences and Engineering, 2021, 18(5): 5959-5977. doi: 10.3934/mbe.2021298

    Related Papers:

  • Metastasis is the primary cause of lung adenocarcinoma (LUAD)-related death. This study evaluated the metastasis-associated genes (MAGs) in single-cell RNA sequencing (scRNA-seq) data from LUAD tissues and developed a MAG signature to predict overall survival (OS) of LUAD patients. The LUAD scRNA-seq data was downloaded from the Gene Expression Omnibus (GEO) Database and MAGs were identified from LUAD scRNA-seq data. The LUAD transcriptomic and clinical data were obtained from The Cancer Genome Atlas (TCGA). Cox and LASSO regression analyses were performed to identify differentially expressed MAGs (DEMAGs) with prognostic value that were then used to construct a MAG signature and MAG-nomogram model. Finally, a functional enrichment analysis was performed via Gene Set Enrichment Analysis (GSEA). 414 MAGs and 22 prognostic DEMAGs were revealed in the study. Multivariate Cox proportional hazards regression analysis was utilized to construct a 7-MAG signature for predicting the OS of LUAD patients. Patients with high risk scores had a significantly worse OS than those with low risk scores in the training group (n = 236), and the 7-MAG signature was successfully confirmed in the testing group (n = 232) and the entire TCGA-LUAD cohort (n = 468). Furthermore, univariate and multivariate Cox regression suggested that the 7-MAG signature was an independent prognostic indicator. Additionally, based on the 7-MAG signature, a nomogram was established that could more intuitively help to predict the OS of LUAD patients. The GSEA revealed the underlying molecular mechanisms of the 7-MAG signature in LUAD metastasis. In conclusion, a 7-MAG signature was developed based on LUAD scRNA-seq data that could effectively predict LUAD patient prognosis and provide novel insights for therapeutic targets and the potential molecular mechanism of metastatic LUAD.



    加载中


    [1] R. J. Scheff, B. J. Schneider, Non-small-cell lung cancer: treatment of late stage disease: chemotherapeutics and new frontiers, in Seminars in interventional radiology, 30 (2013), 191-198.
    [2] L. L. Humphrey, M. Deffebach, M. Pappas, C. Baumann, K. Artis, J. P. Mitchell, et al., Screening for lung cancer with low-dose computed tomography: a systematic review to update the US Preventive services task force recommendation, Ann. Intern. Med., 159 (2013), 411-420. doi: 10.7326/0003-4819-159-6-201309170-00690
    [3] C. A. Ridge, A. M. McErlean, M.S. Ginsberg, Epidemiology of lung cancer, in Seminars in interventional radiology, 30 (2013), 93-98.
    [4] H. Satoh, K. Kurishima, R. Nakamura, H. Ishikawa, K. Kagohashi, G. Ohara, et al., Lung cancer in patients aged 80 years and over, Lung Cancer, 65 (2009), 112-118. doi: 10.1016/j.lungcan.2008.10.020
    [5] N. L. Kobrinsky, M. G. Klug, P. J. Hokanson, D. E. Sjolander, L. Burd, Impact of smoking on cancer stage at diagnosis, J. Clin. Oncol., 21 (2003), 907-913. doi: 10.1200/JCO.2003.05.110
    [6] J. Olak, Surgical strategies for metastatic lung cancer, Surg. Oncol. Clin., 8 (1999), 245-257. doi: 10.1016/S1055-3207(18)30211-4
    [7] J. Pfannschmidt, H. Dienemann, Surgical treatment of oligometastatic non-small cell lung cancer, Lung Cancer, 69 (2010), 251-258. doi: 10.1016/j.lungcan.2010.05.003
    [8] H. Ishikawa, H. Satoh, K. Kurishima, Y. T. Yamashita, M. Ohtsuka, K. Sekizawa, Lung cancer with synchronous brain and bone metastasis, Clin. Oncol., 12 (2000), 136-137.
    [9] A. Oikawa, H. Takahashi, H. Ishikawa, K. Kurishima, K. Kagohashi, H. Satoh, Application of conditional probability analysis to distant metastases from lung cancer, Oncol. Lett., 3 (2012), 629-634. doi: 10.3892/ol.2011.535
    [10] T. Tamura, K. Kurishima, H. Watanabe, T. Shiozawa, K. Nakazawa, H. Ishikawa, et al., Characteristics of clinical N0 metastatic non-small cell lung cancer, Lung Cancer, 89 (2015), 71-75. doi: 10.1016/j.lungcan.2015.04.002
    [11] S. L. Wood, M. Pernemalm, P. A. Crosbie, A. D. Whetton, The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets, Cancer Treat. Rev., 40 (2014), 558-566. doi: 10.1016/j.ctrv.2013.10.001
    [12] N. E. Navin, The first five years of single-cell cancer genomics and beyond, Genome Res., 25 (2015), 1499-1507. doi: 10.1101/gr.191098.115
    [13] A. A. Powell, A. H. Talasaz, H. Zhang, M. A. Coram, A. Reddy, G. Deng, et al., Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines, PLoS One, 7 (2012), e33788. doi: 10.1371/journal.pone.0033788
    [14] H. Gong, Y. Li, Y. Yuan, W. Li, H. Zhang, Z. Zhang, et al., EZH2 inhibitors reverse resistance to gefitinib in primary EGFR wild-type lung cancer cells, BMC Cancer, 20 (2020), 1189. doi: 10.1186/s12885-020-07667-7
    [15] Y. Liu, G. Ye, L. Huang, C. Zhang, Y. Sheng, B. Wu, et al., Single-cell transcriptome analysis demonstrates inter-patient and intra-tumor heterogeneity in primary and metastatic lung adenocarcinoma, Aging, 12 (2020), 21559-21581. doi: 10.18632/aging.103945
    [16] D. He, D. Wang, P. Lu, N. Yang, Z. Xue, X. Zhu, Single-cell RNA sequencing reveals heterogeneous tumor and immune cell populations in early-stage lung adenocarcinomas harboring EGFR mutations, Oncogene, 40 (2021), 355-368. doi: 10.1038/s41388-020-01528-0
    [17] Z. Chen, M. Zhao, M. Li, Q. Sui, Y. Bian, J. Liang, et al., Identification of differentially expressed genes in lung adenocarcinoma cells using single-cell RNA sequencing not detected using traditional RNA sequencing and microarray, Lab. Invest., 100 (2020), 1318-1329. doi: 10.1038/s41374-020-0428-1
    [18] A. P. Patel, I. Tirosh, J. J. Trombetta, A. K. Shalek, S. M. Gillespie, H. Wakimoto, et al., Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma, Science, 344 (2014), 1396-1401. doi: 10.1126/science.1254257
    [19] I. Tirosh, B. Izar, S. M. Prakadan, M. H. Wadsworth, D. Treacy, J. J. Trombetta, et al., Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq, Science, 352 (2016), 189-196. doi: 10.1126/science.aad0501
    [20] K. T. Kim, H. W. Lee, H. O. Lee, S. C. Kim, Y. J. Seo, W. Chung, et al., Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells, Genome Biol., 16 (2015), 127. doi: 10.1186/s13059-015-0692-3
    [21] A. Iasonos, D. Schrag, G. V. Raj, K. S. Panageas, How to build and interpret a nomogram for cancer prognosis, J. Clin. Oncol., 26 (2008), 1364-1370. doi: 10.1200/JCO.2007.12.9791
    [22] V. P. Balachandran, M. Gonen, J. J. Smith, R. P. DeMatteo, Nomograms in oncology: more than meets the eye, Lancet Oncol., 16 (2015), e173-180. doi: 10.1016/S1470-2045(14)71116-7
    [23] G. Jiang, F. Cao, G. Ren, D. Gao, V. Bhakta, Y. Zhang, et al., PRSS3 promotes tumour growth and metastasis of human pancreatic cancer, Gut, 59 (2010), 1535-1544. doi: 10.1136/gut.2009.200105
    [24] A. Hockla, E. Miller, M. A. Salameh, J. A. Copland, D. C. Radisky, E. S. Radisky, PRSS3/mesotrypsin is a therapeutic target for metastatic prostate cancer, Mol. Cancer Res., 10 (2012), 1555-1566. doi: 10.1158/1541-7786.MCR-12-0314
    [25] F. Wang, Y. L. Hu, Y. Feng, Y. B. Guo, Y. F. Liu, Q. S. Mao, et al., High-level expression of PRSS3 correlates with metastasis and poor prognosis in patients with gastric cancer, J. Surg. Oncol., 119 (2019), 1108-1121. doi: 10.1002/jso.25448
    [26] C. H. Hsu, C.W. Hsu, C. Hsueh, C. L. Wang, Y. C. Wu, C. C. Wu, et al., Identification and Characterization of Potential Biomarkers by Quantitative Tissue Proteomics of Primary Lung Adenocarcinoma, Mol. Cell. Proteomics, 15 (2016), 2396-2410. doi: 10.1074/mcp.M115.057026
    [27] Y. T. Ma, X. F. Xing, B. Dong, X. J. Cheng, T. Guo, H. Du, et al., Higher autocrine motility factor/glucose-6-phosphate isomerase expression is associated with tumorigenesis and poorer prognosis in gastric cancer, Cancer Manag. Res., 10 (2018), 4969-4980. doi: 10.2147/CMAR.S177441
    [28] Y. Dobashi, H. Watanabe, Y. Sato, S. Hirashima, T. Yanagawa, H. Matsubara, et al., Differential expression and pathological significance of autocrine motility factor/glucose-6-phosphate isomerase expression in human lung carcinomas, J. Pathol., 210 (2006), 431-440. doi: 10.1002/path.2069
    [29] W. Xiao, Z. Jia, Q. Zhang, C. Wei, H. Wang, Y. Wu, Inflammation and oxidative stress, rather than hypoxia, are predominant factors promoting angiogenesis in the initial phases of atherosclerosis, Mol. Med, Rep., 12 (2015), 3315-3322. doi: 10.3892/mmr.2015.3800
    [30] K. Hieshima, T. Imai, G. Opdenakker, J. Van Damme, J. Kusuda, H. Tei, et al., Molecular cloning of a novel human CC chemokine liver and activation-regulated chemokine (LARC) expressed in liver. Chemotactic activity for lymphocytes and gene localization on chromosome 2, J. Biol. Chem., 272 (1997), 5846-5853. doi: 10.1074/jbc.272.9.5846
    [31] C. A. Power, D. J. Church, A. Meyer, S. Alouani, A. E. Proudfoot, I. Clark-Lewis, et al., Cloning and characterization of a specific receptor for the novel CC chemokine MIP-3alpha from lung dendritic cells, J. Exp. Med., 186 (1997), 825-835. doi: 10.1084/jem.186.6.825
    [32] A. Muscella, C. Vetrugno, S. Marsigliante, CCL20 promotes migration and invasiveness of human cancerous breast epithelial cells in primary culture. Mol. Carcinog., 56 (2017), 2461-2473. doi: 10.1002/mc.22693
    [33] S. Brand, T. Olszak, F. Beigel, J. Diebold, J. M. Otte, S. T. Eichhorst, et al., Cell differentiation dependent expressed CCR6 mediates ERK-1/2, SAPK/JNK, and Akt signaling resulting in proliferation and migration of colorectal cancer cells, J. Cell Biochem., 97 (2006), 709-723. doi: 10.1002/jcb.20672
    [34] K. Beider, M. Abraham, M. Begin, H. Wald, I.D. Weiss, O. Wald, et al., Interaction between CXCR4 and CCL20 pathways regulates tumor growth, PLoS One, 4 (2009), e5125. doi: 10.1371/journal.pone.0005125
    [35] G. Z. Wang, X. Cheng, X. C. Li, Y. Q. Liu, X. Q. Wang, X. Shi, et al., Tobacco smoke induces production of chemokine CCL20 to promote lung cancer, Cancer Lett., 363 (2015), 60-70. doi: 10.1016/j.canlet.2015.04.005
    [36] B. Wang, L. Shi, X. Sun, L. Wang, X. Wang, C. Chen, Production of CCL20 from lung cancer cells induces the cell migration and proliferation through PI3K pathway, J. Cell. Mol. Med., 20 (2016), 920-929. doi: 10.1111/jcmm.12781
    [37] Y. C. Lai, C. C. Cheng, Y. S. Lai, Y. H. Liu, Cytokeratin 18-associated Histone 3 Modulation in Hepatocellular Carcinoma: A Mini Review, Cancer Genomics Proteomics, 14 (2017), 219-223. doi: 10.21873/cgp.20033
    [38] A. M. Fortier, E. Asselin, M. Cadrin, Keratin 8 and 18 loss in epithelial cancer cells increases collective cell migration and cisplatin sensitivity through claudin1 up-regulation, J. Biol. Chem., 288 (2013), 11555-11571. doi: 10.1074/jbc.M112.428920
    [39] B. Zhang, J. Wang, W. Liu, Y. Yin, D. Qian, H. Zhang, et al., Cytokeratin 18 knockdown decreases cell migration and increases chemosensitivity in non-small cell lung cancer, J. Cancer Res. Clin. Oncol., 142 (2016), 2479-2487. doi: 10.1007/s00432-016-2253-x
    [40] M. Martinelli, L. Scapoli, G. Mattei, G. Ugolini, I. Montroni, D. Zattoni, et al., A candidate gene study of one-carbon metabolism pathway genes and colorectal cancer risk, Br. J. Nutr., 109 (2013), 984-989. doi: 10.1017/S0007114512002796
    [41] G. J. Liu, Y. J. Wang, M. Yue, L. M. Zhao, Y. D. Guo, Y. P. Liu, et al., High expression of TCN1 is a negative prognostic biomarker and can predict neoadjuvant chemosensitivity of colon cancer, Sci. Rep., 10 (2020), 11951. doi: 10.1038/s41598-020-68150-8
    [42] M. Nagai, T. Furihata, S. Matsumoto, S. Ishii, S. Motohashi, I. Yoshino, et al., Identification of a new organic anion transporting polypeptide 1B3 mRNA isoform primarily expressed in human cancerous tissues and cells, Biochem. Biophys. Res. Commun., 418 (2012), 818-823. doi: 10.1016/j.bbrc.2012.01.115
    [43] N. Thakkar, K. Kim, E. R. Jang, S. Han, K. Kim, D. Kim, et al., A cancer-specific variant of the SLCO1B3 gene encodes a novel human organic anion transporting polypeptide 1B3 (OATP1B3) localized mainly in the cytoplasm of colon and pancreatic cancer cells, Mol. Pharm., 10 (2013), 406-416. doi: 10.1021/mp3005353
    [44] T. Furihata, Y. Sun, K. Chiba, Cancer-type Organic Anion Transporting Polypeptide 1B3: Current Knowledge of the Gene Structure, Expression Profile, Functional Implications and Future Perspectives, Curr. Drug Metab., 16 (2015), 474-485. doi: 10.2174/1389200216666150812142715
    [45] H. Hase, M. Aoki, K. Matsumoto, S. Nakai, T. Nagata, A. Takeda, et al., Cancer type-SLCO1B3 promotes epithelial-mesenchymal transition resulting in the tumour progression of non-small cell lung cancer, Oncol. Rep., 45 (2021), 309-316.
    [46] A. K. Kaushik, A. Shojaie, K. Panzitt, R. Sonavane, H. Venghatakrishnan, M. Manikkam, et al., Inhibition of the hexosamine biosynthetic pathway promotes castration-resistant prostate cancer, Nat. Commun., 7 (2016), 11612. doi: 10.1038/ncomms11612
  • mbe-18-05-298-supplementary.pdf
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3649) PDF downloads(377) Cited by(1)

Article outline

Figures and Tables

Figures(9)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog