Supply chain management is the basis for the execution of operations, being considered as the core of the business function in the 21st century. On the other hand, at present, factors such as the reduction of natural resources, the search for competitive advantages, government laws and global agreements, have generated a greater interest in the sustainable development, which, in order to achieve it, industries need to rethink and plan their supply chain considering a path of sustainability. So sustainable supply chain management emerges as a means to integrate stakeholders' concern for profit and cost reduction with environmental and social requirements, attracting significant interest among managers, researchers and practitioners. The main objective of this study is to provide a synthesis of the key elements of the quantitative model offerings that use sustainability indicators in the design and management of forward supply chains. To achieve this objective, we developed a systematic literature review that includes seventy articles published during the last decade in peer-reviewed journals in English language. In addition a 4 W's analysis (When, Who, What, and Where) is applied and three structural dimensions are defined and grouped by categories: Supply chain management, modeling and sustainability. As part of the results we evidenced a continuous growth in the scientific production of this type of articles, with a predominance of deterministic mathematical programming models with an environmental economic perspective. Finally, we identified research gaps, highlighting the lack of integral inclusion of a life cycle analysis in the design of supply chain networks.
Citation: Pablo Flores-Sigüenza, Jose Antonio Marmolejo-Saucedo, Joaquina Niembro-Garcia, Victor Manuel Lopez-Sanchez. A systematic literature review of quantitative models for sustainable supply chain management[J]. Mathematical Biosciences and Engineering, 2021, 18(3): 2206-2229. doi: 10.3934/mbe.2021111
Supply chain management is the basis for the execution of operations, being considered as the core of the business function in the 21st century. On the other hand, at present, factors such as the reduction of natural resources, the search for competitive advantages, government laws and global agreements, have generated a greater interest in the sustainable development, which, in order to achieve it, industries need to rethink and plan their supply chain considering a path of sustainability. So sustainable supply chain management emerges as a means to integrate stakeholders' concern for profit and cost reduction with environmental and social requirements, attracting significant interest among managers, researchers and practitioners. The main objective of this study is to provide a synthesis of the key elements of the quantitative model offerings that use sustainability indicators in the design and management of forward supply chains. To achieve this objective, we developed a systematic literature review that includes seventy articles published during the last decade in peer-reviewed journals in English language. In addition a 4 W's analysis (When, Who, What, and Where) is applied and three structural dimensions are defined and grouped by categories: Supply chain management, modeling and sustainability. As part of the results we evidenced a continuous growth in the scientific production of this type of articles, with a predominance of deterministic mathematical programming models with an environmental economic perspective. Finally, we identified research gaps, highlighting the lack of integral inclusion of a life cycle analysis in the design of supply chain networks.
[1] | S. M. Mirzapour Al-E-Hashem, H. Malekly, M. B. Aryanezhad, A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty, Int. J. Prod. Econ., 134 (2011), 28–42. doi: 10.1016/j.ijpe.2011.01.027 |
[2] | A. Baghalian, S. Rezapour, R. Z. Farahani, Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case, Eur. J. Oper. Res., 227 (2013), 199–215. doi: 10.1016/j.ejor.2012.12.017 |
[3] | I. Moon, Y. Jeong, S. Saha, Fuzzy Bi-Objective Production-Distribution Planning Problem under the Carbon Emission Constraint, Sustainability, 8 (2016), 798–815. doi: 10.3390/su8080798 |
[4] | Z. Xu, A. Elomri, S. Pokharel, F. Mutlu, The Design of Green Supply Chains under Carbon Policies: A Literature Review of Quantitative Models, Sustainability, 11 (2019), 3094. doi: 10.3390/su11113094 |
[5] | World Commission on Environment and Development, Our Common Future, Oxford University Press. |
[6] | C. P. Tautenhain, A. P. Barbosa-Povoa, M. C. Nascimento, A multi-objective matheuristic for designing and planning sustainable supply chains, Comput. Ind. Eng., 135 (2019), 1203–1223. doi: 10.1016/j.cie.2018.12.062 |
[7] | R. Daghigh, M. S. Pishvaee, S. A. Torabi, Sustainable Logistics Network Design under Uncertainty, Sustainable Logistics and Transportation, Springer, Cham, 2017. |
[8] | A. Chaabane, A. Ramudhin, M. Paquet, Design of sustainable supply chains under the emission trading scheme, Int. J. Prod. Econ., 135 (2012), 37–49. doi: 10.1016/j.ijpe.2010.10.025 |
[9] | J. Elkington, Partnerships from cannibals with forks: The triple bottom line of 21st century business, Environ. Qual. Manage., 8 (1988), 37–51. |
[10] | A. Rajeev, R. K. Pati, S. S. Padhi, K. Govindan, Evolution of sustainability in supply chain management: A literature review, J. Cleaner Prod., 162 (2017), 299–314. doi: 10.1016/j.jclepro.2017.05.026 |
[11] | H. Gilani, H. Sahebi, A multi-objective robust optimization model to design sustainable sugarcane-to-biofuel supply network: the case of study, Biomass Convers. Biorefin., 2020 (2020), 1–22. |
[12] | H. Min, I. Kim, Green supply chain research: Past, present, and future, Logist. Res., 4 (2012), 39–47. doi: 10.1007/s12159-012-0071-3 |
[13] | C. L. Martins, M. V. Pato, Supply chain sustainability: A tertiary literature review, J. Cleaner Prod., 225 (2019), 995–1016. doi: 10.1016/j.jclepro.2019.03.250 |
[14] | H. G. Resat, B. Unsal, A novel multi-objective optimization approach for sustainable supply chain: A case study in packaging industry, Sustainable Prod. Consumption, 20 (2019), 29–39. doi: 10.1016/j.spc.2019.04.008 |
[15] | X. Bai, Y. Liu, Robust optimization of supply chain network design in fuzzy decision system, J. Intell. Manuf., 27 (2016), 1131–1149. doi: 10.1007/s10845-014-0939-y |
[16] | K. Devika, A. Jafarian, V. Nourbakhsh, Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques, Eur. J. Oper. Res., 235 (2014), 594–615. doi: 10.1016/j.ejor.2013.12.032 |
[17] | Z. Zhang, A. Awasthi, Modelling customer and technical requirements for sustainable supply chain planning, Int. J. Prod. Res., 52 (2014), 5131–5154. doi: 10.1080/00207543.2014.899717 |
[18] | K. Govindan, H. Soleimani, D. Kannan, Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future, Eur. J. Oper. Res., 240 (2015), 603–626. doi: 10.1016/j.ejor.2014.07.012 |
[19] | D. M. Lambert, M. G. Enz, Issues in Supply Chain Management: Progress and potential, Ind. Mark. Manage., 62 (2017), 1–16. doi: 10.1016/j.indmarman.2016.12.002 |
[20] | C. J. C. Jabbour, A. B. L. de Sousa Jabbour, J. Sarkis, Unlocking effective multi-tier supply chain management for sustainability through quantitative modeling: Lessons learned and discoveries to be made, Int. J. Prod. Econ., 217 (2019), 11–30. doi: 10.1016/j.ijpe.2018.08.029 |
[21] | Q. Zhang, N. Shah, J. Wassick, R. Helling, P. Van Egerschot, Sustainable supply chain optimisation: An industrial case study, Comput. Ind. Eng., 74 (2014), 68–83. doi: 10.1016/j.cie.2014.05.002 |
[22] | B. Mota, M. I. Gomes, A. Carvalho, A. P. Barbosa-Povoa, Sustainable supply chains: An integrated modeling approach under uncertainty, Omega, 77 (2018), 32–57. doi: 10.1016/j.omega.2017.05.006 |
[23] | M. Pagell, A. Shevchenko, Why Research in Sustainable Supply Chain Management Should Have no Future, J. Supply Chain Manage., 50 (2014), 44–55. |
[24] | S. Seuring, M. Müller, From a literature review to a conceptual framework for sustainable supply chain management, J. Cleaner Prod., 16 (2008), 1699–1710. doi: 10.1016/j.jclepro.2008.04.020 |
[25] | M. Brandenburg, K. Govindan, J. Sarkis, S. Seuring, Quantitative models for sustainable supply chain management:Developments and directions, Eur. J. Oper. Res., 233 (2014), 299–312. doi: 10.1016/j.ejor.2013.09.032 |
[26] | P. Ghadimi, C. Wang, M. K. Lim, Sustainable supply chain modeling and analysis: Past debate, present problems and future challenges, Resour. Conserv. Recycl., 140 (2019), 72–84. doi: 10.1016/j.resconrec.2018.09.005 |
[27] | A. Fink, Conducting Research Literature Reviews: From the Internet to Paper, Ucla edition, SAGE Publications, Inc., Los Angeles, 2014. |
[28] | A. Cipriani, J. Geddes, Comparison of systematic and narrative reviews: The example of the atypical antipsychotics, Epidemiol. Psychiatr. Sci., 12 (2003), 146–153. doi: 10.1017/S1121189X00002918 |
[29] | J. Klewitz, E. G. Hansen, Sustainability-oriented innovation of SMEs: A systematic review, J. Cleaner Prod., 65 (2014), 57–75. doi: 10.1016/j.jclepro.2013.07.017 |
[30] | F. Jia, L. Zuluaga-Cardona, A. Bailey, X. Rueda, Sustainable supply chain management in developing countries: An analysis of the literature, J. Cleaner Prod., 189 (2018), 263–278. doi: 10.1016/j.jclepro.2018.03.248 |
[31] | R. U. Khalid, S. Seuring, P. Beske, A. Land, S. A. Yawar, R. Wagner, Putting sustainable supply chain management into base of the pyramid research, Supply Chain Manage., 20 (2015), 681–696. doi: 10.1108/SCM-06-2015-0214 |
[32] | R. Dubey, A. Gunasekaran, S. J. Childe, T. Papadopoulos, S. F. Wamba, World class sustainable supply chain management: Critical review and further research directions, Int. J. Logist. Manage., 28 (2017), 332–362. doi: 10.1108/IJLM-07-2015-0112 |
[33] | T. Rebs, M. Brandenburg, S. Seuring, System dynamics modeling for sustainable supply chain management: A literature review and systems thinking approach, J. Cleaner Prod., 208 (2019), 1265–1280. doi: 10.1016/j.jclepro.2018.10.100 |
[34] | F. Jia, T. Zhang, L. Chen, Sustainable supply chain Finance:Towards a research agenda, J. Cleaner Prod., 243 (2020), 118680. doi: 10.1016/j.jclepro.2019.118680 |
[35] | S. Seuring, S. Gold, Conducting content-analysis based literature reviews in supply chain management, Supply Chain Manage., 17 (2012), 544–555. doi: 10.1108/13598541211258609 |
[36] | Supply Chain Council, Supply Chain Operations Reference Model Revision 11.0, Technical report, 2012. Available from: www.supply-chain.org. |
[37] | S. Validi, A. Bhattacharya, P. J. Byrne, A solution method for a two-layer sustainable supply chain distribution model, Comput. Oper. Res., 54 (2015), 204–217. doi: 10.1016/j.cor.2014.06.015 |
[38] | D. Broz, G. Durand, D. Rossit, F. Tohmé, M. Frutos, Strategic planning in a forest supply chain: a multigoal and multiproduct approach, Canadian J. For. Res., 47 (2017), 297–307. doi: 10.1139/cjfr-2016-0299 |
[39] | S. Coskun, L. Ozgur, O. Polat, A. Gungor, A model proposal for green supply chain network design based on consumer segmentation, J. Cleaner Prod., 110 (2016), 149–157. doi: 10.1016/j.jclepro.2015.02.063 |
[40] | N. Kafa, Y. Hani, A. El Mhamedi, Evaluating and selecting partners in sustainable supply chain network: a comparative analysis of combined fuzzy multi-criteria approaches, OPSEARCH, 55 (2018), 14–49. doi: 10.1007/s12597-017-0326-5 |
[41] | P. Ghadimi, F. Ghassemi Toosi, C. Heavey, A multi-agent systems approach for sustainable supplier selection and order allocation in a partnership supply chain, Eur. J. Oper. Res., 269 (2018), 286–301. doi: 10.1016/j.ejor.2017.07.014 |
[42] | F. Niakan, A. Baboli, V. Botta-Genoulaz, R. Tavakkoli-Moghaddam, J. P. Camapgne, A multi-objective mathematical model for green supply chain reorganization, IFAC Proc. Vol., 46 (2013), 81–86. |
[43] | A. T. Espinoza Pérez, P. C. Narváez Rincón, M. Camargo, M. D. Alfaro Marchant, Multiobjective optimization for the design of phase Ⅲ biorefinery sustainable supply chain, J. Cleaner Prod., 223 (2019), 189–213. doi: 10.1016/j.jclepro.2019.02.268 |
[44] | H. Ren, W. Zhou, M. Makowski, H. Yan, Y. Yu, T. Ma, Incorporation of life cycle emissions and carbon price uncertainty into the supply chain network management of PVC production, Ann. Oper. Res., 2019 (2019). |
[45] | K. Govindan, A. Jafarian, V. Nourbakhsh, Bi-objective integrating sustainable order allocation and sustainable supply chain network strategic design with stochastic demand using a novel robust hybrid multi-objective metaheuristic, Comput. Oper. Res., 62 (2015), 112–130. doi: 10.1016/j.cor.2014.12.014 |
[46] | M. Soysal, J. M. Bloemhof-Ruwaard, J. G. Van Der Vorst, Modelling food logistics networks with emission considerations: The case of an international beef supply chain, Int. J. Prod. Econ., 152 (2014), 57–70. doi: 10.1016/j.ijpe.2013.12.012 |
[47] | Y. Huang, F. Xie, Multistage Optimization of Sustainable Supply Chain of Biofuels, Transp. Res. Rec., 2502 (2015), 89–98. doi: 10.3141/2502-11 |
[48] | T. Vafaeenezhad, R. Tavakkoli-Moghaddam, N. Cheikhrouhou, Multi-objective mathematical modeling for sustainable supply chain management in the paper industry, Comput. Ind. Eng., 135 (2019), 1092–1102. doi: 10.1016/j.cie.2019.05.027 |
[49] | K. Shaw, M. Irfan, R. Shankar, S. S. Yadav, Low carbon chance constrained supply chain network design problem: a Benders decomposition based approach, Comput. Ind. Eng., 98 (2016), 483–497. doi: 10.1016/j.cie.2016.06.011 |
[50] | A. Mohammed, Q. Wang, The fuzzy multi-objective distribution planner for a green meat supply chain, Int. J. Prod. Econ., 184 (2017), 47–58. doi: 10.1016/j.ijpe.2016.11.016 |
[51] | S. M. Mirzapour Al-E-Hashem, A. Baboli, Z. Sazvar, A stochastic aggregate production planning model in a green supply chain: Considering flexible lead times, nonlinear purchase and shortage cost functions, Eur. J. Oper. Res., 230 (2013), 26–41. doi: 10.1016/j.ejor.2013.03.033 |
[52] | L. E. Hombach, C. Büsing, G. Walther, Robust and sustainable supply chains under market uncertainties and different risk attitudes ȼ A case study of the German biodiesel market, Eur. J. Oper. Res., 269 (2018), 302–312. doi: 10.1016/j.ejor.2017.07.015 |
[53] | A. Rezaee, F. Dehghanian, B. Fahimnia, B. Beamon, Green supply chain network design with stochastic demand and carbon price, Ann. Oper. Res., 250 (2017), 463–485. doi: 10.1007/s10479-015-1936-z |
[54] | C. W. Chen, Y. Fan, Bioethanol supply chain system planning under supply and demand uncertainties, Transp. Res. Part E, 48 (2012), 150–164. doi: 10.1016/j.tre.2011.08.004 |
[55] | Y. Tong, Model for evaluating the green supply chain performance under low-carbon agricultural economy environment with 2-tuple linguistic information, J. Intell. Fuzzy Syst., 32 (2017), 2717–2723. doi: 10.3233/JIFS-16802 |
[56] | F. Mohebalizadehgashti, H. Zolfagharinia, S. H. Amin, Designing a green meat supply chain network: A multi-objective approach, Int. J. Prod. Econ., 219 (2020), 312–327. doi: 10.1016/j.ijpe.2019.07.007 |
[57] | T. C. Kuo, M. L. Tseng, H. M. Chen, P. S. Chen, P. C. Chang, Design and Analysis of Supply Chain Networks with Low Carbon Emissions, Comput. Econ., 52 (2018), 1353–1374. doi: 10.1007/s10614-017-9675-7 |
[58] | E. Huang, X. Zhang, L. Rodriguez, M. Khanna, S. de Jong, K. C. Ting, et al., Multi-objective optimization for sustainable renewable jet fuel production: A case study of corn stover based supply chain system in Midwestern U.S., Renewable Sustainable Energy Rev., 115 (2019), 109403. doi: 10.1016/j.rser.2019.109403 |
[59] | R. Hosseinalizadeh, A. Arshadi Khamseh, M. M. Akhlaghi, A multi-objective and multi-period model to design a strategic development program for biodiesel fuels, Sustainable Energy Technol. Assess., 36 (2019), 100545. doi: 10.1016/j.seta.2019.100545 |
[60] | A. Tognetti, P. T. Grosse-Ruyken, S. M. Wagner, Green supply chain network optimization and the trade-off between environmental and economic objectives, Int. J. Prod. Econ., 170 (2015), 385–392. doi: 10.1016/j.ijpe.2015.05.012 |
[61] | F. You, L. Tao, D. J. Graziano, S. W. Snyder, Optimal design of sustainable cellulosic biofuel supply chains: Multiobjective optimization coupled with life cycle assessment and input-output analysis, AIChE J., 58 (2012), 1157–1180. doi: 10.1002/aic.12637 |
[62] | R. Ortiz-Gutierrez, S. Giarola, F. Bezzo, Optimal design of ethanol supply chains considering carbon trading effects and multiple technologies for side-product exploitation, Environ. Technol., 34 (2013), 2189–2199. doi: 10.1080/09593330.2013.829111 |
[63] | Z. Ghelichi, M. Saidi-Mehrabad, M. S. Pishvaee, A stochastic programming approach toward optimal design and planning of an integrated green biodiesel supply chain network under uncertainty: A case study, Energy, 156 (2018), 661–687. doi: 10.1016/j.energy.2018.05.103 |
[64] | Z. Sazvar, S. M. Mirzapour Al-E-Hashem, A. Baboli, M. R. Akbari Jokar, A bi-objective stochastic programming model for a centralized green supply chain with deteriorating products, Int. J. Prod. Econ., 150 (2014), 140–154. doi: 10.1016/j.ijpe.2013.12.023 |
[65] | T. M. Choi, Optimal apparel supplier selection with forecast updates under carbon emission taxation scheme, Comput. Oper. Res., 40 (2013), 2646–2655. doi: 10.1016/j.cor.2013.04.017 |
[66] | T. Yu-Chung, T. Vo-Van, L. Jye-Chyi, Y. Vincent, Designing sustainable supply chain networks under uncertain environments: Fuzzy multi-objective programming, J. Cleaner Prod., 174 (2018), 1550–1565. doi: 10.1016/j.jclepro.2017.10.272 |
[67] | K. Boonsothonsatit, S. Kara, S. Ibbotson, B. Kayis, Development of a Generic decision support system based on multi-Objective Optimisation for Green supply chain network design (GOOG), J. Manuf. Technol. Manage., 26 (2015), 1069–1084. doi: 10.1108/JMTM-10-2012-0102 |
[68] | M. M. Saffar, G. Hamed Shakouri, J. Razmi, A new multi objective optimization model for designing a green supply chain network under uncertainty, Int. J. Ind. Eng. Comput., 6 (2015), 15–32. |
[69] | S. Y. Balaman, H. Selim, A fuzzy multiobjective linear programming model for design and management of anaerobic digestion based bioenergy supply chains, Energy, 74 (2014), 928–940. doi: 10.1016/j.energy.2014.07.073 |
[70] | M. S. Pishvaee, J. Razmi, S. A. Torabi, An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: A case study of medical needle and syringe supply chain, Transp. Res. Part E, 67 (2014), 14–38. doi: 10.1016/j.tre.2014.04.001 |
[71] | H. Heidari-Fathian, S. H. R. Pasandideh, Green-blood supply chain network design: Robust optimization, bounded objective function & Lagrangian relaxation, Comput. Ind. Eng., 122 (2018), 95–105. doi: 10.1016/j.cie.2018.05.051 |
[72] | H. Golpîra, E. Najafi, M. Zandieh, S. Sadi-Nezhad, Robust bi-level optimization for green opportunistic supply chain network design problem against uncertainty and environmental risk, Comput. Ind. Eng., 107 (2017), 301–312. doi: 10.1016/j.cie.2017.03.029 |
[73] | M. Jin, L. Song, Y. Wang, Y. Zeng, Longitudinal cooperative robust optimization model for sustainable supply chain management, Chaos Solitons Fractals, 116 (2018), 95–105. doi: 10.1016/j.chaos.2018.09.008 |
[74] | M. Sherafati, M. Bashiri, R. Tavakkoli-Moghaddam, M. S. Pishvaee, Supply chain network design considering sustainable development paradigm: A case study in cable industry, J. Cleaner Prod., 234 (2019), 366–380. doi: 10.1016/j.jclepro.2019.06.095 |
[75] | F. D. Mele, A. M. Kostin, G. Guillén-Gosálbez, L. Jiménez, Multiobjective model for more sustainable fuel supply chains. A case study of the sugar cane industry in argentina, Ind. Eng. Chem. Res., 50 (2011), 4939–4958. doi: 10.1021/ie101400g |
[76] | Z. Chen, S. Andresen, A Multiobjective Optimization Model of Production-Sourcing for Sustainable Supply Chain with Consideration of Social, Environmental, and Economic Factors, Math. Probl. Eng., 2 (2014), 1–11. |
[77] | S. Giarola, F. Bezzo, N. Shah, A risk management approach to the economic and environmental strategic design of ethanol supply chains, Biomass Bioenergy, 58 (2013), 31–51. doi: 10.1016/j.biombioe.2013.08.005 |
[78] | C. V. Valderrama, E. Santibanez-González, B. Pimentel, A. Candia-Véjar, L. Canales-Bustos, Designing an environmental supply chain network in the mining industry to reduce carbon emissions, J. Cleaner Prod., 254 (2020), 119688. doi: 10.1016/j.jclepro.2019.119688 |
[79] | S. D. Budiman, H. Rau, A mixed-integer model for the implementation of postponement strategies in the globalized green supply chain network, Comput. Ind. Eng., 137 (2019), 106054. doi: 10.1016/j.cie.2019.106054 |
[80] | M. Izadikhah, R. F. Saen, Assessing sustainability of supply chains by chance-constrained two-stage DEA model in the presence of undesirable factors, Comput. Oper. Res., 100 (2018), 343–367. doi: 10.1016/j.cor.2017.10.002 |
[81] | R. Das, K. Shaw, M. Irfan, Supply chain network design considering carbon footprint, water footprint, supplier's social risk, solid waste, and service level under the uncertain condition, Clean Technol. Environ. Policy, 22 (2020), 337–370. doi: 10.1007/s10098-019-01785-y |
[82] | J. Jonkman, A. Kanellopoulos, J. M. Bloemhof, Designing an eco-efficient biomass-based supply chain using a multi-actor optimisation model, J. Cleaner Prod., 210 (2019), 1065–1075. doi: 10.1016/j.jclepro.2018.10.351 |
[83] | F. Barzinpour, P. Taki, A dual-channel network design model in a green supply chain considering pricing and transportation mode choice, J. Intell. Manuf., 29 (2018), 1465–1483. doi: 10.1007/s10845-015-1190-x |
[84] | V. K. Manupati, S. J. Jedidah, S. Gupta, A. Bhandari, M. Ramkumar, Optimization of a multi-echelon sustainable production-distribution supply chain system with lead time consideration under carbon emission policies, Comput. Ind. Eng., 135 (2019), 1312–1323. doi: 10.1016/j.cie.2018.10.010 |
[85] | S. Elhedhli, R. Merrick, Green supply chain network design to reduce carbon emissions, Transp. Res. Part D, 17 (2012), 370–379. doi: 10.1016/j.trd.2012.02.002 |
[86] | R. Jamshidi, S. M. Fatemi Ghomi, B. Karimi, Multi-objective green supply chain optimization with a new hybrid memetic algorithm using the Taguchi method, Sci. Iran., 19 (2012), 1876–1886. doi: 10.1016/j.scient.2012.07.002 |
[87] | K. Sari, A novel multi-criteria decision framework for evaluating green supply chain management practices, Comput. Ind. Eng., 105 (2017), 338–347. doi: 10.1016/j.cie.2017.01.016 |
[88] | M. Song, X. Cui, S. Wang, Simulation of land green supply chain based on system dynamics and policy optimization, Int. J. Prod. Econ., 217 (2019), 317–327. doi: 10.1016/j.ijpe.2018.08.021 |
[89] | G. Wang, A. Gunasekaran, Modeling and analysis of sustainable supply chain dynamics, Ann. Oper. Res., 250 (2017), 521–536. doi: 10.1007/s10479-015-1860-2 |
[90] | E. S. Nwe, A. Adhitya, I. Halim, R. Srinivasan, Green supply chain design and operation by integrating LCA and dynamic simulation, Comput. Aided Chem. Eng., 28 (2010), 109–114. doi: 10.1016/S1570-7946(10)28019-7 |
[91] | R. Das, K. Shaw, Uncertain supply chain network design considering carbon footprint and social factors using two-stage approach, Clean Technol. Environ. Policy, 19 (2017), 2491–2519. doi: 10.1007/s10098-017-1446-6 |
[92] | H. Kaur, S. P. Singh, R. Glardon, An Integer Linear Program for Integrated Supplier Selection: A Sustainable Flexible Framework, Global J. Flexible Syst. Manage., 17 (2016), 113–134. doi: 10.1007/s40171-015-0105-1 |
[93] | K. J. Wu, C. J. Liao, M. L. Tseng, K. K. S. Chiu, Multi-attribute approach to sustainable supply chain management under uncertainty, Ind. Manage. Data Syst., 116 (2016), 777–800. doi: 10.1108/IMDS-08-2015-0327 |
[94] | N. Ghani, G. Egilmez, M. Kucukvar, M. K. S. Bhutta, From green buildings to green supply chains: An integrated input-output life cycle assessment and optimization framework for carbon footprint reduction policy making, Manage. Environ. Qual., 28 (2017), 532–548. doi: 10.1108/MEQ-12-2015-0211 |
[95] | M. L. Tseng, M. K. Lim, K. J. Wu, Improving the benefits and costs on sustainable supply chain finance under uncertainty, Int. J. Prod. Econ., 218 (2019), 308–321. doi: 10.1016/j.ijpe.2019.06.017 |
[96] | A. Acquaye, T. Ibn-Mohammed, A. Genovese, G. A. Afrifa, F. A. Yamoah, E. Oppon, A quantitative model for environmentally sustainable supply chain performance measurement, Eur. J. Oper. Res., 269 (2018), 188–205. doi: 10.1016/j.ejor.2017.10.057 |
[97] | X. Ji, J. Wu, Q. Zhu, Eco-design of transportation in sustainable supply chain management: A DEA-like method, Transp. Res. Part D, 48 (2016), 451–459. doi: 10.1016/j.trd.2015.08.007 |
[98] | V. K. Sharma, P. Chandana, A. Bhardwaj, Critical factors analysis and its ranking for implementation of GSCM in Indian dairy industry, J. Manuf. Technol. Manage., 26 (2015), 911–922. doi: 10.1108/JMTM-03-2014-0023 |
[99] | B. He, Y. Liu, L. Zeng, S. Wang, D. Zhang, Q. Yu, Product carbon footprint across sustainable supply chain, J. Cleaner Prod., 241 (2019), 118320. doi: 10.1016/j.jclepro.2019.118320 |
[100] | O. Boutkhoum, M. Hanine, H. Boukhriss, T. Agouti, A. Tikniouine, Multi-criteria decision support framework for sustainable implementation of effective green supply chain management practices, SpringerPlus, 5 (2016), 664. doi: 10.1186/s40064-016-2233-2 |
[101] | H. Snyder, Literature review as a research methodology: An overview and guidelines, J. Bus. Res., 104 (2019), 333–339. doi: 10.1016/j.jbusres.2019.07.039 |