Citation: J. Murillo-Escobar, Y. E. Jaramillo-Munera, D. A. Orrego-Metaute, E. Delgado-Trejos, D. Cuesta-Frau. Muscle fatigue analysis during dynamic contractions based on biomechanical features and Permutation Entropy[J]. Mathematical Biosciences and Engineering, 2020, 17(3): 2592-2615. doi: 10.3934/mbe.2020142
[1] | S. C. Gandevia, Spinal and supraspinal factors in human muscle fatigue, Physiol. Rev., 81 (2001), 1725-1789. |
[2] | A. Phinyomark, S. Thongpanja, H. Hu, P. Phukpattaranont, C. Limsakul, The usefulness of mean and median frequencies in electromyography analysis, in Computational Intelligence in Electromyography Analysis - A Perspective on Current Applications and Future Challenges, IntechOpen Limited, London, 2012, 195-220. |
[3] | A. Ascensão, J. Magalhães, J. Oliveira, J. Duarte, J. Soares, Fisiologia da fadiga muscular. Delimitação conceptual, modelos de estudo e mecanismos de fadiga de origem central e periférica, Rev. Por. de Ciências do Desp., 3 (2003), 108-123. |
[4] | S. D. Mair, A. V. Seaber, R. R. Glisson, W. E. Garrett, The role of fatigue in susceptibility to acute muscle strain injury, Am. J. Sports Med., 24 (1996), 137-143. |
[5] | M. Corchuelo, M. Soler, L. Lozano, Informe ejecutivo de la segunda Encuesta nacional de condiciones de seguridad y salud en el trabajo en el sistema general de Riesgos Laborales de Colombia, Ministerio de Trabajo, Republica de Colombia, 2013, 1-56. |
[6] | S. P. Arjunan, D. K. Kumar, G. Naik, Computation and evaluation of features of surface electromyogram to identify the force of muscle contraction and muscle fatigue, Biomed. Res. Int., 2014 (2014), 1-6. |
[7] | C. Rocha, B. S. Geres, H. U. Kuriki, R. D. Faria, N. Filho, Análise da reprodutibilidade de parâmetros no domínio da frequência do sinal EMG utilizados na caracterização da fadiga muscular localizada Materiais e Métodos, Motriz-revista de Ed. Fís., 18 (2012), 456-464. |
[8] | F. Sepulveda, M. R. Al-mulla, M. Colley, sEMG techniques to detect and predict localised muscle fatigue, in EMG methods for evaluating muscle and nerve function, IntechOpen Limited, London, 2012, 157-186. |
[9] | M. González-Izal, A. Malanda, E. Gorostiaga, M. Izquierdo, Electromyographic models to assess muscle fatigue, J. Electromyogr. Kinesiol., 22 (2012), 501-512. |
[10] | D. R. Bueno, J. M. Lizano, L. Montano, Muscular fatigue detection using sEMG in dynamic contractions, in Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2015), 2015, 494-497. |
[11] | R. S. Navaneethakrishna, Multiscale feature based analysis of surface EMG signals under fatigue and non-fatigue conditions, in Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2014), 2014, 4627-4630. |
[12] | M. Tian, Y. Ozturk, S. Sun, Y. Su, Measurement of upper limb muscle fatigue using deep belief networks, J. Mech. Med. Biol., 16 (2016) 1-18. |
[13] | N. A. Kamaruddin, P. I. Khalid, A. Z. Shaameri, The use of surface electromyography in muscle fatigue assessments: A review, Jurnal Teknologi, 74 (2015), 1-5. |
[14] | D. R. Bueno, J. M. Lizano, L. Montano, Muscular fatigue detection using sEMG in dynamic contractions, in Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2015), 2015, 494-497. |
[15] | H. J. Hwang, W. H. Chung, J. H. Song, J. K. Lim, H. S. Kim, Prediction of biceps muscle fatigue and force using electromyography signal analysis for repeated isokinetic dumbbell curl exercise, J. Mech. Sci. Technol., 30 (2016), 5329-5336. |
[16] | S. Thongpanja, A. Phinyomark, P. Phukpattaranont, C. Limsakul, A feasibility study of fatigue and muscle contraction indices based on EMG time-dependent spectral analysis, Proced. Eng., 32 (2012), 239-245. |
[17] | M. Vitor-Costa, H. Bortolotti, T. Camala, R. da Silva, T. Ahrao, A. de Moraes, et al., EMG spectral analysis of incremental exercise in cyclists and non-cyclists using Fourier and Wavelet transforms, Rev. Bras. Cineantropom. Desempenho, 14 (2012), 660-670. |
[18] | S. K. Chowdhury, A. D. Nimbarte, M. Jaridi, R. C. Creese, Discrete Wavelet transform analysis of surface electromyography for the fatigue assessment of neck and shoulder muscles, J. Electromyogr. Kinesiol., 23 (2013), 995-1003. |
[19] | B. M. Idrees, O. Farooq, Estimation of Muscle Fatigue Using Wavelet Decomposition, in Fifth International Conference on Digital Information Processing and Communications (ICDIPC 2015), 2015, 267-271. |
[20] | M. Sarillee, M. Hariharan, M. N. Anas, M. I. Omar, M. N. Aishah, Y. Ck, et al., Classification of muscle fatigue condition using multi-sensors, in 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), 2015, 27-29. |
[21] | D. R. Rogers, D. T. MacIsaac, A comparison of EMG-based muscle fatigue assessments during dynamic contractions, J. Electromyogr. Kinesiol., 23 (2013), 1004-1011. |
[22] | D. Cuesta-Frau, M. Varela-Entrecanales, A. Molina-Picó, B. Vargas, Patterns with equal values in Permutation Entropy: Do they really matter for biosignal classification?, Complexity, 2018 (2018), 1-16. |
[23] | S. A. Rawashdeh, D. A. Rafeldt, T. L. Uhl, J. E. Lumpp, Wearable motion capture unit for shoulder injury prevention, in 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), 2015, 1-6. |
[24] | M. Brzycki, Strength testing: Predicting a one-rep max from repetitions to fatigue, J. Phys. Educ. Recreat. Dance, 64 (1993), 88-90. |
[25] | S. Solnik, P. Rider, K. Steinweg, P. Devita, T. Hortobgyi, Teager-Kaiser energy operator signal conditioning improves EMG onset detection, Eur. J. Appl. Physiol., 110 (2010), 489-498. |
[26] | G. Staude, Onset detection in surface electromyographic signals: A systematic comparison of methods, EURASIP J. Adv. Sig. Pr., 2001 (2001), 67-81. |
[27] | G. H. Staude, Precise onset detection of human motor responses using a whitening filter and the Log-Likelihood-Ratio Test, IEEE Trans. Biomed. Eng., 48 (2001), 1292-1305. |
[28] | G. Staude, W. Wolf, Objective motor response onset detection in surface myoelectric signals, Med. Eng. Phys., 21 (1999), 449-467. |
[29] | P. Bhat, A. Gupta, A novel approach to detect localized muscle fatigue during isometric exercises, in 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), 2016, 224-229. |
[30] | F. Mohamed, Al-Mulla, M. Colley, An autonomous wearable system for predicting and detecting localised muscle fatigue, Sensors, 11 (2011), 1542-1557. |
[31] | B. Everitt, S. Landau, M. Leese, D. Stahl, Hierarchical clustering, in Cluster Analysis, 5th edition, 2011, 71-110. |
[32] | T. Strauss, M. J. Von Maltitz, Generalising Ward's method for use with Manhattan distances, PLoS ONE, 12 (2017), 1-21. |
[33] | C. Bandt, B. Pompe, Permutation Entropy: A natural complexity measure for time series, Phys. Rev. Lett., 88 (2002). |
[34] | D. Cuesta-Frau, J. P. Murillo-Escobar, D. A. Orrego, E. Delgado-Trejos, Embedded dimension and time series length. Practical influence on permutation entropy and its applications, Entropy, 21 (2019), 1-25. |
[35] | M. Riedl, A. Müller, N. Wessel, Practical considerations of permutation entropy: A tutorial review, Eur. Phys. J., 222 (2013), 249-262. |
[36] | F. N. Jamaluddin, S. A. Ahmad, S. B. M. Noor, W. Z. W. Hassan, A. Yaacob, Y. Adam, Performance of DWT and SWT in muscle fatigue Detection, in 2015 IEEE Student Symposium in Biomedical Engineering and Sciences (ISSBES), Shah Alam, Malaysia, 2015, 50-53. |
[37] | K. B. Smale, M. S. Shourijeh, D. L. Benoit, Use of muscle synergies and Wavelet transforms to identify fatigue during squatting, J. Electromyogr. Kinesiol., 28 (2016), 158-166. |
[38] | L. Kahl, U. G. Hofmann, Comparison of algorithms to quantify muscle fatigue in upper limb muscles based on sEMG signals, Med. Eng. Phys., 38 (2016), 1260-1269. |
[39] | T. W. Beck, X. Ye, N. P. Wages, Local muscle endurance is associated with fatigue-based changes in electromyographic spectral properties, but not with conduction velocity, J. Electromyogr. Kinesiol., 25 (2015), 451-456. |
[40] | R. B. Graham, M. P. Wachowiak, B. J. Gurd, The assessment of muscular effort, fatigue, and physiological adaptation using EMG and wavelet analysis, PLoS ONE, 10 (2015), 1-13. |
[41] | E. F. Shair, T. N. S. T. Zawawi, A. R. Abdullah, N. H. Shamsudin, sEMG Signals analysis using time-frequency distribution for symmetric and asymmetric lifting, in 2015 International Symposium on Technology Management and Emerging Technologies (ISTMET), 2015, 233-237. |
[42] | M. Asefi, S. Moghimi, H. Kalani, A. Moghimi, Dynamic modeling of sEMG-force relation in the presence of muscle fatigue during isometric contractions, Biomed. Signal Proc. Control, 28 (2016), 41-49. |
[43] | A. Samani, C. Pontonnier, G. Dumont, P. Madeleine, Shoulder kinematics and spatial pattern of Trapezius electromyographic activity in real and virtual environments, PLoS ONE, 10 (2015), 1-18. |
[44] | P. Bonato, P. Boissy, U. Della Croce, S. H. Roy, Changes in the surface EMG signal and the biomechanics of motion during a repetitive lifting task, IEEE Tran. on Neu. Sys. and Rehab. Eng., 10 (2002), 38-47. |
[45] | S. Gafner, V. Hoevel, I. M. Punt, S. Schmid, L. Allet, Hip-abductor fatigue influences sagittal plane ankle kinematics and shank muscle activity during a single-leg forward jump, J. Electromyogr. Kinesiol., 43 (2018), 75-81. |
[46] | E. Coventry, K. M. O. Connor, B. A. Hart, J. E. Earl, K. T. Ebersole, The effect of lower extremity fatigue on shock attenuation during single-leg landing, Clin. Biomech., 21 (2006), 1090-1097. |
[47] | J. Augustsson, R. Thomeé, C. Lindén, M. Folkesson, R. Tranberg, J. Karlsson, Single-leg hop testing following fatiguing exercise: Reliability and biomechanical analysis, Scand. J. Med. Sci. Sports., 16 (2006), 111-120. |
[48] | J. L. R. Jayalath, N. Weerakkody, R. Bini, Effects of fatigue on ankle biomechanics during jumps: A systematic review, J. Electromyogr. Kinesiol., 42 (2018), 81-91. |
[49] | K. F. Orishimo, I. J. Kremenic, Effect of Fatigue on Single-Leg Hop Landing Biomechanics, J. Appl. Biomech., 22 (2006), 245-254. |
[50] | C. M. Davidson, G. De Vito, M. M. Lowery, Effect of oral glucose supplementation on surface EMG during fatiguing dynamic exercise, in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016, 3498-3502. |
[51] | S. Zhang, A novel portable one lead ECG monitor with low-cost and long-time recording based on NUC501, in 2010 Chinese Control and Decision Conference, 2010, 276-279 |
[52] | D. Sun, E. Koutsos, P. Georgiou, Comparison of sEMG bit-stream modulators for cross-correlation based muscle fatigue estimation, in 2016 IEEE International Symposium on Circuits and Systems (ISCAS), 2016, 838-841. |
[53] | K. S. Urbinati, A. D. Vieira, C. Papcke, R. Pinheiro, P. Nohama and M. Scheeren, Physiological and biomechanical fatigue responses in Karate: A case study, Open Sports Sci. J., 10 (2017), 286-293. |
[54] | G. C. Lessi, R. S. Silva, F. V. Serrão, Comparison of the effects of fatigue on kinematics and muscle activation between men and women after anterior cruciate ligament reconstruction, Phys. Ther. Sport., 31 (2018), 29-34. |
[55] | K. Marri, R. Swaminathan, Classification of muscle fatigue in dynamic contraction using surface electromyography signals and multifractal singularity spectral analysis, J. Dyn. Sys. Meas. Control, 138 (2017), 1-10. |
[56] | N. Makaram, R. Swaminathan, A binary bat approach for identification of fatigue condition from sEMG signals, in International Conference on Swarm, Evolutionary, and Memetic Computing, 2014, 480-489. |
[57] | K. Marri, R. Swaminathan, Classification of muscle fatigue using surface electromyography signals and multifractals, in 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), New Jersey, EEUU, 2015, 669-674. |
[58] | F. Sepulveda, M. Al-Mulla, B. A. Bader, Optimal elbow angle for extracting sEMG signals during fatiguing dynamic contraction, Computers, 4 (2015), 251-264. |
[59] | A. B. Piek, I. Stolz, K. Keller, Algorithmics, possibilities and limits of ordinal pattern based entropies, Entropy, 21 (2019), 1-24. |