The closed-loop supply chain (CLSC) plays an important role in sustainable development and can help to increase the economic benefits of enterprises. The optimization for the CLSC network is a complicated problem, since it often has a large problem scale and involves multiple constraints. This paper proposes a general CLSC model to maximize the profits of enterprises by determining the transportation route and delivery volume. Due to the complexity of the multi-constrained and large-scale model, a genetic algorithm with two-step rank-based encoding (GA-TRE) is developed to solve the problem. Firstly, a two-step rank-based encoding is designed to handle the constraints and increase the algorithm efficiency, and the encoding scheme is also used to improve the genetic operators, including crossover and mutation. The first step of encoding is to plan the routes and predict their feasibility according to relevant constraints, and the second step is to set the delivery volume based on the feasible routes using a rank-based method to achieve greedy solutions. Besides, a new mutation operator and an adaptive population disturbance mechanism are designed to increase the diversity of the population. To validate the efficiency of the proposed algorithm, six heuristic algorithms are compared with GA-TRE by using different instances with three problem scales. The results show that GA-TRE can obtain better solutions than the competitors, especially on large-scale instances.
Citation: Bowen Ding, Zhaobin Ma, Shuoyan Ren, Yi Gu, Pengjiang Qian, Xin Zhang. A genetic algorithm with two-step rank-based encoding for closed-loop supply chain network design[J]. Mathematical Biosciences and Engineering, 2022, 19(6): 5925-5956. doi: 10.3934/mbe.2022277
The closed-loop supply chain (CLSC) plays an important role in sustainable development and can help to increase the economic benefits of enterprises. The optimization for the CLSC network is a complicated problem, since it often has a large problem scale and involves multiple constraints. This paper proposes a general CLSC model to maximize the profits of enterprises by determining the transportation route and delivery volume. Due to the complexity of the multi-constrained and large-scale model, a genetic algorithm with two-step rank-based encoding (GA-TRE) is developed to solve the problem. Firstly, a two-step rank-based encoding is designed to handle the constraints and increase the algorithm efficiency, and the encoding scheme is also used to improve the genetic operators, including crossover and mutation. The first step of encoding is to plan the routes and predict their feasibility according to relevant constraints, and the second step is to set the delivery volume based on the feasible routes using a rank-based method to achieve greedy solutions. Besides, a new mutation operator and an adaptive population disturbance mechanism are designed to increase the diversity of the population. To validate the efficiency of the proposed algorithm, six heuristic algorithms are compared with GA-TRE by using different instances with three problem scales. The results show that GA-TRE can obtain better solutions than the competitors, especially on large-scale instances.
[1] | M. C. Chen, Y. H. Hsiao, H. Y. Huang, Semiconductor supply chain planning with decisions of decoupling point and VMI scenario, IEEE Trans. Syst. Man. Cybern. Syst., 47 (2017), 856-868. https://doi.org/10.1109/tsmc.2016.2521740 doi: 10.1109/tsmc.2016.2521740 |
[2] | K. Govindan, A. Jafarian, R. Khodaverdi, K. Devika, Two-echelon multiple-vehicle location-routing problem with time windows for optimization of sustainable supply chain network of perishable food, Int. J. Prod. Econ., 152 (2014), 9-28. https://doi.org/10.1016/j.ijpe.2013.12.028 doi: 10.1016/j.ijpe.2013.12.028 |
[3] | T. Trisna, M. Marimin, Y. Arkeman, T. C. Sunarti, Multi-objective optimization for supply chain ma-nagement problem: A literature review, Decis. Sci. Lett., 5 (2016), 283-316. https://doi.org/10.5267/j.dsl.2015.10.003 doi: 10.5267/j.dsl.2015.10.003 |
[4] | S. K. De, K. Bhattacharya, B. Roy, Solution of a pollution sensitive supply chain model under fuzzy approximate reasoning, Int. J. Intell. Syst., 36 (2021), 5530-5572. https://doi.org/10.1002/int.22522 doi: 10.1002/int.22522 |
[5] | S. K. Srivastava, Green supply-chain management: A state-of-the-art literature review, Int. J. Manag. Rev., 9 (2007), 53-80. https://doi.org/10.1111/j.1468-2370.2007.00202.x doi: 10.1111/j.1468-2370.2007.00202.x |
[6] | S. H. Amin, G. Q. Zhang, M. N. Eldali, A review of closed-loop supply chain models, J. Data Inf. Manage., 2 (2020), 279-307. https://doi.org/10.1007/s42488-020-00034-y doi: 10.1007/s42488-020-00034-y |
[7] | B. Mosallanezhad, M. Hajiaghaei-Keshteli, C. Triki, Shrimp closed-loop supply chain network design, Soft Comput., 25 (2021), 7399-7422. https://doi.org/10.1007/s00500-021-05698-1 doi: 10.1007/s00500-021-05698-1 |
[8] | A. Salehi-Amiri, A. Zahedi, N. Akbapour, M, Hajiaghaei-Keshteli, Designing a sustainable closed-loop supply chain network for walnut industry, Renew Sustainable Energy Rev., 141 (2021). https://doi.org/10.1016/j.rser.2021.110821 |
[9] | A. Cheraghalipour, M. M. Paydar, M, Hajiaghaei-Keshteli, A bi-objective optimization for citrus closed-loop supply chain using Pareto-based algorithms, Appl. Soft Comput., 69 (2018), 33-59. https://doi.rog/10.1016/j.asoc.2018.04.022 |
[10] | A. M. Fathollahi-Fard, A. Ahmadi, S. M. J. M. Al-e-Hashem, Sustainable closed-loop supply chain network for an integrated water supply and wastewater collection system under uncertainty, J. Environ. Manag., 275 (2020). https://doi.org/10.1016/j.jenvman.2020.111277 |
[11] | A. M. Fathollahi-Fard, M, Hajiaghaei-Keshteli, S. Mirjalili, Multi-objective stochastic closed-loop supply chain network design with social considerations, Appl. Soft Comput., 71 (2018), 505-525. https://doi.org/10.1016/j.asoc.2018.07.025 doi: 10.1016/j.asoc.2018.07.025 |
[12] | V. K. Chouhan, S. H. Khan, M. Hajiaghaei-Keshteli, S. Subramanian, Multi-facility-based improved closed-loop supply chain network for handling uncertain demands, Soft Comput., 24 (2020), 7125-7147, https://doi.org/10.1007/s00500-020-04868-x doi: 10.1007/s00500-020-04868-x |
[13] | A. M. Fathollahi-Fard, M. A. Dulebenets, M. Hajiaghaei-Keshteli, R. Tavakkoli-Moghaddam, M. Safaeian, H. Mirzahosseinian, Two hybrid meta-heuristic algorithms for a dual-channel closed-loop supply chain network design problem in the tire industry under uncertainty, Adv. Eng. Inf., 50 (2021). https://doi.org/10.1016/j.aei.2021.101418 |
[14] | E. Lesnaia, I. Vasilescu, S. C. Graves, The complexity of safety stock placement in general-network supply chains, in Innovation in Manufacturing Systems and Technology (IMST), 1 (2005). http://hdl.handle.net/1721.1/7537 |
[15] | A. Niccolai, L. Bettini, R. Zich, Optimization of electric vehicles charging station deployment by means of evolutionary algorithms, Int. J. Intell. Syst., 36 (2021), 5359-5383. https://doi.org/10.1002/int.22515 doi: 10.1002/int.22515 |
[16] | H. B. Ammar, W. B. Yahia, O, Ayadi, F. Masmoudi, Design of efficient multiobjective binary PSO algorithms for solving multi-item capacitated lot-sizing problem, Int. J. Intell. Syst., 37 (2021), 1-28. https://doi.org/10.1002/int.22693 doi: 10.1002/int.22693 |
[17] | M. Mojtahedi, A. M. Fathollahi-Fard, R. Tavakkoli-Moghaddam, S. Newton, Sustainable vehicle routing problem for coordinated solid waste management, J. Ind. Inf. Integr., 23 (2021). https://doi.org/10.1016/j.jii.2021.100220 |
[18] | A. M. Fathollahi-Fard, A. Ahmadi, B. Karimi, Sustainable and robust home healthcare logistics: A response to the Covid-19 pandemic, Symmetry, 14 (2), 193. https://doi.org/10.3390/sym14020193 |
[19] | H. J. Ko, G. W. Evans, A genetic algorithm-based heuristic for the dynamic integrated forward/reverse logistics network for 3PLs, Comput. Oper. Res., 34 (2007), 346-366. https://doi.org/10.1016/j.cor.2005.03.004 doi: 10.1016/j.cor.2005.03.004 |
[20] | S. Hamed, K. Govindan, A hybrid particle swarm optimization and genetic algorithm for closed-loop supply chain network design in large-scale networks, Appl. Math. Model., 39 (2015), 3990-4012. https://doi.org/10.1016/j.apm.2014.12.016 doi: 10.1016/j.apm.2014.12.016 |
[21] | A. S. Abir, I. A. Bhuiyan, M. Arani, M. M. Billal, Multi-objective optimization for sustainable closed-loop supply chain network under demand uncertainty: A genetic algorithm, in 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI), (2020), 1-5. https://doi.org/10.1109/ICDABI51230.2020.9325648 |
[22] | X. Zhang, K. J. Du, Z. H. Zhan, S. Kwong, T. L. Gu, J. Zhang, Cooperative coevolutionary bare-bones particle swarm optimization with function independent decomposition for large-scale supply chain network design with uncertainties, IEEE Trans. Cybern., 50 (2020), 4454-4468. https://doi.org/10.1109/TCYB.2019.2937565 doi: 10.1109/TCYB.2019.2937565 |
[23] | W. C. Yeh, T. L. W, C. M. L, Y. C. Lee, Y. Y. Chung, J. S. Lin, Application of simplified swarm optimization algorithm in deteriorate supply chain network problem, in 2016 IEEE Congress on Evolutionary Computation (CEC), (2016), 2695-2700. https://doi.org/10.1109/CEC.2016.7744127 |
[24] | K. Patne, N. Shukla, S. Kiridena, M. K. Tiwari, Solving closed-loop supply chain problems using game theoretic particle swarm optimisation, Int. J. Prod. Res., 56 (2018), 5836-5853. https://doi.org/10.1080/00207543.2018.1478149 doi: 10.1080/00207543.2018.1478149 |
[25] | V. M. Esteves, M. C. Joao, C. A. Silva, A. P. Póvoa, M. I. Gomes, SCant-design: Closed loop supply chain design using ant colony optimization, in 2012 IEEE Congress on Evolutionary Computation, (2012), 1-8. https://doi.org/10.1109/CEC.2012.6252944 |
[26] | A. Samadi, M, Hajiaghaei-Keshteli, R. Tavakkoli-Moghaddam, Solving a discounted closed-loop supply chain network design problem by recent metaheuristics, in Fuzzy Information and Engineering-2019, Springer Singapore, (2020), 3-24. https://doi.org/10.1007/978-981-15-2419-2_1 |
[27] | A. M. Fathollahi-Fard, M, Hajiaghaei-Keshteli, S. Mirjalili, Hybrid optimizers to solve a tri-level programming model for a tire closed-loop supply chain network design problem, Appl. Soft Comput., 70 (2018), 701-722. https://doi.org/10.1016/j.asoc.2018.06.021 doi: 10.1016/j.asoc.2018.06.021 |
[28] | M, Hajiaghaei-Keshteli, A. M. Fathollahi-Fard, Sustainable closed-loop supply chain network design with discount supposition, Neural Comput. Appl., 31 (2019), 5343-5377. https://doi.org/10.1007/s00521-018-3369-5 doi: 10.1007/s00521-018-3369-5 |
[29] | M. Gen, F. Altiparmak, L. Lin, A genetic algorithm for two-stage transportation problem using priority-based encoding, OR Spectrum, 28 (2006), 337-354. https://doi.org/10.1007/s00291-005-0029-9 doi: 10.1007/s00291-005-0029-9 |
[30] | B. Fahimnia, H. Davarzani, A. Eshragh, Planning of complex supply chains: A performance comp-arison of three meta-heuristic algorithms, Comput. Oper. Res., 89 (2018), 241-252. https://doi.org/10.1016/j.cor.2015.10.008 doi: 10.1016/j.cor.2015.10.008 |
[31] | N. Sahebjamnia, A. M. Fathollahi-Fard, M. Hajiaghaei-Keshteli, Sustainable tire closed-loop supply chain network design: Hybrid metaheuristic algorithms for large-scale networks, J. Clean Prod., 196 (2018), 273-296. https://doi.org/10.1016/j.jclepro.2018.05.245 doi: 10.1016/j.jclepro.2018.05.245 |
[32] | S. S. Theagarajan, H. L. Manohar, Lean management practices to improve supply chain p-erformance of leather footwear industry, in 2015 International Conference on IndustrialEngineering and Operations Management (IEOM), (2015), 1-5. https://doi.org/10.1109/IEOM.2015.7093717 |
[33] | M. A. Dulebenets, An adaptive polyploid memetic algorithm for scheduling trucks at a cross-docking terminal, Inf. Sci., 565 (2021), 390-421. https://doi.org/10.1016/j.ins.2021.02.039 doi: 10.1016/j.ins.2021.02.039 |
[34] | M. A. Dulebenets, A comprehensive multi-objective optimization model for the vessel sc-heduling problem in liner shipping, Int. J. Prod. Econ., 196 (2018), 293-318. https://doi.org/10.1016/j.ijpe.2017.10.027 doi: 10.1016/j.ijpe.2017.10.027 |
[35] | J. Pasha, M. A. Dulebenets, M. Kavoosi, O. F. Abloye, H. Wang, W. Guo, An optimiz-ation model and solution algorithms for the vehicle routing problem with a ''factory-in-a-box'', IEEE Access, 8 (2020), 134743-134763. https://doi.org/10.1109/ACCESS.2020.3010176 doi: 10.1109/ACCESS.2020.3010176 |
[36] | H. Zhao, C. Zhang, An online-learning-based evolutionary many-objective algorithm, Inf. Sci., 509 (2020), 1-21. https://doi.org/10.1016/j.ins.2019.08.069 doi: 10.1016/j.ins.2019.08.069 |
[37] | Y. Tian, T. Zhang, J. Xiao, X. Zhang, Y. Jin, A coevolutionary framework for constrained multi-objective optimization problems, IEEE Trans. Evol. Comput., 25 (2021), 102-116. https://doi.org/10.1109/TEVC.2020.3004012 doi: 10.1109/TEVC.2020.3004012 |
[38] | K. Li, R. Chen, G. Fu, X. Yao, Two-archive evolutionary algorithm for constrained multiobjective optimization, IEEE Trans. Evol. Comput., 23 (2019), 303-315. https://doi.org/10.1109/TEVC.2018.2855411 doi: 10.1109/TEVC.2018.2855411 |
[39] | P. Wang, B. Xue, M. Zhang, J. Liang, A grid-dominance based multi-objective algorithm for feature selection in classification, in 2021 IEEE Congress on Evolutionary Computation (CEC), (2021), 2053-2060. https://doi.org/10.1109/CEC45853.2021.9504832 |
[40] | A. Li, B. Xue, M. Zhang, A forward search inspired particle swarm optimization algorithm for feature selection in classification, in 2021 IEEE Congress on Evolutionary Computation (CEC), (2021), 786-793. https://doi.org/10.1109/CEC45853.2021.9504949 |
[41] | A. Lipowski, D. Lipowska, Roulette-wheel selection via stochastic acceptance, Phys. A, 391 (2012), 2193-2196. https://doi.org/doi.org/10.1016/j.physa.2011.12.004 |
[42] | S. Das, P. N. Suganthan, Differential evolution: A survey of the state-of-the-art, IEEE Trans. Evol. Comput., 15 (2011), 4-31. https://doi.org/10.1109/tevc.2010.2059031 doi: 10.1109/tevc.2010.2059031 |
[43] | R. Cheng, Y. C. Jin, A competitive swarm optimizer for large scale optimization, IEEE Trans. Cybern., 45 (2015), 191-204. https://doi.org/10.1109/TCYB.2014.2322602 doi: 10.1109/TCYB.2014.2322602 |
[44] | A. Faramarzi, M. Heidarinejad, S. Mirjalili, A. H. Gandomi, Marine Predators Algorithm: A nature-inspired metaheuristic, Expert Syst. Appl., 152 (2020), 1-28. https://doi.org/10.1016/j.eswa.2020.113377 doi: 10.1016/j.eswa.2020.113377 |
[45] | A. M. Fathollahi-Fard, M. Hajiaghaei-Keshteli, R. Tavakkoli-Moghaddam, Red deer algorithm (RDA):a new nature-inspired meta-heuristic, Soft Comput., 24 (2020), 14637-14665. https://doi.org/10.1007/s00500-020-04812-z doi: 10.1007/s00500-020-04812-z |
[46] | R. Cheng, Y. C. Jin, A social learning particle swarm optimization algorithm for scalable optimization, Inf. Sci., 291 (2015), 43-60. https://doi.org/10.1016/j.ins.2014.08.039 doi: 10.1016/j.ins.2014.08.039 |
[47] | L. Feng, Y. Huang, L. Zhou, J. Zhong, A. Gupta, K. Tang, et al., Explicit evolutionary multitasking for combinatorial optimization: A case study on capacitated vehicle routing problem, IEEE Trans. Evol. Comput., 51 (2021), 3143-3156. https://doi.org/10.1109/TCYB.2019.2962865 |
[48] | L. Feng, L. Zhou, A. Gupta, J. Zhong, Z. Zhu, K. C. Tan, et al., Solving generalized vehicle routing problem with occasional drivers via evolutionary multitasking, IEEE Trans. Cybern., 51 (2021), 3171-3184. https://doi.org/10.1109/TCYB.2019.2955599 |