Research article

Resource dependent scheduling with truncated learning effects


  • Received: 24 January 2022 Revised: 25 March 2022 Accepted: 31 March 2022 Published: 11 April 2022
  • In this article, we investigate the single-machine scheduling problem with truncated learning effect and resource allocation, where the actual processing time of a job is a general function of its additional resources and position in a sequence. The goal is to determine the optimal resource allocation and optimal sequence such that a weighted sum of scheduling cost and resource consumption cost is minimized. We show that the problem can be solved in $ O(n^3) $ time by using an assignment formulation, where $ n $ is the number of jobs.

    Citation: Xuyin Wang, Weiguo Liu, Lu Li, Peizhen Zhao, Ruifeng Zhang. Resource dependent scheduling with truncated learning effects[J]. Mathematical Biosciences and Engineering, 2022, 19(6): 5957-5967. doi: 10.3934/mbe.2022278

    Related Papers:

  • In this article, we investigate the single-machine scheduling problem with truncated learning effect and resource allocation, where the actual processing time of a job is a general function of its additional resources and position in a sequence. The goal is to determine the optimal resource allocation and optimal sequence such that a weighted sum of scheduling cost and resource consumption cost is minimized. We show that the problem can be solved in $ O(n^3) $ time by using an assignment formulation, where $ n $ is the number of jobs.



    加载中


    [1] M. Wu, N. Xiong, A. V. Vasilakos, V. C. M. Leung, C. L. P. Chen, RNN-K: A reinforced newton method for consensus-based distributed optimization and control over multiagent systems, IEEE Trans. Cybern., (2020), 1–15. https://doi.org/10.1109/TCYB.2020.3011819 doi: 10.1109/TCYB.2020.3011819
    [2] H. Zhang, H. Jiang, B. Li, F. Liu, A. V. Vasilakos, J. Liu, A framework for truthful online auctions in cloud computing with heterogeneous user demands, IEEE Trans. Comput., 65 (2015), 805–818. https://doi.org/10.1109/INFCOM.2013.6566946 doi: 10.1109/INFCOM.2013.6566946
    [3] M. Polverini, A. Cianfrani, S. Ren, A. V. Vasilakos, Thermal-aware scheduling of batch jobs in geographically distributed data centers, IEEE Trans. Cloud Comput., 2 (2013), 71–84. https://doi.org/10.1109/TCC.2013.2295823 doi: 10.1109/TCC.2013.2295823
    [4] H. Yang, J. Yuan, C. Li, G. Zhao, Z. Sun, Q. Yao, et al., BrainIoT: Brain-like productive services provisioning with federated learning in industrial IoT, IEEE Internet Things J., 9 (2021), 2014–2024. https://doi.org/10.1109/JIOT.2021.3089334 doi: 10.1109/JIOT.2021.3089334
    [5] A. Azzouz, M. Ennigrou, S. L. Ben, Scheduling problems under learning effects: classification and cartography, Int. J. Prod. Res., 56 (2018), 1642–1661. https://doi.org/10.1080/00207543.2017.1355576 doi: 10.1080/00207543.2017.1355576
    [6] J. Pei, B. Cheng, X. Liu, P. M. Pardalos, M. Kong, Single-machine and parallel-machine serial-batching scheduling problems with position-based learning effect and linear setup time, Ann. Oper. Res., 272 (2019), 217–241. https://doi.org/10.1007/s10479-017-2481-8 doi: 10.1007/s10479-017-2481-8
    [7] J. Qian, H. Lin, Y. Kong, Y. Wang, Tri-criteria single machine scheduling model with release times and learning factor, Appl. Math. Comput., 387 (2020), 124543. https://doi.org/10.1016/j.amc.2019.06.057 doi: 10.1016/j.amc.2019.06.057
    [8] J. B. Wang, M. Gao, J. J. Wang, L. Liu, H. He, Scheduling with a position-weighted learning effect and job release dates, Eng. Optim., 52 (2020), 1475–1493. https://doi.org/10.1080/0305215X.2019.1664498 doi: 10.1080/0305215X.2019.1664498
    [9] J. B. Wang, F. Liu, J. J. Wang, Research on $m$-machine flow shop scheduling with truncated learning effects, Int. Tran. Oper. Res., 26 (2019), 1135–1151. https://doi.org/10.1111/itor.12323 doi: 10.1111/itor.12323
    [10] X. X. Liang, B. Zhang, J. B. Wang, N. Yin, X. Huang, Study on flow shop scheduling with sum-of-logarithm-processing-times-based learning effects, J. Appl. Math. Comput., 61 (2019), 373–388. https://doi.org/10.1007/s12190-019-01255-0 doi: 10.1007/s12190-019-01255-0
    [11] X. Sun, X. N. Geng, F. Liu, Flow shop scheduling with general position weighted learning effectsto minimise total weighted completion time, J. Oper. Res. Soc., 72 (2021), 2674–2689. https://doi.org/10.1080/01605682.2020.1806746 doi: 10.1080/01605682.2020.1806746
    [12] D. Shabtay, G. Steiner, A survey of scheduling with controllable processing times, Discrete Appl. Math., 155 (2007), 1643–1666. https://doi.org/10.1016/j.dam.2007.02.003 doi: 10.1016/j.dam.2007.02.003
    [13] G. Wei, A. V. Vasilakos, Z. Yao, N. Xiong, A game-theoretic method of fair resource allocation for cloud computing services, J. Supercomput., 54 (2010), 252–269. https://doi.org/10.1007/s11227-009-0318-1 doi: 10.1007/s11227-009-0318-1
    [14] J. B. Wang, M. Z. Wang, Single-machine scheduling to minimize total convex resource consumption with a constraint on total weighted flow time, Comput. Oper. Res., 39 (2012), 492–497. https://doi.org/10.1016/j.cor.2011.05.026 doi: 10.1016/j.cor.2011.05.026
    [15] L. Mashayekhy, M. M. Nejad, D. Grosu, A. V. Vasilakos, An online mechanism for resource allocation and pricing in clouds, IEEE Trans. Comput., 65 (2016), 1172–1184. https://doi.org/10.1109/TC.2015.2444843 doi: 10.1109/TC.2015.2444843
    [16] X. X. Liang, M. Liu, Y. B. Feng, J. B. Wang, L. S. Wen, Solution algorithms for single-machine resource allocation scheduling with deteriorating jobs and group technology, Eng. Optim., 52 (2020), 1184–1197. https://doi.org/10.1080/0305215X.2019.1638920 doi: 10.1080/0305215X.2019.1638920
    [17] C. Liu, C. Xiong, Single machine resource allocation scheduling problems with deterioration effect and general positional effect, Math. Biosci. Eng., 18 (2021), 2562–2578. https://doi.org/10.3934/mbe.2021130 doi: 10.3934/mbe.2021130
    [18] Y. Y. Lu, G. Li, Y. B. Wu, P. Ji, Optimal due-date assignment problem with learning effect and resource-dependent processing times, Optim. Lett., 8 (2014), 113–127. https://doi.org/10.1007/s11590-012-0467-7 doi: 10.1007/s11590-012-0467-7
    [19] Z. Zhu, F. Chu, Y. Yu, L. Sun, Single-machine past-sequence-dependent setup times scheduling with resource allocation and learning effect, RAIRO-Oper. Res., 50 (2016), 733–748. https://doi.org/10.1051/ro/2016007 doi: 10.1051/ro/2016007
    [20] J. Pei, X. Liu, B. Liao, P. M. Pardalos, M. Kong, Single-machine scheduling with learning effect and resource-dependent processing times in the serial-batching production, Appl. Math. Modell., 58 (2018), 245–253. https://doi.org/10.1016/j.apm.2017.07.028 doi: 10.1016/j.apm.2017.07.028
    [21] W. W. Liu, C. Jiang, Due-date assignment scheduling involving job-dependent learning effects and convex resource allocation, Eng. Optim., 52 (2020), 74–89. https://doi.org/10.1080/0305215X.2019.1580705 doi: 10.1080/0305215X.2019.1580705
    [22] X. N. Geng, J. B. Wang, D. Bai, Common due date assignment scheduling for a no-wait flowshop with convex resource allocation and learning effect, Eng. Optim., 51 (2019), 1301–1323. https://doi.org/10.1080/0305215X.2018.1521397 doi: 10.1080/0305215X.2018.1521397
    [23] W. W. Liu, C. Jiang, Flow shop resource allocation scheduling with due date assignment, learning effect and position-dependent weights, Asia-Pac. J. Oper. Res., 37 (2020), 2050014. https://doi.org/10.1142/S0217595920500141 doi: 10.1142/S0217595920500141
    [24] J. B. Wang, D. Y. Lv, J. Xu, P. Ji, F. Li, Bicriterion scheduling with truncated learning effects and convex controllable processing times, Int. Tran. Oper. Res., 28 (2021), 1573–1593. https://doi.org/10.1111/itor.12888 doi: 10.1111/itor.12888
    [25] D. Y. Lv, J. B. Wang, Study on resource-dependent no-wait flow shop scheduling with different due-window assignment and learning effects, Asia-Pac. J. Oper. Res., 38 (2021), 2150008. https://doi.org/10.1142/S0217595921500081 doi: 10.1142/S0217595921500081
    [26] J. J. Kanet, Minimizing variation of flow time in single machine systems, Manag. Sci., 27 (1981), 1453–1459. https://doi.org/10.1287/mnsc.27.12.1453 doi: 10.1287/mnsc.27.12.1453
    [27] U. B. Bagchi, Simultaneous minimization of mean and variation of flow-time and waiting time in single machine systems, Oper. Res., 37 (1989), 118–125. https://doi.org/10.1287/opre.37.1.118 doi: 10.1287/opre.37.1.118
    [28] S. S. Panwalkar, M. L. Smith, A. Seidmann, Common due-date assignment to minimize total penalty for the one machine scheduling problem, Oper. Res., 30 (1982), 391–399. https://doi.org/10.1287/opre.30.2.391 doi: 10.1287/opre.30.2.391
    [29] G. I. Adamopoulos, C. P. Pappis, Single machine scheduling with flow allowances, J. Oper. Res. Soc., 47 (1996), 1280–1285. https://doi.org/10.2307/3010040 doi: 10.2307/3010040
    [30] A. Seidmann, S. S. Panwalkar, M. L. Smith, Optimal assignment of due dates for a single processor scheduling problem, Int. J. Prod. Res., 19 (1981), 393–399. https://doi.org/10.1080/00207548108956667 doi: 10.1080/00207548108956667
    [31] S. D. Liman, S. S. Panwalkar, S. Thongmee, Determination of common due window location in a single machine scheduling problem, Eur. J. Oper. Res., 93 (1996), 68–74. https://doi.org/10.1016/0377-2217(95)00181-6 doi: 10.1016/0377-2217(95)00181-6
    [32] Y. B. Wu, L. Wan, X. Y. Wang, Study on due-window assignment scheduling based on common flow allowance, Int. J. Prod. Econ., 165 (2015), 155–157. http://dx.doi.org/10.1016/j.ijpe.2015.04.005 doi: 10.1016/j.ijpe.2015.04.005
    [33] J. B. Wang, L. Liu, C. Wang, Single machine SLK/DIF due window assignment problem with learning effect and deteriorating jobs, Appl. Math. Modell., 37 (2013), 8394–8400. http://dx.doi.org/10.1016/j.apm.2013.03.041 doi: 10.1016/j.apm.2013.03.041
    [34] C. Koulamas, G. J. Kyparisis, Single-machine scheduling problems with past-sequence-dependent setup times, Eur. J. Oper. Res., 187 (2008), 1045–1049. https://doi.org/10.1016/j.ejor.2006.03.066 doi: 10.1016/j.ejor.2006.03.066
    [35] W. Liu, X. Wang, X. Wang, P. Zhao, Due-window assignment scheduling with past-sequence-dependent setup times, Math. Biosci. Eng., 19 (2022), 3110–3126. https://doi.org/10.3934/mbe.2021130 doi: 10.3934/mbe.2021130
    [36] X. Wang, W. Liu, L. Li, P. Zhao, R. Zhang, Single-machine scheduling with due date assignment, positional-dependent weights and proportional setup times, Math. Biosci. Eng., 19 (2022), 5104–5119. https://doi.org/10.3934/mbe.2022238 doi: 10.3934/mbe.2022238
    [37] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge University Press, 1988. https://doi.org/10.1017/s0025557200143451
    [38] X. Wu, X. Shen, L. Zhang, Solving the planning and scheduling problem simultaneously in a hospital with a bi-layer discrete particle swarm optimization, Math. Biosci. Eng., 16 (2019), 831–861. https://doi.org/10.3934/mbe.2019039 doi: 10.3934/mbe.2019039
    [39] Z. Zhuang, Z. Lu, Z. Huang, C. Liu, W. Qin, A novel complex network based dynamic rule selection approach for open shop scheduling problem with release dates, Math. Biosci. Eng., 16 (2019), 4491–4505. https://doi.org/10.3934/mbe.2019224 doi: 10.3934/mbe.2019224
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1432) PDF downloads(51) Cited by(5)

Article outline

Figures and Tables

Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog