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Abstract: Metastasis is the primary cause of lung adenocarcinoma (LUAD)-related death. This study 

evaluated the metastasis-associated genes (MAGs) in single-cell RNA sequencing (scRNA-seq) data 

from LUAD tissues and developed a MAG signature to predict overall survival (OS) of LUAD patients. 

The LUAD scRNA-seq data was downloaded from the Gene Expression Omnibus (GEO) Database 

and MAGs were identified from LUAD scRNA-seq data. The LUAD transcriptomic and clinical data 

were obtained from The Cancer Genome Atlas (TCGA). Cox and LASSO regression analyses were 

performed to identify differentially expressed MAGs (DEMAGs) with prognostic value that were then 

used to construct a MAG signature and MAG-nomogram model. Finally, a functional enrichment 

analysis was performed via Gene Set Enrichment Analysis (GSEA). 414 MAGs and 22 prognostic 

DEMAGs were revealed in the study. Multivariate Cox proportional hazards regression analysis was 

utilized to construct a 7-MAG signature for predicting the OS of LUAD patients. Patients with high 

risk scores had a significantly worse OS than those with low risk scores in the training group (n = 236), 

and the 7-MAG signature was successfully confirmed in the testing group (n = 232) and the entire 

TCGA-LUAD cohort (n = 468). Furthermore, univariate and multivariate Cox regression suggested 

that the 7-MAG signature was an independent prognostic indicator. Additionally, based on the 7-MAG 

signature, a nomogram was established that could more intuitively help to predict the OS of LUAD 

patients. The GSEA revealed the underlying molecular mechanisms of the 7-MAG signature in LUAD 

metastasis. In conclusion, a 7-MAG signature was developed based on LUAD scRNA-seq data that 

could effectively predict LUAD patient prognosis and provide novel insights for therapeutic targets 

and the potential molecular mechanism of metastatic LUAD. 
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1. Introduction 

Lung cancer is one of the most commonly diagnosed malignancies in the world and accounts for 

the number one incidence and mortality rates among all human cancers [1,2]. Approximately 40–60% 

of all lung cancer cases show metastasis at their initial diagnosis [3,4] and the secondary tumors are 

frequently found in the brain, bones, liver, and adrenal glands [5–10]. A large portion (70–90%) of 

lung cancer patients succumb to the disease as a result of distant tumor metastasis rather than 

uncontrolled primary tumor growth [11]. 

Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer and accounts for 

approximately 40% of all lung cancers. LUAD is a heterogeneous malignant disease and the existence 

of heterogeneity makes LUAD therapy challenging. Previous studies have widely employed Bulk RNA 

sequencing (RNA-seq) to clarify the transcriptome of LUAD. However, Bulk RNA sequencing (RNA-

seq) only shows the average expression across all cells, but does not reveal the gene expression patterns 

of individual cells, resulting in the neglect of heterogeneity among individual cells. The use of scRNA-

seq could provide a better insight into the heterogeneity of different subgroups of cells. Importantly, 

this technology has been successfully used to evaluate tumor heterogeneity [12] and has revealed the 

complexity of the tumor microenvironment [13]. Moreover, recent data using scRNA-seq has shown 

better identification of tumor heterogeneity, including better illustration of tumor growth, resistance to 

treatment, and tumor metastasis, as well as understanding of tumor biology [14–17]. In addition, 

scRNA-seq could help to identify an association between tumor transcriptional heterogeneity and 

patient prognosis [18,19]. Therefore, the aim of this study was to reveal the transcpritome and 

heterogeneity between primary LUAD and metastatic LUAD through scRNA-seq and to identify 

metastasis-associated genes (MAGs) to provide new insights for metastatic LUAD treatment and 

prognosis judgment. 

In this study, a 7-MAG signature was established based on LUAD scRNA-seq data, and this 

model performed well in predicting the OS of LUAD patients. Impactful information has been 

presented for prognostic indicators and novel therapeutic targets of metastatic LUAD. 

2. Material and methods 

2.1. Database search and data acquisition 

The LUAD scRNA-seq data on 126 LUAD cell samples (datasets of PDX-LC-PT-45 and PDX-

LC-MBT-15) were downloaded from the Gene Expression Omnibus Database (GEO) database 

(https://www.ncbi.nlm.nih.gov/geo/) with the accession number GSE69405. The LC-PT-45 tumor was 

derived from a 60-year-old male, treatment-naive LUAD patient [20]. The LC-MBT-15 tumor 

originated from a 57-year-old woman with LUAD heterochronous brain metastasis after standard 

chemotherapy and erlotinib treatment [20]. Furthermore, the transcriptome profile together with 

clinicopathological data (including gender, age, tumor grade, TNM stage, pathological stage, and 
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follow-up data) were obtained from The Cancer Genome Atlas (TCGA) database 

(https://portal.gdc.cancer.gov/). Clinical data for the LUAD patients included in this study are shown 

in Table 1. 

Table 1. Clinicopathological characteristics of LUAD patients. 

Characteristics 

 

Training group 

(n = 236) 

Testing group 

(n = 232) 

Age 

≤ 65                                                          

> 65 

 

111 

118 

 

113 

116 

Gender 

Male 

Female 

Tumor stage 

T1+T2                              

T3+T4                         

 

102 

134 

 

201 

33 

 

120 

112 

 

206 

25 

Lymph node stage 

N0+N1 

N2+N3                          

Metastasis stage 

M0 

M1   

Pathological stage 

I+II                                                  

III+IV 

Survival status 

Alive 

Deceased  

MAG risk score 

Low  

High  

 

189 

40 

 

161 

14 

 

175 

57 

 

147 

89 

 

118 

118 

 

199 

28 

 

154 

10 

 

185 

43 

 

144 

88 

 

116 

116 

2.2. Analysis of scRNA-seq and TCGA data 

The LUAD scRNA-seq data of the raw reads from 126 tumor cell samples were generated using 

the Illumina Hiseq2500 System and mapped to the GRCH36 human genome sequences. A series of 

data preprocessing, including readings of the LUAD scRNA-seq data matrix and taking the average of 

duplicate genes, was carried out. The LUAD scRNA-seq data were then converted into a Seurat object 

and subjected to data filtering. The exclusion criteria were set as: 1) data on cells with fewer than 200 

detected genes; 2) genes identified in fewer than three cells; and 3) mitochondrial DNA reads greater 

than 11%. Log normalization was used to normalize single-cell transcriptome profiling and 

FindVaribleGene was used to assess the variable genes across single cells for downstream analysis. 

Prior to this, ScaleData was used to scale the data and remove unnecessary variable sources, such as 

technical noise. Subsequently, a principal component analysis (PCA) was conducted to evaluate the 
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most significant principal components for cluster analysis. Afterwards, t-Distributed Stochastic 

Neighbor Embedding (t-NSE) was performed to assess the cluster classification, and FindAllMarkers 

was used to screen the co-expressed variable genes in the clusters, which were defined as MAGs. An 

absolute value of logFC (|Log FC|) > 0.5 and an adjusted P value (adj P) < 0.05 were used as the cut-

off values for MAGs. Next, the TCGA-LUAD transcriptome profile normalization was performed 

using the edgeR package. 

2.3. Identification of differentially expressed MAGs (DEMAGs) associated with OS 

The MAG expression profile was first extracted from the TCGA-LUAD transcriptome profile 

and the R package Limma was performed to identify the DEMAGs using logFC > 1.0 and false 

discovery rate (FDR) < 0.01 as the cut-off criteria. Next, we matched the MAG expression profile with 

OS of LUAD patients in the entire TCGA-LUAD cohort. The prognostic MAGs were identified 

through univariate Cox regression analysis when P value < 0.01 in the entire TCGA-LUAD cohort. 

The prognostic DEMAGs identified by intersecting the results of (a) the prognostic MAGs and (b) 

the DEMAGs were used for downstream analysis. MAGs with a hazard ratio (HR) > 1 were 

considered risk factors, whereas MAGs with an HR < 1 were considered protective. 

2.4. Construction of a MAG signature and a MAG nomogram model for the prediction of LUAD 

prognosis 

The entire TCGA-LUAD cohort was randomly divided into either the training (n = 236) or the 

testing group (n = 232), and the training group was utilized to construct a MAG signature for the 

prediction of LUAD patient OS. Before constructing a MAG signature, these prognostic DEMAGs 

were initially visualized through univariate Cox analysis, and a LASSO regression analysis was then 

implemented to further screen and narrow down these prognostic DEMAGs. Multivariate Cox 

proportional hazards regression analysis was used to construct a prognostic model in the 

training group, and the HR and regression coefficient for each prognostic DEMAG were 

calculated. Eventually, seven DEMAGs were identified to establish the MAG signature for the 

prediction of OS in LUAD patients. The calculation of the MAG signature was as follows: Risk score 

= Ʃ (βi x Expi), where βi represented the coefficient of gene i, standing for the weight of gene i, and 

Expi represented the expression level of gene i. Kaplan-Meier curves and log-rank tests were 

performed to associate this 7-MAG signature with OS of LUAD patients, then a receiver operating 

characteristic (ROC) curve was used to identify the performance of the MAG signature in predicting 

OS of LUAD patients in both the training and testing groups, as well as the entire TCGA-LUAD cohort. 

Finally, the rms R package was used to construct a nomogram to predict OS of LUAD patients, 

which incorporated these seven DEMAGs. This nomogram model was a prognostic statistical model 

made using simple graphs according to previous studies [21,22]. 

2.5. Functional pathway analysis of the 7-MAG signature 

To search for and identify potential molecular mechanisms, Gene Set Enrichment Analysis 

(GSEA) was performed. The risk scores was defined as the phenotype, and then the entire TCGA-

LUAD cohort was divided into either a high- or low-risk group using the median of the risk score as 
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the cutoff value. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database was then used to 

enrich the functional pathways of these high- and low-risk groups with the FDR < 0.05 as the cut-off 

value for significance.  

2.6. Statistical analysis 

All statistical analysis were performed using the R package, and glmnet was used for LASSO 

coefficient regression to screen and narrow down DEMAGs. The Kaplan-Meier with log-rank analysis 

was performed to evaluate OS of LUAD patients. The generalized linear model (GLM) was established 

using the rms software package to develop a quantitative model for the prediction of OS in LUAD 

patients. A P value < 0.05 was considered statistically significant. 

3. Results 

3.1. Identification of MAGs in LUAD samples using scRNA-seq data 

A total of 77 and 49 high-quality tumor cell samples were obtained from PDX-LC-PT-45 and 

PDX-LC-MBT-15, respectively. The quality control chart was shown in Figure 1A, illustrating the 

range of single cell RNA numbers, the sequencing count, and the proportion of mitochondrial 

sequencing counts of each cell. In total, 1500 variable genes were found in the single cell samples 

(Figure 1B). The PCA method was then used to divide these single cell samples into 20 different 

components (Figure 1C), in which the statistically significant components were used for further 

analysis. In addition, the single cell samples were mapped into two independent dimensions based on 

the PC1 and PC2 (Figure 1D). Apart from performing PCA, the t-NSE algorithm was also completed 

to successfully divide the single-cell sample data into primary- and metastatic- tumor cell 

subpopulations, defined as cluster 1 and cluster 0, respectively (Figure 1E). Subsequently, 414 co-

expressed genes were identified from these two clusters as MAGs using limma software with |Log 

FC| > 0.5 and an adj P < 0.05, and the heatmap data revealed the top 10 genes between these two 

clusters (Figure 1F). 

3.2. Verification of DEMAGs associated with OS in the entire TCGA-LUAD cohort  

The 414 MAGs expression profile was obtained from TCGA-LUAD transcriptome profile 

consisting of 551 samples (497 LUAD samples and 54 normal lung tissue samples). The 414 MAGs 

expression profiling was uploaded into R software packages to identify DEMAGs, which revealed a 

total of 114 DEMAGs using the criteria of logFC > 1.0 and FDR < 0.01, including 95 upregulated and 

19 downregulated MAGs. The heatmap and volcano plot of these DEMAGs were shown in Figure 

2A,B. 
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Figure 1. Identification of MAGs using LUAD scRNA-seq data. (A) Quality control of 

LUAD scRNA-seq data between the two cell sub-populations. (B) The variance diagram. 

The result revealed positive gene symbols with significant differences across cells. Note: 

black dot, non-variable counts (19,262 in total); red dot, variable counts (1500 in total). (C) 

Twenty PCs with estimated P values were identified based on LUAD scRNA-seq data. (D) 

The cell groups were classified into two categories termed PC1 and PC2 via PCA. (E) 

Based on the available significant components, the cells were classified into two clusters 

using the t-SNE algorithm. Cluster 0 is a metastatic tumor cell subpopulation, while Cluster 

1 a primary tumor cell subpopulation. (F) Heatmap. The top 10 of 414 MAGs between 

primary and metastatic LUAD tissues. 
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To identify prognostic DEMAGs, we initially defined a cohort of 468 LUAD patients with clinical 

information from TCGA database as the entire TCGA-LUAD cohort. Next, the 414 MAGs expression 

profile was incorporated with the clinical information from the entire TCGA-LUAD cohort and 

univariate Cox regression was performed (Supplementary Figure S1) to identify 51 MAGs associated 

with OS of LUAD patients. Then, the genes that overlapped for both prognostic MAGs and DEMAGs 

were defined as prognostic DEMAGs. There were 22 prognostic DEMAGs (Figure 3A,C) found in the 

entire TCGA-LUAD cohort, and the distribution and correlation of these prognostic DEMAGs was 

shown in Figure 3B and Figure 3D, respectively. LASSO regression analysis was then performed, 

which identified 12 prognostic DEMAGs for further analysis (Figure 3E,F). 

 

Figure 2. Identification of DEMAGs in 497 LUAD tissues vs. 54 normal lung tissues. (A) 

Heat map. (B) Volcano plot. 
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Figure 3. Identification of prognostic DEMAGs in the TCGA-LUAD cohort. (A) Venn 

diagram. Twenty-two DEMAGs were identified to associate with overall survival (OS) of 

LUAD patients. (B) Heatmap. Twenty-two DEMAGs between LUAD and matched 

normal lung tissues. (C) Forest plot. Univariate Cox regression analysis was performed to 

illustrate the prognostic effect of these 22 DEMAGs on OS of LUAD patients. (D) 

Correlation network of 22 DEMAGs are illustrated, and the different colors represent 

different correlation coefficients. (E) The LASSO coefficient values of the 22 selected 

DEMAGs. (F) The plot of the tuning parameter selection of the LASSO regression. The λ 

is the tuning parameter. 
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3.3. Identification of the MAG signature in prediction of LUAD prognosis 

The 12 prognostic DEMAGs were further analyzed using multivariate Cox proportional hazards 

regression analysis and seven genes of interest were identified in the training group (n = 236): serine 

protease 3 (PRSS3), glucose-6-phosphate isomerase (GPI), chemokine ligand 20 (CCL20), keratin-18 

(KRT18), transcobalamin I (TCN1), solute carrier organic anion transporter family member 1B3 

(SLCO1B3), and glucosamine-phosphate N-acetyltransferase 1 (GNPNAT1). The MAG signature 

(Figure 4) to predict the OS of LUAD patients was calculated as follows: Risk score = Exp (PRSS3) 

× 0.1263 + Exp (GPI) × 0.3664 + Exp (CCL20) × 0.0889 + Exp (KRT18) × 0.3787 + Exp (TCN1) × 

0.1570 + Exp (SLCO1B3) × 0.1756 + Exp (GNPNAT1) × 0.3249. The training group (n = 236) was 

divided into a high- or low-risk group according to the median risk score as the cut-off value for each 

sample (Figure 5A). As shown in Figure 5A, the distribution of the vitals demonstrated that the high-

risk group had more cases of death compared to the low-risk group, and LUAD patients with high risk 

scores tended to express a higher level of PRSS3, GPI, CCL20, KRT18, TCN1, SLCO1B3 and 

GNPNAT1 than those with low risk scores. The Kaplan-Meier curve analysis revealed that LUAD 

patients with high risk scores had significantly worse OS than those with low risk scores (P = 

7.947e−05; Figure 5B). The ROC curve also illustrated that the area under curve (AUC) of the MAG 

signature was 0.767 (Figure 5C), which indicated a moderate prediction value. 

 

Figure 4. Construction of the 7-MAG signature using multivariate Cox regression analysis. 
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Figure 5. Identification of the 7-MAG signature in the training group (n = 236). (A) The 

risk score, survival distribution, and heat maps of LUAD patients stratified according to 

the 7-MAG signature. (B) Kaplan-Meier curves. The overall survival (OS) of LUAD 

patients was analyzed between high- and low-risk scores. (C) The receive operator 

characteristic (ROC) curve. The prognostic value of the 7-MAG signature was evaluated 

using the ROC curve. 

3.4. Validation of the MAG signature in prediction of LUAD prognosis in the testing group and the 

entire TCGA-LUAD cohort 

The 7-MAG signature to predict OS of LUAD patients was validated in the testing group (n = 

232) and the entire TCGA-LUAD cohort (n = 468). The 7-MAG signature was able to effectively 

distinguish LUAD patients into two groups with better or worse OS in the testing group (P = 9.465e−03, 

AUC = 0.682; Figure 6A–C). Similarly, the entire TCGA-LUAD cohort also further confirmed the 

results, and LUAD patients with high risk scores had a shorter OS than those with low risk scores (P 

= 1.47e−05, AUC = 0.727; Figure 6D–F).  Univariate- and multivariate Cox analysis of the 7-MAG 

signature in the entire TCGA-LUAD cohort confirmed it to be an independent prognostic predictor for 

LUAD patients (Figure 7). 
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Figure 6. The performance of the 7-MAG signature in the testing group (n = 232) and the 

entire TCGA-LUAD cohort (n=468). (A, D) The risk score, survival distribution, and heat 

maps of LUAD patients stratified according to the 7-MAG signature. (B, E) Kaplan-Meier 

curves. Kaplan-Meier curves were used to analyze the survival significance stratified by 

the high- and low-risk scores. (C, F) The receive operator characteristic (ROC) curves. The 

prognostic value of the 7-MAG signature was evaluated using the ROC curves. 
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Figure 7. The univariate and multivariate Cox regression analyses of the 7-MAG signature 

against the clinicopathological data. (A) The univariate Cox regression analysis. (B) The 

multivariate Cox regression analysis. 

3.5. Construction of a MAG nomogram model in accordance with the 7-MAG signature 

A quantitative model of the seven DEMAGs to predict OS of LUAD patients was developed by 

integrating the seven DEMAGs into a nomogram (Figure 8). In the nomogram model, we first assigned 

points to each variable using a point scale based on the multivariate Cox analysis. Next, a horizontal 
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line was drawn to determine the point of each variable, and the total points of each LUAD patient, 

which were distributed between 0 and 100, was calculated by summing the points of all variables. 

Finally, a vertical line between the total points axis and each prognostic axis was utilized to evaluate 

the 1-, 2-, and 3-year OS of LUAD patients. 

 

Figure 8. The nomogram model. The nomogram model was constructed to predict the 1-, 

2-, and 3-year survival of LUAD patients. 

3.6. Bioinformatical enrichment of the 7-MAG signature in the entire TCGA-LUAD cohort 

To gain specific biological insights of the 7-MAG signature in LUAD, the GSEA was performed 

that revealed alterations of the cell cycle, DNA replication, mismatch repair, pentose phosphate 

pathway, proteasome, and the p53 signaling pathway were significantly enriched in LUAD samples 

with high risk scores, whereas the vascular smooth muscle contraction was significantly enriched in 

LUAD samples with low risk scores (FDR < 0.05; Figure 9). 
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Figure 9. Bioinformatic analysis of the MAG signature in LUAD patients (n = 468). The 

gene set enrichment analysis (GSEA) was performed to significantly enrich the biological 

processes of the MAG signature with the high- and low-risk scores. 

4. Discussion 

LUAD is a heterogeneously malignant disease and often shows early-stage tumor metastasis 

leading to a poor prognosis. scRNA-seq technology could help to effectively dissect tumor cell 

heterogeneity and identify potential prognosis biomarkers. Therefore, we first screened LUAD 

scRNA-seq data to identify 414 MAGs from the GSE69405 and found 22 prognostic DEMAGs from 

the entire TCGA-LUAD cohort. After that, we successfully developed a 7-MAG signature,  which 

could serve as novel indicator for prognosis of LUAD patients and provide potential novel therapeutic 

targets and molecular mechanism for metastatic LUAD. 

To attain potential MAGs, we performed PCA and tNSE analysis on scRNA-seq data of primary 

LUAD and metastatic LUAD. At the same time, we characterized the transcriptome and heterogeneity 

between primary and metastatic LUADs and identified a total of 414 MAGs from the GSE69405 and 

combined with LUAD Bulk RNA-data for subsequent analysis. In the entire TCGA-LUAD cohort, 

114 DEMAGs were identified from 414 MAGs using the Limma package in accordance to logFC > 

1.0 and FDR < 0.01, and 52 out of 414 MAGs were identified to be associated with OS of LUAD 

patients via univariate Cox analysis, among which 22 genes were considered as prognostic DEMAGs. 

To ensure the construction of a MAG signature that was more reasonable and reliable, LASSO 

regression analysis was executed to narrow down these prognostic DEMAGs. Finally, a 7-MAG 

signature, including PRSS3, GPI, CCL20, KRT18, TCN1, SLCO1B3, and GNPNAT1, was established 

through multivariate Cox proportional hazards regression analysis in the training group. To elucidate the 

prognostic value of the 7-MAG signature, the Kaplan-Meier with log-rank analysis and ROC curve 

analysis confirmed that the 7-MAG signature showed a good predictive ability for OS of LUAD 
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patients in the training (n = 236, P = 7.947e−05, AUC = 0.767; Figure 5A–C) and the testing (n = 232, 

P = 9.465e−03, AUC = 0.682; Figure 6A–C) groups, as well as the entire TCGA-LUAD cohort (n = 

468, P = 1.47e−05, AUC = 0.727; Figure 6D–F). Additionally, univariate- and multivariate Cox 

analysis also demonstrated that the 7-MAG signature was an independent factor in the prediction of 

LUAD prognosis. Importantly, the nomogram based on the 7-MAG signature was established to more 

intuitively help the prediction of OS in LUAD patients at one, two, and three years. Finally, to show 

validity of the MAG signature, GSEA illustrated that the cell cycle, DNA replication, mismatch repair, 

pentose phosphate pathway, proteasome, and the p53 signaling pathway were involved in progression 

of LUAD. 

Importantly, components of the 7-MAG signature possess different biological functions and 

various patterns of expression in different human cancers. For example, PRSS3 was reported to be 

involved in tumor metastasis in prostate, pancreatic, and gastric cancers [23–25], while Ma et al. 

revealed that PRSS3 could predict prognosis of LUAD patients and promote growth and invasion in 

LUAD cells [26]. Ma et al. showed that knockdown of GPI inhibited cancer cell proliferation, invasion, 

and migration in gastric cancer [27], whereas the high GPI expression was associated with NSCLC 

metastatic potential [28]. CCL20 was shown to be expressed in various human tissues, including the 

lung, liver, and lymph nodes [29–31]. Moreover, CCL20 could mediate the migration of epithelial 

cells and likely participates in cancer cell migration and metastasis in a variety of human cancers, such 

as breast, colorectal, prostate, and pancreatic cancers [32–35]. Similarly, Wang et al. indicated that 

CCL20 was significantly overexpressed in NSCLC tissues, and it contributed to cancer cell 

proliferation and migration through the PI3K pathway in lung cancer [36]. KRT18, also known as 

cytokeratin 18 (CK18), was shown to be abnormally expressed in various human cancers and has been 

associated with poor disease progression and prognosis [37,38]. For instance, Ma et al. reported that 

KRT18 was highly expressed and correlated with poor prognosis in NSCLC, while KRT18 knockdown 

was prone to inhibit NSCLC cell migration [39]. TCN1 is a type of vitamin B12-binding protein that 

transports vitamin B12 from the stomach to the intestine. It was reported that TCN1 overexpression 

was correlated with poor biological behavior and tumorigenesis of various tumor tissues [40]. Liu et 

al. found that TCN1 was overexpressed in colon cancer, and TCN1 overexpression was a poor 

prognostic biomarker and predicted neoadjuvant chemosensitivity in colon cancer [41]. Moreover, 

SLCO1B3, also known as the organic anion transporting polypeptide (AOTP), localizes at 

chromosome 12p12-31.7 to 12p12-37.2 and plays important roles in transporting various components 

to cells. Recent studies have shown that a truncated form of SLCO1B3 occurred in human cancer 

tissues and cells lines [42–44]. Hase et al. demonstrated that SLCO1B3 promoted NSCLC progression 

via mediating epithelial-mesenchymal transition [45]. Finally, GNPNAT1 is a member of the GCN5-

related N-acetyltransferase superfamily. Kaushik et al. reported that genetic loss-of-function of 

GNPNAT1 in castration-resistant prostate cancer (CRPC)-like cells contributed to proliferation and 

increased tumor cell aggressiveness through the PI3K/AKT signaling pathway [46]. Taken together, 

these seven genes have been shown to be involved in the occurrence and progression of various human 

cancers. 

In the current study, it was confirmed that the 7-MAG signature possessed the ability to predict 

LUAD prognosis. However, our current study did have some limitations. For example, we only 

assessed the available online data but did not use data from our own patients; thus, it is a retrospective 

study. Future prospective research is warranted to verify our results.  
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5. Conclusions 

In the current study, we characterized the transcriptome and heterogeneity between primary 

LUAD and metastatic LUAD based on scRNA-seq, and 414 MAGs were identified from LUAD 

scRNA-seq data and a 7-MAG signature was established in the training group. The 7-MAG signature 

was able to predict OS of LUAD patients in the training group, the testing group, the entire TCGA-

LUAD cohort and the nomogram model. Furthermore, the GSEA results revealed that LUAD 

progression was due to alterations in the cell cycle, DNA replication, mismatch repair, pentose 

phosphate pathway, the proteasome, and the p53 signaling pathway. Future studies will need to verify 

the usefulness of the 7-MAG signature for the prediction of LUAD prognosis and for the potential to 

target these biomarkers as novel strategies to control LUAD with metastasis.  

Data avaliability 

All data in this study are already available from the Gene Expression Omnibus 

(https://www.ncbi.nlm.nih.gov/geo/) and The Cancer Genome Atlas (https://portal.gdc.cancer.gov/) 

databases. 
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