Citation: Mlyashimbi Helikumi, Moatlhodi Kgosimore, Dmitry Kuznetsov, Steady Mushayabasa. Dynamical and optimal control analysis of a seasonal Trypanosoma brucei rhodesiense model[J]. Mathematical Biosciences and Engineering, 2020, 17(3): 2530-2556. doi: 10.3934/mbe.2020139
[1] | R. Lowe, The impact of global environmental change on vector-borne disease risk: A modelling study, Lancet Planet. Health., 2 (2018), S1. |
[2] | H. J. Nnko, A. Ngonyoka, L. Salekwa, A. B. Estes, P. J. Hudson, P. S. Gwakisa, et al. Seasonal variation of tsetse fly species abundance and prevalence of trypanosomes in the Maasai steppe, Tanzania, J. Vector Ecol., 42 (2017), 24-33. doi: 10.1111/jvec.12236 |
[3] | J. R. Franco, P. P. Simarro, A. Diarra, J. G. Jannin. Epidemiology of human African trypanosomiasis, Clin. Epidemiol., 6 (2014), 257-275. |
[4] | World Health Organization Report, Control and Surveillance of Human African Trypanosomiasis, 2013. Available from: https://apps.who.int/iris/handle/10665/95732. |
[5] | World Health Organization, Human African trypanosomiasis (sleeping sickness): Epidemiological update, Wkly Epidemiol. Rec., 81 (2018), 71-80. |
[6] | S. G. A. Leak, Tsetse vector population dynamics, in Modelling Vector-Borne and Other Parasitic Diseases (eds. J. W. Hansen and B.D. Perry), International Livestock research Institute, (1994), 36. |
[7] | F. L. Berrang, C. Wamboga, A. Kakembo, Trypanosoma brucei rhodesiense sleeping sickness, Uganda, Emerg. Infect. Dis., 18 (2012), 1686-1687. |
[8] | K. Ngongolo, A. B. Estes, P. J. Hudson, P. S. Gwakisa, Influence of seasonal cattle movement on prevalence of trypanosome infections in cattle in the Maasai Steppe, Tanzania, J. Infect. Dis. Epidemiol., 5 (2019), 079. |
[9] | E. G. Kimaro, J. L. Toribio, P. Gwakisa, S. M. Mor, Occurrence of trypanosome infections in cattle in relation to season, livestock movement and management practices of Maasai pastoralists in Northern Tanzania, Vet. Parasitol. Reg. Stud. Reports., 12 (2018), 91-98. |
[10] | S. Aksoy, P. Buscher, M. Lehane, P. Solano, J. Van Den Abbeele, Human African trypanosomiasis control: Achievements and challenges, PLoS Negl. Trop. Dis., 11 (2017), e0005454. |
[11] | P. P. Simarro, G. Cecchi, J. R. Franco, M. Paone, A. Diarra, J. A. Ruiz-Postigo, et al., Estimating and mapping the population at risk of sleeping sickness, PLoS Negl. Trop. Dis., 6 (2012), e1859. |
[12] | P. Büscher, G. Cecchi, V. Jamonneau, G. Priotto, Human African trypanosomiasis, Lancet., 390 (2017), 2397-2409. |
[13] | S. Moore, S. Shrestha, K. W. Tomlinson, H. Vuong, Predicting the effect of climate change on African trypanosomiasis: Integrating epidemiology with parasite and vector biology, J. R. Soc. Interface., 9 (2012), 817-830. |
[14] | S. L. Peck, J. Bouyer, Mathematical modeling, spatial complexity, and critical decisions in tsetse control, J. Econ. Entomol., 105 (2012), 1477-1486. |
[15] | J. W. Hargrove, R. Ouifki, D. Kajunguri, G. A. Vale, S. J. Torr, Modeling the control of trypanosomiasis using trypanocides or insecticide-treated livestock, PLoS Negl. Trop. Dis., 6 (2012), e1615. |
[16] | S. F. Ackley, J. W. Hargrove, A dynamic model for estimating adult female mortality from ovarian dissection data for the tsetse fly Glossina pallidipes Austen sampled in Zimbabwe, PLoS Negl. Trop. Dis., 11 (2017), e0005813. |
[17] | J. S. Lord, J.W. Hargrove JW, S. J. Torr, G. A. Vale, Climate change and African trypanosomiasis vector populations in Zimbabwes Zambezi Valley: A mathematical modelling study, PLoS Med., 15 (2018), e1002675. |
[18] | S. Alderton, E. T. Macleod, N. E. Anderson, G. Palmer, N. Machila, M. Simuunza, et al., An agent-based model of tsetse fly response to seasonal climatic drivers: Assessing the impact on sleeping sickness transmission rates, PLoS Negl. Trop. Dis., 12 (2018), e0006188. |
[19] | C. M. Stone, N. Chitnis N, Implications of heterogeneous biting exposure and animal hosts on trypanosomiasis Brucei Gambiense transmission and control, PLoS Comput. Biol., 11 (2015): e1004514. |
[20] | D. J. Rogers, A general model for the African trypanosomiases, Parasitology., 97 (1988), 193-212. |
[21] | K. S. Rock, M. L. Ndeffo-Mbah, S. Castaño, C. Palmer, A. Pandey, K. E. Atkins, et al. Assessing strategies against Gambiense sleeping sickness through mathematical modeling, Clin. Infect. Dis., 66 (2018), S286-S292. |
[22] | A. M. Ndondo, J. M. W. Munganga, J. N. Mwambakana, M. C. Saad-Roy, P. van den Driessche, O. R. Walo. Analysis of a model of Gambiense sleeping sickness in human and cattle, J. Biol. Dyn., 10 (2016), 347-365. |
[23] | J. A. Gilbert, J. Medlock, J. P. Townsend, S. Aksoy, M. L. Ndeffo-Mbah, A. P. Galvani, Determinants of human African trypanosomiasis elimination via paratransgenesis, PLoS Negl. Trop. Dis., 10 (2016), e0004465. |
[24] | K. S. Rock, S, J. Torr, C. Lumbala, M. J. Keeling, Predicting the impact of intervention strategies for sleeping sickness in two high-endemicity health zones of the Democratic Republic of Congo, PLoS Negl. Trop. Dis., 11 (2017), e0005162. |
[25] | K. S. Rock, S, J. Torr, C. Lumbala, M. J Keeling, Quantitative evaluation of the strategy to eliminate human African trypanosomiasis in the Democratic Republic of Congo, Parasit. Vectors., 8 (2015), 532. |
[26] | K. S. Rock, C. M. Stone, I. M. Hastings, M. J. Keeling, S. J. Torr, N. Chitnis, Mathematical models of human African trypanosomiasis epidemiology, Adv. Parasitol., 87 (2015), 53-133. |
[27] | T. Madsen, D. I. Wallace, N. Zupan, Seasonal fluctuations in tsetse fly populations and human African trypanosomiasis: A mathematical model, in BiIOMAT 2012: International Symposium on Mathematical and Computational Biology (ed. R. P. Mondaini), World Scientific Publishing Company, Singapore, (2013), 56-69. |
[28] | H. Helikumi, M. Kgosimore, D. Kuznetsov, S. Mushayabasa S, Backward bifurcation and optimal control analysis of a Trypanosoma Brucei Rhodesiense model, Mathematics., 7 (2019), 971. |
[29] | A. R. Cossins, K. Blower, Temperature biology of animals, New York, Chapman and Hall, 1987. |
[30] | N. Chitnis, J. M. Cushing, J. M. Hyman, Bifurcation analysis of a mathematical model for malaria transmission, SIAM J. Appl. Math., 67 (2006), 24-45. |
[31] | N. Chitnis, J. M. Hyman, J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272-1296. |
[32] | P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. |
[33] | L. S. Pontryagin, V. T. Boltyanskii, R. V. Gamkrelidze, E. F. Mishcheuko, The mathematical theory of optimal processes, Wiley, New Jersey, 1962. |
[34] | S. Lenhart, J. T. Workman, Optimal Control Applied to Biological Models, Chapman and Hall/CRC, London, 2007. |
[35] | W. Wang, X. Q Zhao, Threshold dynamics for compartment epidemic models in periodic environments, J. Dyn. Differ. Equ., 20 (2008), 699-717. |
[36] | D. Posny, J. Wang, Computing basic reproductive numbers for epidemiological models in nonhomogeneous environments, Appl. Math. Comput., 242 (2014), 473-490. |
[37] | W. D. Wang, X. Q. Zhao, An epidemic model in a patchy environment, Math. Biosci., 190 (2004), 97-112. |
[38] | X. Q. Zhao, Dynamical System in Population Biology, Springer-Verlag, New York, 2003. |
[39] | X. Q. Zhao, Dynamical Systems in Population Biology, Springer: New York, 2003. |
[40] | W. H. Fleming, R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verag, New York, 1975. |