Processing math: 37%
Research article

A new fractional fuzzy dispersion entropy and its application in muscle fatigue detection

  • Recently, fuzzy dispersion entropy (DispEn) has attracted much attention as a new nonlinear dynamics method that combines the advantages of both DispEn and fuzzy entropy. However, it suffers from limitation of insensitivity to dynamic changes. To solve this limitation, we proposed fractional fuzzy dispersion entropy (FFDispEn) based on DispEn, a novel fuzzy membership function and fractional calculus. The fuzzy membership function was defined based on the Euclidean distance between the embedding vector and dispersion pattern. Simulated signals generated by the one-dimensional (1D) logistic map were used to test the sensitivity of the proposed method to dynamic changes. Moreover, 29 subjects were recruited for an upper limb muscle fatigue experiment, during which surface electromyography (sEMG) signals of the biceps brachii muscle were recorded. Both simulated signals and sEMG signals were processed using a sliding window approach. Sample entropy (SampEn), DispEn and FFDispEn were separately used to calculate the complexity of each frame. The sensitivity of different algorithms to the muscle fatigue process was analyzed using fitting parameters through linear fitting of the complexity of each frame signal. The results showed that for simulated signals, the larger the fractional order q, the higher the sensitivity to dynamic changes. Moreover, DispEn performed poorly in the sensitivity to dynamic changes compared with FFDispEn. As for muscle fatigue detection, the FFDispEn value showed a clear declining tendency with a mean slope of −1.658 × 10−3 as muscle fatigue progresses; additionally, it was more sensitive to muscle fatigue compared with SampEn (slope: −0.4156 × 10−3) and DispEn (slope: −0.1675 × 10−3). The highest accuracy of 97.5% was achieved with the FFDispEn and support vector machine (SVM). This study provided a new useful nonlinear dynamic indicator for sEMG signal processing and muscle fatigue analysis. The proposed method may be useful for physiological and biomedical signal analysis.

    Citation: Baohua Hu, Yong Wang, Jingsong Mu. A new fractional fuzzy dispersion entropy and its application in muscle fatigue detection[J]. Mathematical Biosciences and Engineering, 2024, 21(1): 144-169. doi: 10.3934/mbe.2024007

    Related Papers:

    [1] Yefu Zheng, Jun Xu, Hongzhang Chen . TOPSIS-based entropy measure for intuitionistic trapezoidal fuzzy sets and application to multi-attribute decision making. Mathematical Biosciences and Engineering, 2020, 17(5): 5604-5617. doi: 10.3934/mbe.2020301
    [2] Fankang Bu, Jun He, Haorun Li, Qiang Fu . Interval-valued intuitionistic fuzzy MADM method based on TOPSIS and grey correlation analysis. Mathematical Biosciences and Engineering, 2020, 17(5): 5584-5603. doi: 10.3934/mbe.2020300
    [3] Ghous Ali, Adeel Farooq, Mohammed M. Ali Al-Shamiri . Novel multiple criteria decision-making analysis under m-polar fuzzy aggregation operators with application. Mathematical Biosciences and Engineering, 2023, 20(2): 3566-3593. doi: 10.3934/mbe.2023166
    [4] Qianhong Zhang, Fubiao Lin, Xiaoying Zhong . On discrete time Beverton-Holt population model with fuzzy environment. Mathematical Biosciences and Engineering, 2019, 16(3): 1471-1488. doi: 10.3934/mbe.2019071
    [5] Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Khadijah M. Abualnaja . Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions. Mathematical Biosciences and Engineering, 2021, 18(5): 6552-6580. doi: 10.3934/mbe.2021325
    [6] Bo Sun, Ming Wei, Wei Wu, Binbin Jing . A novel group decision making method for airport operational risk management. Mathematical Biosciences and Engineering, 2020, 17(3): 2402-2417. doi: 10.3934/mbe.2020130
    [7] Sumera Naz, Muhammad Akram, Mohammed M. Ali Al-Shamiri, Mohammed M. Khalaf, Gohar Yousaf . A new MAGDM method with 2-tuple linguistic bipolar fuzzy Heronian mean operators. Mathematical Biosciences and Engineering, 2022, 19(4): 3843-3878. doi: 10.3934/mbe.2022177
    [8] Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Juan L. G. Guirao, Taghreed M. Jawa . Fuzzy-interval inequalities for generalized preinvex fuzzy interval valued functions. Mathematical Biosciences and Engineering, 2022, 19(1): 812-835. doi: 10.3934/mbe.2022037
    [9] Muhammad Akram, G. Muhiuddin, Gustavo Santos-García . An enhanced VIKOR method for multi-criteria group decision-making with complex Fermatean fuzzy sets. Mathematical Biosciences and Engineering, 2022, 19(7): 7201-7231. doi: 10.3934/mbe.2022340
    [10] Muhammad Akram, Ahmad N. Al-Kenani, Anam Luqman . Degree based models of granular computing under fuzzy indiscernibility relations. Mathematical Biosciences and Engineering, 2021, 18(6): 8415-8443. doi: 10.3934/mbe.2021417
  • Recently, fuzzy dispersion entropy (DispEn) has attracted much attention as a new nonlinear dynamics method that combines the advantages of both DispEn and fuzzy entropy. However, it suffers from limitation of insensitivity to dynamic changes. To solve this limitation, we proposed fractional fuzzy dispersion entropy (FFDispEn) based on DispEn, a novel fuzzy membership function and fractional calculus. The fuzzy membership function was defined based on the Euclidean distance between the embedding vector and dispersion pattern. Simulated signals generated by the one-dimensional (1D) logistic map were used to test the sensitivity of the proposed method to dynamic changes. Moreover, 29 subjects were recruited for an upper limb muscle fatigue experiment, during which surface electromyography (sEMG) signals of the biceps brachii muscle were recorded. Both simulated signals and sEMG signals were processed using a sliding window approach. Sample entropy (SampEn), DispEn and FFDispEn were separately used to calculate the complexity of each frame. The sensitivity of different algorithms to the muscle fatigue process was analyzed using fitting parameters through linear fitting of the complexity of each frame signal. The results showed that for simulated signals, the larger the fractional order q, the higher the sensitivity to dynamic changes. Moreover, DispEn performed poorly in the sensitivity to dynamic changes compared with FFDispEn. As for muscle fatigue detection, the FFDispEn value showed a clear declining tendency with a mean slope of −1.658 × 10−3 as muscle fatigue progresses; additionally, it was more sensitive to muscle fatigue compared with SampEn (slope: −0.4156 × 10−3) and DispEn (slope: −0.1675 × 10−3). The highest accuracy of 97.5% was achieved with the FFDispEn and support vector machine (SVM). This study provided a new useful nonlinear dynamic indicator for sEMG signal processing and muscle fatigue analysis. The proposed method may be useful for physiological and biomedical signal analysis.



    Differential equations play a very important role in modeling physical and engineering problems such as classical mechanics, thermodynamics, general relativity, and electro mechanics. From a broader perspective, the initial conditions are considered to be precisely defined in the model. There are uncertain errors in the observed, measured, or experimental data, which can be ambiguous, incomplete, or inaccurate. We can use the fuzzy differential equation (FDE) to overcome this uncertainty or inaccuracy. Fuzzy set theory was first introduced by Zadeh [1] which deals with uncertainty and vagueness. This theory has many applications in the study of artificial intelligence, decision making problems, soft computing, engineering and operation research. Differential equations play a significant role in modeling virtually every physical, technical, or biological process. Differential equations such as those used to solve real-life problems may not necessarily be directly solvable, that is, they do not have closed form solution. Instead, solution can be approximated using numerical methods. Every differential equation does not possess an exact solution. To overcome this situation, fuzzy set theory is a vital tool to deal with differential equations that do not possess exact solution due to uncertainty in their data. The initial conditions actually are the measurements or observations which lead to the vague information that is why, we use fuzzy differential equations to analyze this unclear information.

    FODE may be viewed as a type of uncertain differential equation in which the uncertain values of parameters, coefficients, initial or boundary conditions are taken into account as fuzzy numbers. FODE has a worth buying significance from both practical and theoretical point of view. Chang and Zadeh [2] first introduced the idea of fuzzy derivative in 1972. The concept developed by Chang and Zadeh was followed up by Dubois and Prade [3], who used the theory of Zadeh's extension principle. FDEs were first discussed by Kaleva [4,5]. Bede and Gal [6] had defined strongly generalized Hukuhara differentiability (SGH-differentiability) of fuzzy-valued function. Kaleva discussed FDE using Puri-Relescue Hukuhara differentiability (H-differentiability) [6,7,8], gave the existence and uniqueness theorem for a solution of the FDE that satisfies the Lipschitz condition. Seikkala [9] introduced the fuzzy derivative which was the generalization of Hukuhara derivative, developed on the basis of Hukuhara difference (H-difference) [10]. Song and Wu [11] studied FDE, and they gave the generalization of the main consequences of Kaleva. FDE and fuzzy initial value problem (FIVP) were discussed by Kaleva in [12]. The derivative of a fuzzy-valued function can be evaluated using H-differentiability introduced by Hukuhara. Fuzzy set theory has great importance in solving FODEs. Many researchers [13,14,15,16] have established different techniques for solving FDEs and fuzzy linear systems. Allahviranloo et al. [17] introduced a method for solving fuzzy differential equation by Taylor expansion. Allahviranloo et al. [18] discussed the existence and uniqueness of the solution for the second-order FODE. Allahviranloo et al. [19] gave the numerical approach to solve FDEs using predictor-corrector method. Friedman et al. [20] gave the numerical approach to extract the solution of fuzzy differential equations and fuzzy integral equations. Wu [21] studied about fuzzy Riemann integral and its numerical integration. Many research articles have been published discussing the solution of fuzzy differential equations using different techniques [22,23,24,25,26]. Allahviraoloo and Ahmadi [27] introduced the concept of the fuzzy Laplace transform (FLT) to solve FDE. Salahshour and Allahviranloo [28] discussed many applications of the fuzzy Laplace transform. The FLT is an important and reliable technique for solving FDE and FIVP. The FLT has the benefit that it solves FIVPs directly without first evaluating a complementary solution and particular solution to FIVP. The FLT converts the fuzzy problem into an algebraic problem which can be easily solved. The initial conditions of FIVP are in the parametric form that splits the problem into two equations. Furthermore, by applying the Laplace transform and the inverse Laplace transform, we are able to find the solution of FIVP. Optimization plays a vital role in a number of fields for the development of technology. Many researchers have discussed advanced optimization algorithms for decision making problems [29]. Moreover, many research articles have been published regarding the importance of advanced optimization algorithms, for instance, heuristics and metaheuristics for challenging decision problems. There are many different domains where advanced optimization algorithms have been applied as solution approaches, such as online learning, scheduling, multi-objective optimization, transportation, medicine, data classification, and others [30,31,32,33,34,35].

    This research paper presents a new analytical method for solving fuzzy initial value problem of fourth-order FODE using the fuzzy Laplace transform. To this end, we establish the fourth order derivative of fuzzy-valued function according to the type of differentiability. We present the relationship between the fourth-order derivative and the Laplace transform of FVF. Moreover, we presents an algorithm to find the solution of fourth-order FIVP. The effectiveness of the introduced method is illustrated by an example. Furthermore, we solved another example about the switching point. The solution of the FIVP possessed the Mittag-Leffler function [36]. We express the solution of FIVP through graphical point of view to visualize and support the theoretical results.

    In short, the main content of this research article has the following perspectives:

    ● Solution of fourth-order fuzzy initial value problem using the Laplace operator.

    ● An important relationship between the Laplace transform of the FVF and its fourth-order derivative.

    ● An algorithm is presented to understand the steps required to solve FIVP.

    ● The validity of the introduced method is verified by an illustrative example.

    ● Another example is solved about switching points.

    ● Application of fourth-order FIVP in RL circuit.

    ● Representation of graphs to visualize and support the theoretical results.

    The rest of the paper is designed as follows: Section 2 contains the preliminary concepts. Section 3 presents the fourth-order derivative of FVF and the relationship between the fourth-order derivative and Laplace transform of FVF. Section 4 contains the framework of research methodology for solving fourth-order FIVP, and the characteristic theorem for the solution of fourth-order FIVP. Section 5 presents supportive numerical examples and an application of fourth-order FIVP in RL circuit. Concluding remarks are given in Section 6.

    In this section, we recall some basic concepts require for this research paper.

    Definition 2.1. [37] A fuzzy set (FS) RF in X is an object of the form

    RF={<t,μ(t)>:tX},

    where μ:X[0,1] denotes the degree of membership of an element tX.

    Definition 2.2. [37] A fuzzy number (FN) u is a non-empty subset of X with the rule of membership grade μ:X[0,1]. Firmly, u is convex, that is,

    μ(t+(1)t1)min{μ(t),μ(t1)},,t,t1with[0,1]andt,t1X.

    Also, u is normal because there exists tX such that μ(t)=1.

    Definition 2.3. [37] A triangular fuzzy number (TFN) u is a subset of FN in R with the following membership function:

    μ(t)={taba;atb,ctcb;btc,0;elsewhere

    where abc and a TFN is denoted by u=(a,b,c).

    Definition 2.4. [37] A parametric fuzzy number (PFN) u is an ordered pair of the functions u1(p) and u2(p), 0p1 that satisfy the following requirements:

    u1(p) is a bounded left continuous, non-decreasing function over (0,1] and right continuous at 0,

    u2(p) is a bounded left continuous, non-increasing function over (0,1] and right continuous at 0,

    u1(p)u2(p), 0p1.

    The collection of all parametric fuzzy numbers (PFNs) (u1(p),u2(p)) with the operations of addition and scalar multiplication is denoted by E1.

    Definition 2.5. [10] let u and v be two fuzzy numbers. If there exists a fuzzy number w such that u=wv, then w is called H-difference of u and v and is denoted by uHv.

    Remark 2.1. Throughout this paper, we use the notation for H-difference.

    Definition 2.6. [10] Let X be a subset of R. A FVF ϑ:XE1 is said to be H-differentiable at t0X if and only if there exists a fuzzy number ϑ(t0)E1 such that the limits

    limδ0ϑ(t0+δ)ϑ(t0)δandlimδ0ϑ(t0)ϑ(t0δ)δ

    both exist and are equal to ϑ(t0). In this case, ϑ(t0) is called the H-derivative of ϑ at t0. If ϑ is H-differentiable at any tX, we call ϑ is H-differentiable over X.

    Definition 2.7. [10] Let u,vE1 be two fuzzy numbers. If there exists a fuzzy number w such that:

    ugHv=wu=v+worv=u+(1)w,

    then w is called the gH-difference of u and v. In terms of p-level sets, gH-difference is defined as:

    [ugHv]p=[min{u1(p)v1(p),u2(p)v2(p)},max{u1(p)v1(p),u2(p)v2(p)}]

    and if H-difference exists, then uv=ugHv.

    Bede and Gal [6] defined SGH-differentiability of fuzzy-valued function based on H-difference [10].

    Definition 2.8. [10] Let X be a subset of R. A FVF ϑ:XE1 is said to be SGH-differentiable at t0X and ϑ(t0)E1 if one of the following conditions is satisfied:

    (ı) For every δ>0, the expressions ϑ(t0+δ)ϑ(t0) and ϑ(t0)ϑ(t0δ) both exist such that

    ϑ(t0)=limδ0ϑ(t0+δ)ϑ(t0)δ=limδ0ϑ(t0)ϑ(t0δ)δ.

    (ıı) For every δ>0, the expressions ϑ(t0)ϑ(t0+δ) and ϑ(t0δ)ϑ(t0) both exist such that

    ϑ(t0)=limδ0ϑ(t0)ϑ(t0+δ)δ=limδ0ϑ(t0δ)ϑ(t0)δ.

    Moreover, if ϑ is differentiable at each tX, then we say that ϑ is differentiable over X.

    Definition 2.9. [36] The Mittag-Leffler function in two parameters ξ,η is defined by the series expansion:

    Eξ,η(t)=i=0tiΓ(ξk+η),(ξ>0,η>0). (2.1)

    The Laplace transform of the Mittag-Leffler function Eξ,η(t) is given by:

    L[tη1Eξ,η(λtξ)]=rξηrξλ,(r>0). (2.2)

    Definition 2.10. (pcut form) [6] Suppose that a FVF ϑ:RE1 is denoted by:

    [ϑ(t,p)]:=[ϑ(t)]p=[ϑ1(p)(t),ϑ2(p)(t)],

    for all p belongs to unit closed interval [0,1] and tR.

    The 1st and 2nd differentiability of a FVF ϑ is defined by:

    ● If ϑ is 1st differentiable ((ı)-differentiable), then the functions ϑ1(p)(t) and ϑ2(p)(t) are differentiable and defined as:

    [ϑ(ı)(t)]p=[ϑ1(p)(t),ϑ2(p)(t)].

    ● If ϑ is 2nd differentiable ((ıı)-differentiable), then the functions ϑ1(p)(t) and ϑ2(p)(t) are differentiable and defined as:

    [ϑ(ıı)(t)]p=[ϑ2(p)(t),ϑ1(p)(t)].

    Definition 2.11. [38] Suppose that a function ϑ and ϑ are differentiable FVFs. The FVF ϑ is denoted by [ϑ(t)]p=[ϑ1(p)(t),ϑ2(p)(t)] for all p belongs to unit closed interval [0,1].

    (i) If ϑ is (ı)-differentiable, then the functions ϑ1(p)(t) and ϑ2(p)(t) are differentiable and

    [ϑ(ı)(t)]p={[ϑ1(p)(t),ϑ2(p)(t)]if ϑ is(ı)-differentiable,[ϑ2(p)(t),ϑ1(p)(t)]ifϑis(ıı)-differentiable.

    (ii) If ϑ is (ıı)-differentiable, then the functions ϑ1(p)(t) and ϑ2(p)(t) are differentiable and

    [ϑ(ıı)(t)]p={[ϑ2(p)(t),ϑ1(p)(t)]ifϑis(ı)-differentiable,[ϑ1(p)(t),ϑ2(p)(t)]ifϑis(ıı)-differentiable.

    Definition 2.12. [39] Suppose that a function ϑ, ϑ and ϑ are differentiable FVFs. The function ϑ is denoted by [ϑ(t)]p=[ϑ1(p)(t),ϑ2(p)(t)] for all p belongs to unit closed interval [0,1].

    (i) If ϑ is (ı)-differentiable, then the function ϑ1(p)(t) and ϑ2(p)(t) are differentiable and

    [ϑ(t)]p={[ϑ1(p)(t),ϑ2(p)(t)]ifϑandϑare(ı)-differentiable,[ϑ2(p)(t),ϑ1(p)(t)]ifϑ is(ıı)-differentiable andϑis(ı)-differentiable,[ϑ2(p)(t),ϑ1(p)(t)]ifϑ is(ı)-differentiable andϑ is (ıı)-differentiable,[ϑ1(p)(t),ϑ2(p)(t)]ifϑ and ϑ are (ıı)-differentiable.

    (ii) If ϑ is (ıı)-differentiable, then the functions ϑ1(p)(t) and ϑ2(p)(t) are differentiable and

    [ϑ(t)]p={[ϑ2(p)(t),ϑ1(p)(t)]ifϑ andϑare(ı)-differentiable,[ϑ1(p)(t),ϑ2(p)(t)]ifϑ is (ıı)-differentiable and ϑ is(ı)-differentiable,[ϑ1(p)(t),ϑ2(p)(t)]ifϑ is(ı)-differentiable andϑ is(ıı)-differentiable,[ϑ2(p)(t),ϑ1(p)(t)]ifϑ andϑ are(ıı)-differentiable.

    In this section, we introduce the fourth-order derivative of fuzzy-valued function on the base of SGH-differentiability which is then the extension of solving first order linear fuzzy differential equation to fourth-order linear fuzzy differential equation.

    Definition 3.1. On the base of SGH-differentiability, we have the following cases to determine the nature of fourth-order derivative of fuzzy-valued function [ϑ(t)]p and to compare the lower and upper FVFs ϑ1(p)(t) and ϑ2(p)(t) respectively according to their fourth-order derivatives. The behavior of fourth-order derivative of FVF [ϑ(t)]p is represented by Table 1.

    Table 1.  Behavior of fourth-order derivatives of [ϑ(t)]p.
    Sr.No. ϑ1 ϑ1 ϑ1 ϑ1 ϑ(iv)1 Behavior of ϑ1 with ϑ2 Type of differentiability
    1 ϑ1 ϑ1 ϑ1 ϑ1 ϑ(iv)1 ϑ1<ϑ2, ϑ1<ϑ2, ϑ1<ϑ2, ϑ(iv)1<ϑ(iv)2 ϑ(ı), ϑ(ı), ϑ(ı), ϑ(iv)(ı)
    2 ϑ1 ϑ1 ϑ1 ϑ1 ϑ(iv)2 ϑ1<ϑ2, ϑ1<ϑ2, ϑ1<ϑ2, ϑ(iv)1>ϑ(iv)2 ϑ(ı), ϑ(ı), ϑ(ı), ϑ(iv)(ıı)
    3 ϑ1 ϑ1 ϑ1 ϑ2 ϑ(iv)2 ϑ1<ϑ2, ϑ1<ϑ2, ϑ1>ϑ2, ϑ(iv)1>ϑ(iv)2 ϑ(ı), ϑ(ı), ϑ(ıı), ϑ(iv)(ıı)
    4 ϑ1 ϑ1 ϑ1 ϑ2 ϑ(iv)1 ϑ1<ϑ2, ϑ1<ϑ2, ϑ1>ϑ2, ϑ(iv)1<ϑ(iv)2 ϑ(ı), ϑ(ı), ϑ(ıı), ϑ(iv)(ı)
    5 ϑ1 ϑ1 ϑ2 ϑ2 ϑ(iv)2 ϑ1<ϑ2, ϑ1>ϑ2, ϑ1>ϑ2, ϑ(iv)1>ϑ(iv)2 ϑ(ı), ϑ(ıı), ϑ(ıı), ϑ(iv)(ıı)
    6 ϑ1 ϑ1 ϑ2 ϑ2 ϑ(iv)1 ϑ1<ϑ2, ϑ1>ϑ2, ϑ1>ϑ2, ϑ(iv)1<ϑ(iv)2 ϑ(ı), ϑ(ıı), ϑ(ıı), ϑ(iv)(ı)
    7 ϑ1 ϑ1 ϑ2 ϑ1 ϑ(iv)2 ϑ1<ϑ2, ϑ1>ϑ2, ϑ1<ϑ2, ϑ(iv)1>ϑ(iv)2 ϑ(ı), ϑ(ıı), ϑ(ı), ϑ(iv)(ıı)
    8 ϑ1 ϑ1 ϑ2 ϑ1 ϑ(iv)1 ϑ1<ϑ2, ϑ1>ϑ2, ϑ1<ϑ2, ϑ(iv)1<ϑ(iv)2 ϑ(ı), ϑ(ıı), ϑ(ı), ϑ(iv)(ı)
    9 ϑ1 ϑ2 ϑ2 ϑ2 ϑ(iv)2 ϑ1>ϑ2, ϑ1>ϑ2, ϑ1>ϑ2, ϑ(iv)1>ϑ(iv)2 ϑ(ıı), ϑ(ıı), ϑ(ıı), ϑ(iv)(ıı)
    10 ϑ1 ϑ2 ϑ1 ϑ2 ϑ(iv)1 ϑ1>ϑ2, ϑ1<ϑ1, ϑ1>ϑ2, ϑ(iv)1<ϑ(iv)1 ϑ(ıı), ϑ(ı), ϑ(ıı), ϑ(iv)(ı)
    11 ϑ1 ϑ2 ϑ2 ϑ1 ϑ(iv)1 ϑ1>ϑ2, ϑ1>ϑ2, ϑ1<ϑ2, ϑ(iv)1<ϑ(iv)2 ϑ(ıı), ϑ(ıı), ϑ(ı), ϑ(iv)(ı)
    12 ϑ1 ϑ2 ϑ2 ϑ2 ϑ(iv)1 ϑ1>ϑ2, ϑ1>ϑ2, ϑ1>ϑ2, ϑ(iv)1<ϑ(iv)2 ϑ(ıı), ϑ(ıı), ϑ(ıı), ϑ(iv)(ı)
    13 ϑ1 ϑ2 ϑ1 ϑ1 ϑ(iv)1 ϑ1>ϑ2, ϑ1<ϑ2, ϑ1<ϑ2, ϑ(iv)1<ϑ(iv)2 ϑ(ıı), ϑ(ı), ϑ(ı), ϑ(iv)(ı)
    14 ϑ1 ϑ2 ϑ1 ϑ1 ϑ(iv)2 ϑ1>ϑ2, ϑ1<ϑ2, ϑ1<ϑ2, ϑ(iv)1>ϑ(iv)2 ϑ(ıı), ϑ(ı), ϑ(ı), ϑ(iv)(ıı)
    15 ϑ1 ϑ2 ϑ1 ϑ2 ϑ(iv)2 ϑ1>ϑ2, ϑ1<ϑ2, ϑ1>ϑ2, ϑ(iv)1>ϑ(iv)2 ϑ(ıı), ϑ(ı), ϑ(ıı), ϑ(iv)(ıı)
    16 ϑ1 ϑ2 ϑ2 ϑ1 ϑ(iv)2 ϑ1>ϑ2, ϑ1>ϑ2, ϑ1<ϑ2, ϑ(iv)1>ϑ(iv)2 ϑ(ıı), ϑ(ıı), ϑ(ı), ϑ(iv)(ıı)

     | Show Table
    DownLoad: CSV

    Definition 3.2. [40] The points in an interval where fuzzy differentiability of type-(ı) changes to type-(ıı) and vice versa are called switching points.

    Example 3.1. [40] The concept of switching point can be understand by the example of second-order derivative of FVF. Table 2 indicates about the switching points.

    In this research article, we briefly discuss about switching points.

    Table 2.  Nature of second-order derivative of ϑ1 and its relationship with the derivative of ϑ2.
    S.N. ϑ ϑ ϑ Relationship with derivatives of ϑ2 Type of differentiability
    1 ϑ1 ϑ1 ϑ1 ϑ1<ϑ2, ϑ1<ϑ2 ϑ(ı), ϑ(ı)
    2 ϑ1 ϑ1 ϑ2 ϑ1<ϑ2, ϑ1>ϑ2 ϑ(ı), ϑ(ıı)
    3 ϑ1 ϑ2 ϑ1 ϑ1>ϑ2, ϑ1<ϑ2 ϑ(ıı), ϑ(ı)
    4 ϑ1 ϑ2 ϑ2 ϑ1>ϑ2, ϑ1>ϑ2 ϑ(ıı), ϑ(ıı)

     | Show Table
    DownLoad: CSV

    Table 2 shows that the fuzzy-valued function ϑ follows the same differentiability if there is no switch (cases 1 and 4) in increasing or decreasing nature of function or there are two switches (cases 2 and 3).

    Definition 3.3. [27] Let ϑ(t) be a continuous FVF. Assume that ertϑ(t) is an improper fuzzy Riemann integrable on [0,), then the integral 0ertϑ(t)dt is said to be the fuzzy Laplace transform of fuzzy-valued function ϑ and its symbolic representation is given by:

    L[ϑ(t)]=0ertϑ(t)dt,r>0. (3.1)

    In pcut form, Eq (3.1) takes the following form:

    L[ϑ(t)]=[L[ϑ1(p)(t)],L[ϑ2(p)(t)]],

    where, L[ϑ(t)] is the classical notation of Laplace transform of crisp function ϑ(t).

    Theorem 3.1. [27] Let ϑ(t) be an integrable FVF and ϑ(t) be the primitive of ϑ(t) on [0,). Then the Laplace transform of the FVF ϑ(t) according to the type of differentiability is given by:

    (a) If ϑ is (ı)differentiable, then

    L[ϑ(ı)(t)]=rL[ϑ(t)]ϑ(0). (3.2)

    (b) If ϑ is (ıı)differentiable, then

    L[ϑ(ıı)(t)]=(ϑ(0))(r)L[ϑ(t)]. (3.3)

    Theorem 3.2. [27]Let ϑ(t) and ω(t) be the continuous FVFs and a,b are real constants. Then

    L[aϑ(t)bω(t)]=aL[ϑ(t)]bL[ω(t)]. (3.4)

    We discuss an important result concerning the relationship between Laplace transform of FVF and its fourth-order derivative in the following theorem.

    Theorem 3.3. Let ϑ(t) be a fuzzy-valued function such that ertϑ(t), ertϑ(t), ertϑ(t), ertϑ(t) and ertϑ(iv)(t) exist, differentiable and Riemann integrable on [0,). Then we have the following cases:

    1) If ϑ(t), ϑ(t), ϑ(t), ϑ(t) are (ı)-differentiable, then

    L[ϑ(iv)(ı)(t)]=r4L[ϑ(t)]r3[ϑ(0)]r2[ϑ(ı)(0)]r[ϑ(ı)(0)][ϑ(ı)(0)].

    2) If ϑ(t), ϑ(t), ϑ(t) are (ı)-differentiable and ϑ(t) is (ıı)-differentiable, then

    L[ϑ(iv)(ıı)(t)]=(ϑ(ı)(0))(r4)L[ϑ(t)(r3)ϑ(0)(r)ϑ(ı)(0)(r)ϑ(ı)(0).

    3) If ϑ(t), ϑ(t), ϑ(t) are (ı)-differentiable and ϑ(t) is (ıı)-differentiable, then,

    L[ϑ(iv)(ı)(t)]=(r)ϑ(ı)(0)(r4)L[ϑ(t)](r3)ϑ(0)(r2)ϑ(ı)(0)ϑ(ıı)(0).

    4) If ϑ(t), ϑ(t) are (ı)-differentiable and ϑ(t), ϑ(t) are (ıı)-differentiable, then

    L[ϑ(iv)(ıı)(t)]=(ϑ(ıı)(0))rϑ(ı)(0)r4L[ϑ(t)]r3ϑ(0)r2ϑ(ı)(0).

    5) If ϑ(t), ϑ(t), ϑ(t) are (ı)-differentiable and ϑ(t) is (ıı)-differentiable, then

    L[ϑ(iv)(ı)(t)]=r2ϑ(ı)(0)(r4)L[ϑ(t)](r3)ϑ(0)rϑ(ıı)(0)ϑ(ı)(0).

    6) If ϑ(t), ϑ(t) are (ı)-differentiable and ϑ(t), ϑ(t) are (ıı)-differentiable, then

    L[ϑ(iv)(ıı)(t)]=(ϑ(ı)(0))r2ϑ(ı)(0)r4L[ϑ(t)](r3)ϑ(0)(r)ϑ(ıı)(0).

    7) If ϑ(t) is (ı)-differentiable and ϑ(t), ϑ(t), ϑ(t) are (ıı)-differentiable, then

    L[ϑ(iv)(ıı)(t)]=(ϑ(ıı)(0))rϑ(ıı)(0)(r2)ϑ(ı)(0)(r4)L[ϑ(t)](r3)ϑ(0).

    8) If ϑ(t), ϑ(t) are (ı)-differentiable and ϑ(t), ϑ(t) are (ıı)-differentiable, then

    L[ϑ(iv)(ı)(t)]=(r)ϑ(ıı)(0)r2)ϑ(ı)(0)r4L[ϑ(t)]r3ϑ(0)ϑ(ıı)(0).

    9) If ϑ(t) is (ıı)-differentiable and ϑ(t), ϑ(t), ϑ(t) are (ı)-differentiable, then

    L[ϑ(iv)(ı)(t)]=(r3ϑ(0))(r4)L[ϑ(t)]r2ϑ(ıı)(0)rϑ(ı)(0)ϑ(ı)(0).

    10) If ϑ(t), ϑ(t), ϑ(t), ϑ(t) are (ıı)-differentiable, then

    L[ϑ(iv)(ıı)(t)]=(ϑ(ıı)(0))rϑ(ıı)(0)(r2)ϑ(ıı)(0)r3)ϑ(0)r4L[ϑ(t)].

    11) If ϑ(t), ϑ(t) are (ıı)-differentiable and ϑ(t), ϑ(t) are (ı)-differentiable, then

    L[ϑ(iv)(ı)(t)]=(r)ϑ(ı)(0)(r3)ϑ(0)r4L[ϑ(t)](r2)ϑ(ıı)(0)ϑ(ıı)(0).

    12) If ϑ(t), ϑ(t) are (ıı)-differentiable and ϑ(t), ϑ(t) are (ı)-differentiable, then

    L[ϑ(iv)(ıı)(t)]=(ϑ(ı)(0))r3ϑ(0)r4L[ϑ(t)](r2)ϑ(ı)(0)(r)ϑ(ıı)(0).

    13) If ϑ(t), ϑ(t) are (ıı)-differentiable and ϑ(t), ϑ(t) are (ı)-differentiable, then

    L[ϑ(iv)(ı)(t)]=(r2)ϑ(ıı)(0)r3ϑ(0)r4L[ϑ(t)]rϑ(ıı)(0)ϑ(ı)(0).

    14) If ϑ(t), ϑ(t), ϑ(t) are (ıı)-differentiable and ϑ(t) is (ı)-differentiable, then

    L[ϑ(iv)(ıı)(t)]=(ϑ(ı)(0))r2ϑ(ıı)(0)(r3)ϑ(0)(r4)L[ϑ(t)](r)ϑ(ıı)(0).

    15) If ϑ(t), ϑ(t), ϑ(t) are (ıı)-differentiable and ϑ(t) is (ı)-differentiable, then

    L[ϑ(iv)(ı)(t)]=(r)ϑ(ıı)(0)r2ϑ(ıı)(0)(r3)ϑ(0)(r4)L[ϑ(t)]ϑ(ıı)(0).

    16) If ϑ(t), ϑ(t), ϑ(t) are (ıı)-differentiable and ϑ(t) is (ı)-differentiable, then

    L[ϑ(iv)(ıı)(t)]=(ϑ(ıı)(0))rϑ(ı)(0)(r3)ϑ(0)(r4)L[ϑ(t)]r2ϑ(ıı)(0).

    Proof. We only prove 1), 2) and 3) here. The proof of remaining cases can be found in Appendix. $

    1) If ϑ(t), ϑ(t), ϑ(t), ϑ(t) are (ı)-differentiable, then

    L[ϑ(iv)(ı)(t)]=(r4)L[ϑ(t)](r3)[ϑ(0)](r2)[ϑ(ı)(0)](r)[ϑ(ı)(0)][ϑ(ı)(0)].

    Suppose that ϑ(t), ϑ(t), ϑ(t), ϑ(t) are (ı)-differentiable, then from Theorem 3.1, it follows that:

    {L[ϑ(ı)(t)]=rL[ϑ(t)]ϑ(0),L[ϑ(ı)(t)]=rL[ϑ(ı)(t)]ϑ(ı)(0),L[ϑ(ı)(t)]=rL[ϑ(ı)(t)]ϑ(ı)(0),L[ϑ(iv)(ı)(t)]=rL[ϑ(ı)(t)]ϑ(ı)(0). (3.5)

    System (3.5) implies that:

    L[ϑ(iv)(ı)(t)]=r[rL[ϑ(ı)(t)]ϑ(ı)(0)]ϑ(0),=r2L[ϑ(ı)(t)rϑ(ı)(0)ϑ(ı)(0),=r2[rL[ϑ(ı)(t)]ϑ(ı)(0)]rϑ(ı)(0)ϑ(ı)(0),=r3L[ϑ(ı)(t)r2ϑ(ı)(0)rϑ(ı)(0)ϑ(ı)(0),=r3[rL[ϑ(t)]ϑ(0)]r2ϑ(ı)(0)rϑ(ı)(0)ϑ(ı)(0),L[ϑ(iv)(ı)(t)]=r4L[ϑ(t)]r3ϑ(0)r2ϑ(ı)(0)rϑ(ı)(0)ϑ(ı)(0).

    2) If ϑ(t), ϑ(t), ϑ(t) are (ı)-differentiable and ϑ(t) is (ıı)-differentiable, then

    L[ϑ(iv)(ıı)(t)]=(ϑ(ı)(0))(r4)L[ϑ(t)(r3)ϑ(0)(r)ϑ(ı)(0)(r)ϑ(ı)(0).

    Assume that \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ı) -differentiable and \vartheta^{'''}(\mathfrak{t}) is (ıı) -differentiable, then from Theorem 3.1, we have:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus \vartheta(0),\\ \mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})] \ominus \vartheta^{'}_{(ı)}(0),\\ \mathfrak{L}[\vartheta^{'''}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})] \ominus \vartheta^{''}_{(ı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'''}_{(ı)}(\mathfrak{t})]. \end{cases} \end{align} (3.6)

    By assembling the identities in system (3.6), we have:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r)\bigg[r\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})] \ominus \vartheta^{''}_{(ı)}(0)\bigg],\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r^{2})\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t}) \oplus (-r)\vartheta^{''}_{(ı)}(0),\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r^{2})\bigg[r\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})] \ominus \vartheta^{'}_{(ı)}(0)\bigg] \oplus (-r)\vartheta^{''}_{(ı)}(0),\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r^{3})\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t}) \oplus (-r)\vartheta^{'}_{(ı)}(0)\oplus (-r)\vartheta^{''}_{(ı)}(0),\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r^{3})\bigg[r\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus \vartheta(0)\bigg] \oplus (-r)\vartheta^{'}_{(ı)}(0)\oplus (-r)\vartheta^{''}_{(ı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})] \oplus (-r^{3})\vartheta(0) \oplus (-r)\vartheta^{'}_{(ı)}(0)\oplus (-r)\vartheta^{''}_{(ı)}(0). \end{align*}

    \rm 3) If \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable and \vartheta^{''}(\mathfrak{t}) is (ıı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})] = (-r)\vartheta^{''}_{(ı)}(0)\ominus (-r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})] \oplus (-r^{3})\vartheta(0) \oplus (-r^{2})\vartheta^{'}_{(ı)}(0)\ominus \vartheta^{'''}_{(ıı)}(0). \end{align*}

    Given that \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable and \vartheta^{''}(\mathfrak{t}) is (ıı) -differentiable, then Theorem 3.1 yields that:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus \vartheta(0),\\ \mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})] \ominus \vartheta^{'}_{(ı)}(0),\\ \mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{''}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{'''}_{(ıı)}(0). \end{cases} \end{align} (3.7)

    System (3.7) gives:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = r\bigg[(-\vartheta^{''}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})]\bigg] \ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ı)}(0)\ominus (-r^{2})\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})]\ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ı)}(0)\ominus (-r^{2})\bigg[r\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})] \ominus \vartheta^{'}_{(ı)}(0)\bigg] \ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ı)}(0)\ominus (-r^{3})\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]\oplus (-r^{2})\vartheta^{'}_{(ı)}(0)\ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ı)}(0)\ominus (-r^{3})\bigg[r\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus \vartheta(0)\bigg]\oplus (-r^{2})\vartheta^{'}_{(ı)}(0)\ominus \vartheta^{'''}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = (-r)\vartheta^{''}_{(ı)}(0)\ominus (-r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})]\oplus (-r^{3})\vartheta(0)\oplus (-r^{2})\vartheta^{'}_{(ı)}(0)\ominus \vartheta^{'''}_{(ıı)}(0). \end{align*}

    In this section, we present the framework of research methodology or construction steps to solve the following fourth-order FIVP:

    \begin{equation} \begin{cases} \vartheta^{(iv)}(\mathfrak{t}) = \mathfrak{f}\big(\mathfrak{t}, \vartheta(\mathfrak{t}), \vartheta^{'}(\mathfrak{t}), \vartheta^{''}(\mathfrak{t}), \vartheta^{'''}(\mathfrak{t})\big) = (\mathfrak{f}_{1}, \mathfrak{f}_{2}) = \mathtt{F},\\ \vartheta(0) = (\vartheta_{1(\mathfrak{p})}(0), \vartheta_{2(\mathfrak{p})}(0)),\\ \vartheta^{'}(0) = (\vartheta^{'}_{1(\mathfrak{p})}(0), \vartheta^{'}_{2(\mathfrak{p})}(0)),\\ \vartheta^{''}(0) = (\vartheta^{''}_{1(\mathfrak{p})}(0), \vartheta^{''}_{2(\mathfrak{p})}(0)),\\ \vartheta^{'''}(0) = (\vartheta^{'''}_{1(\mathfrak{p})}(0), \vartheta^{'''}_{2(\mathfrak{p})}(0)), \end{cases} \end{equation} (4.1)

    where \mathtt{F} is a FVF which is linear with respect to lower and upper bounds ({\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}), {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})) and \vartheta(\mathfrak{t}) = \big({\vartheta}_{1(\mathfrak{p})} (\mathfrak{t}), {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})\big) is a fuzzy function with \mathfrak{t}\geq0 and \mathfrak{p} \in [0, 1] . The initial conditions \vartheta(0) , \vartheta^{'}(0) , \vartheta^{''}(0) and \vartheta^{'''}(0) are expressed in \mathfrak{p}- cut form.

    Step 1. First, we apply the fuzzy Laplace transform to system (4.1)

    \begin{align} \mathfrak{L}\big[\vartheta^{(iv)}(\mathfrak{t})\big] = \mathfrak{L}\big[\mathtt{F}\big]. \end{align} (4.2)

    Step 2. Then, we use Definition 3.1 and Theorem 3.3 for each case according to the type of differentiability. For instance,

    \rm(1) If \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable, then using Definition 3.1 and Theorem 3.3 we have:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})] = r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus r^{3}[\vartheta(0)] \ominus r^{2}[\vartheta^{'}_{(ı)}(0)] \ominus r[\vartheta^{''}_{(ı)}(0)] \ominus \vartheta^{'''}_{(ı)}(0). \end{align*}

    Equation (4.2) implies:

    \begin{align*} \mathtt{L}[\mathtt{F}] = (r^{4})\mathtt{L}[\vartheta(\mathfrak{t})] \ominus (r^{3})\vartheta(0) \ominus (r^{2})\vartheta^{'}(0) \ominus (r)\vartheta^{''}(0) \ominus \vartheta^{'''}(0). \end{align*}
    \begin{equation} \begin{cases} \mathfrak{L}[\mathfrak{f}_{1}] = (r^{4})\mathfrak{L}[{\vartheta}_{1(\mathfrak{p})}(\mathfrak{t})]-r^{3}\vartheta_{1(\mathfrak{p})}(0)-r^{2}\vartheta^{'}_{1(\mathfrak{p})}(0)-r\vartheta^{''}_{1(\mathfrak{p})}(0)- \vartheta^{'''}_{1(\mathfrak{p})}(0),\\ \mathfrak{L}[\mathfrak{f}_{2}] = (r^{4})\mathfrak{L}[{\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})]-r^{3}\vartheta_{2(\mathfrak{p})}(0)-r^{2}\vartheta^{'}_{2(\mathfrak{p})}(0)-r\vartheta^{''}_{2(\mathfrak{p})}(0)- \vartheta^{'''}_{2(\mathfrak{p})}(0). \end{cases} \end{equation} (4.3)

    Where

    \begin{equation} \mathfrak{f}_{1} {\big(\mathfrak{t}, \vartheta(\mathfrak{t}), \vartheta^{'}(\mathfrak{t}), \vartheta^{''}(\mathfrak{t}), \vartheta^{'''}(\mathfrak{t}), \mathfrak{p}\big) = \min\bigg\{\mathfrak{f}\big(\mathfrak{t}, i, j, k, l\big)\mid i\in\big({\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}), {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})\big), j\in\big({\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}), {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})\big), k\in\big({\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}), {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})\big), l\in\big({\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}), {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})\big)\bigg\}} \end{equation} (4.4)

    and

    \begin{equation} \mathfrak{f}_{2} {\big(\mathfrak{t}, \vartheta(\mathfrak{t}), \vartheta^{'}(\mathfrak{t}), \vartheta^{''}(\mathfrak{t}), \vartheta^{'''}(\mathfrak{t}), \mathfrak{p}\big) = \max\bigg\{\mathfrak{f}\big(\mathfrak{t}, i, j, k, l\big)\mid i\in\big({\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}), {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})\big), j\in\big({\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}), {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})\big), k\in\big({\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}), {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})\big), l\in\big({\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}), {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})\big)\bigg\}}. \end{equation} (4.5)

    Step 3. Then after some manipulation system (4.3) implies that:

    \begin{equation} \begin{cases} \mathfrak{L}[{\vartheta}_{1(\mathfrak{p})}(\mathfrak{t})] = \mathcal{H}_{1}(r,\mathfrak{p}),\\ \mathfrak{L}[{\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})] = \mathcal{K}_{1}(r,\mathfrak{p}). \end{cases} \end{equation} (4.6)

    Step 4. In the last step, we take inverse Laplace transform to system (4.6):

    \begin{equation} \begin{cases} \big( {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t})\big) = \mathfrak{L}^{-1}[\mathcal{H}_{1}(r,\mathfrak{p})],\\ \big({\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})\big) = \mathfrak{L}^{-1}[\mathcal{K}_{1}(r,\mathfrak{p})]. \end{cases} \end{equation} (4.7)

    The solution of given FIVP is expressed by system (4.7).

    Remark 4.1. Similarly, the construction steps followed by above case for the remaining fifteen cases of the FVF \vartheta(\mathfrak{t}) and all its derivatives up to fourth-order according to their type of differentiability can be used to find the solution of fourth-order FIVP.

    Bede [19] proved a characterization theorem which states that under certain conditions a fuzzy initial value problem of fuzzy ordinary differential equation under Hukuhara differentiability is equivalent to a system of ordinary differential equations (ODEs). Bede also remarked that this characterization theorem can help to solve FODEs numerically by converting them to a system of ODEs, which can then be solved by any numerical method suitable for ODEs.

    Theorem 4.1. Let \vartheta: (a, b)\rightarrow E^{1} be differentiable FVF denoted by:

    \begin{align*} [\vartheta(\mathfrak{t})]^{\mathfrak{p}} = [\vartheta_{1(\mathfrak{p})}(\mathfrak{t}),\vartheta_{2(\mathfrak{p})}(\mathfrak{t})]. \end{align*}

    Then the lower and upper FVFs \vartheta_{1(\mathfrak{p})}(\mathfrak{t})\; {\rm and}\; \vartheta_{2(\mathfrak{p})}(\mathfrak{t}) are differentiable and

    \begin{align*} [\vartheta^{(iv)}(\mathfrak{t})]^{\mathfrak{p}} = [\vartheta^{(iv)}_{1(\mathfrak{p})}(\mathfrak{t}),\vartheta^{(iv)}_{2(\mathfrak{p})}(\mathfrak{t})],\; \; \mathfrak{p}\in [0,1]. \end{align*}

    Consider the fourth-order FIVP

    \begin{equation} \begin{cases} \vartheta^{(iv)}(\mathfrak{t}) = \mathfrak{f}\big(\mathfrak{t}, \vartheta(\mathfrak{t}), \vartheta^{'}(\mathfrak{t}), \vartheta^{''}(\mathfrak{t}), \vartheta^{'''}(\mathfrak{t})\big),\\ \vartheta(\mathfrak{t}_{0}) = (\vartheta_{1(\mathfrak{p})}(\mathfrak{t}_{0}), \vartheta_{2(\mathfrak{p})}(\mathfrak{t}_{0})),\\ \vartheta^{'}(\mathfrak{t}_{0}) = (\vartheta^{'}_{1(\mathfrak{p})}(\mathfrak{t}_{0}), \vartheta^{'}_{2(\mathfrak{p})}(\mathfrak{t}_{0})),\\ \vartheta^{''}(\mathfrak{t}_{0}) = (\vartheta^{''}_{1(\mathfrak{p})}(\mathfrak{t}_{0}), \vartheta^{''}_{2(\mathfrak{p})}(\mathfrak{t}_{0})),\\ \vartheta^{'''}(\mathfrak{t}_{0}) = (\vartheta^{'''}_{1(\mathfrak{p})}(\mathfrak{t}_{0}), \vartheta^{'''}_{2(\mathfrak{p})}(\mathfrak{t}_{0})), \end{cases} \end{equation} (4.8)

    where \mathfrak{f}:[\mathfrak{t}_{0}, \mathfrak{t}_{0}+a]\times E^{1}\rightarrow E^{1} and \vartheta(\mathfrak{t}_{0}), \vartheta^{'}(\mathfrak{t}_{0}), \vartheta^{''}(\mathfrak{t}_{0}), \vartheta^{'''}(\mathfrak{t}_{0}) \in E^{1} are expressed in \mathfrak{p}- cut form. Then we can construct a way how to translate the FIVP (4.8) into a system of ODEs.

    Let [\vartheta(\mathfrak{t})]^{\mathfrak{p}} = [\vartheta_{1(\mathfrak{p})}(\mathfrak{t}), \vartheta_{2(\mathfrak{p})}(\mathfrak{t})] . If \vartheta(\mathfrak{t}) is H-differentiable then [\vartheta^{(iv)}(\mathfrak{t})]^{\mathfrak{p}} = [\vartheta^{(iv)}_{1(\mathfrak{p})}(\mathfrak{t}), \vartheta^{(iv)}_{2(\mathfrak{p})}(\mathfrak{t})], \; \; \mathfrak{p}\in [0, 1] . So FIVP (4.8) converts into following system of ODEs:

    \begin{equation} \begin{cases} \vartheta^{(iv)}_{1(\mathfrak{p})}(\mathfrak{t}) = \mathfrak{f}_{1(\mathfrak{p})}(\mathfrak{t}, \vartheta_{1(\mathfrak{p})}(\mathfrak{t}),\vartheta_{2(\mathfrak{p})}(\mathfrak{t}), \vartheta^{'}_{1(\mathfrak{p})}(\mathfrak{t}), \vartheta^{'}_{2(\mathfrak{p})}(\mathfrak{t}), \vartheta^{''}_{1(\mathfrak{p})}(\mathfrak{t}), \vartheta^{''}_{2(\mathfrak{p})}(\mathfrak{t}), \vartheta^{'''}_{1(\mathfrak{p})}(\mathfrak{t}), \vartheta^{'''}_{2(\mathfrak{p})}(\mathfrak{t})),\\\\ \vartheta^{(iv)}_{2(\mathfrak{p})}(\mathfrak{t}) = \mathfrak{f}_{2(\mathfrak{p})}(\mathfrak{t}, \vartheta_{1(\mathfrak{p})}(\mathfrak{t}),\vartheta_{2(\mathfrak{p})}(\mathfrak{t}), \vartheta^{'}_{1(\mathfrak{p})}(\mathfrak{t}), \vartheta^{'}_{2(\mathfrak{p})}(\mathfrak{t}), \vartheta^{''}_{1(\mathfrak{p})}(\mathfrak{t}), \vartheta^{''}_{2(\mathfrak{p})}(\mathfrak{t}), \vartheta^{'''}_{1(\mathfrak{p})}(\mathfrak{t}), \vartheta^{'''}_{2(\mathfrak{p})}(\mathfrak{t})),\\\\ \end{cases} \end{equation} (4.9)

    where,

    \begin{align*} [\mathfrak{f}(\mathfrak{t},\vartheta)]^{\mathfrak{p}} = \big[\mathfrak{f}_{1(\mathfrak{p})}(\mathfrak{t}, \vartheta_{1(\mathfrak{p})}(\mathfrak{t}),\vartheta_{2(\mathfrak{p})}(\mathfrak{t}), \vartheta^{'}_{1(\mathfrak{p})}(\mathfrak{t}), \vartheta^{'}_{2(\mathfrak{p})}(\mathfrak{t}), \vartheta^{''}_{1(\mathfrak{p})}(\mathfrak{t}), \vartheta^{''}_{2(\mathfrak{p})}(\mathfrak{t}), \vartheta^{'''}_{1(\mathfrak{p})}(\mathfrak{t}), \vartheta^{'''}_{2(\mathfrak{p})}(\mathfrak{t})),\\ \mathfrak{f}_{2(\mathfrak{p})}(\mathfrak{t}, \vartheta_{1(\mathfrak{p})}(\mathfrak{t}),\vartheta_{2(\mathfrak{p})}(\mathfrak{t}), \vartheta^{'}_{1(\mathfrak{p})}(\mathfrak{t}), \vartheta^{'}_{2(\mathfrak{p})}(\mathfrak{t}), \vartheta^{''}_{1(\mathfrak{p})}(\mathfrak{t}), \vartheta^{''}_{2(\mathfrak{p})}(\mathfrak{t}), \vartheta^{'''}_{1(\mathfrak{p})}(\mathfrak{t}), \vartheta^{'''}_{2(\mathfrak{p})}(\mathfrak{t}))\big]. \end{align*}

    Then in [4], Kaleva states that if we ensure that the solution (\vartheta_{1(\mathfrak{p})}(\mathfrak{t}), \vartheta_{2(\mathfrak{p})}(\mathfrak{t})) of the system (4.9) are valid level sets of a fuzzy number valued function and if the derivatives (\vartheta^{'}_{1(\mathfrak{p})}(\mathfrak{t}), \vartheta^{'}_{2(\mathfrak{p})}(\mathfrak{t})) , (\vartheta^{''}_{1(\mathfrak{p})}(\mathfrak{t}), \vartheta^{''}_{2(\mathfrak{p})}(\mathfrak{t})) and (\vartheta^{'''}_{1(\mathfrak{p})}(\mathfrak{t}), \vartheta^{'''}_{2(\mathfrak{p})}(\mathfrak{t})) are accurate level sets of a FVF, then we can extract the solution of the FIVP (4.8).

    In this section, we solve some examples as the applications of fourth-order fuzzy initial value problem to examine the validity of our proposed method. To this end, first, we solve a detail example discussing all the sixteen cases according to the type of differentiability of FVF and its Laplace transform. Other example is solved about switching points.

    Example 5.1. Consider FIVP

    \begin{equation} \begin{cases} \vartheta^{(iv)}+\vartheta& = (\mathfrak{p},2-\mathfrak{p})\; \; {\rm and}\; \; \mathfrak{p}\in [0,1],\\ \vartheta(0)& = (\mathfrak{p}-1,1-\mathfrak{p}),\\ \vartheta^{'}(0)& = (\mathfrak{p}-1,1-\mathfrak{p}),\\ \vartheta^{''}(0)& = (\mathfrak{p}-1,1-\mathfrak{p}),\\ \vartheta^{'''}(0)& = (\mathfrak{p}-1,1-\mathfrak{p}). \end{cases} \end{equation} (5.1)

    \rm(1) If \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable, then using Definition 3.1 and Theorem 3.3 we have:

    \begin{align*} [\vartheta^{'}_{(ı)}(\mathfrak{t})]^{\mathfrak{p}} = [{\vartheta}_{1(\mathfrak{p})}^{'}(\mathfrak{t}),{\vartheta}_{2(\mathfrak{p})}^{'}(\mathfrak{t})],\; \; [\vartheta^{''}_{(ı)}(\mathfrak{t})]^{\mathfrak{p}} = [{\vartheta}_{1(\mathfrak{p})}^{''}(\mathfrak{t}),{\vartheta}_{2(\mathfrak{p})}^{''}(\mathfrak{t})],\\ [\vartheta^{'''}_{(ı)}(\mathfrak{t})]^{\mathfrak{p}} = [{\vartheta}_{1(\mathfrak{p})}^{'''}(\mathfrak{t}),{\vartheta}_{2(\mathfrak{p})}^{'''}(\mathfrak{t})], [\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]^{\mathfrak{p}} = [{\vartheta}_{1(\mathfrak{p})}^{(iv)}(\mathfrak{t}),{\vartheta}_{2(\mathfrak{p})}^{(iv)}(\mathfrak{t})] \end{align*}

    and

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})] = (r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus (r^{3})[\vartheta(0)] \ominus (r^{2})[\vartheta^{'}_{(ı)}(0)] \ominus (r)[\vartheta^{''}_{(ı)}(0)] \ominus [\vartheta^{'''}_{(ı)}(0)]. \end{align*}

    System (5.1) implies that:

    \begin{align} \begin{cases} {\vartheta}^{iv}_{1(\mathfrak{p})}(\mathfrak{t})+{\vartheta}_{1} = \mathfrak{p},\; \; {\vartheta}^{iv}_{2(\mathfrak{p})}(\mathfrak{t})+{\vartheta}_{1} = 2-\mathfrak{p}. \end{cases} \end{align} (5.2)

    Applying Laplace transform on both sides of Eq (5.2), we get:

    \begin{align*} \mathfrak{L}[{\vartheta}^{iv}_{1(\mathfrak{p})}(\mathfrak{t})]+\mathfrak{L}[{\vartheta}_{1}] = \dfrac{\mathfrak{p}}{r},\; \; \mathfrak{L}[{\vartheta}^{iv}_{2(\mathfrak{p})}(\mathfrak{t})]+\mathfrak{L}[{\vartheta}_{2}] = \dfrac{2-\mathfrak{p}}{r}. \end{align*}

    After simplification, we have:

    \begin{align} \begin{cases} \mathfrak{L}[{\vartheta}_{1(\mathfrak{p})}(\mathfrak{t})] = \dfrac{\mathfrak{p}}{r(r^{4}+1)}+\dfrac{r^{3}(\mathfrak{p}-1)}{r^{4}+1}+\dfrac{r^{2}(\mathfrak{p}-1)}{r^{4}+1}+\dfrac{r(\mathfrak{p}-1)}{r^{4}+1} +\dfrac{\mathfrak{p}-1}{r^{4}+1},\\\\ \mathfrak{L}[{\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})] = \dfrac{2-\mathfrak{p}}{r(r^{4}+1)}+\dfrac{r^{3}(1-\mathfrak{p})}{r^{4}+1}+\dfrac{r^{2}(1-\mathfrak{p})}{r^{4}+1}+\dfrac{r(1-\mathfrak{p})}{r^{4}+1} +\dfrac{1-\mathfrak{p}}{r^{4}+1}. \end{cases} \end{align} (5.3)

    Taking inverse laplace transform to system (5.3), it follows that:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}) = \mathfrak{p}[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]+(\mathfrak{p}-1)[E_{4,1}(-\mathfrak{t}^{4})+\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})+\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t}) = (2-\mathfrak{p})[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]+(1-\mathfrak{p})[E_{4,1}(-\mathfrak{t}^{4})+\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})+\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})]. \end{align*}

    \rm(2) If \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ı) -differentiable and \vartheta^{'''}(\mathfrak{t}) is (ıı) -differentiable, then Definition 3.1 yields that:

    \begin{align} {\vartheta}^{iv}_{2(\mathfrak{p})}(\mathfrak{t})+{\vartheta}_{1} = \mathfrak{p},\; \; {\vartheta}^{iv}_{1(\mathfrak{p})}(\mathfrak{t})+{\vartheta}_{2} = 2-\mathfrak{p}. \end{align} (5.4)

    Equation (5.4) implies that:

    \begin{align*} \mathfrak{L}[{\vartheta}^{iv}_{2(\mathfrak{p})}(\mathfrak{t})]+\mathfrak{L}[{\vartheta}_{1}] = \dfrac{\mathfrak{p}}{r},\; \; \mathfrak{L}[{\vartheta}^{iv}_{1(\mathfrak{p})}(\mathfrak{t})]+\mathfrak{L}[{\vartheta}_{2}] = \dfrac{2-\mathfrak{p}}{r}. \end{align*}

    Theorem 3.3 provides that:

    \begin{align} \begin{cases} r^{4}\mathfrak{L}[{\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})]+\mathfrak{L}[{\vartheta}_{1(\mathfrak{p})}(\mathfrak{t})] = \dfrac{\mathfrak{p}}{r}+r^{3}(1-\mathfrak{p})+r^{2}(1-\mathfrak{p})+r(1-\mathfrak{p})+(1-\mathfrak{p}),\\\\ r^{4}\mathfrak{L}[{\vartheta}_{1(\mathfrak{p})}(\mathfrak{t})]+\mathfrak{L}[{\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})] = \dfrac{2-\mathfrak{p}}{r}+r^{3}(\mathfrak{p}-1)+r^{2}(\mathfrak{p}-1)+r(\mathfrak{p}-1)+(\mathfrak{p}-1). \end{cases} \end{align} (5.5)

    System (5.5) concludes that:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t})& = (2-\mathfrak{p})[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]+(\mathfrak{p}-1)[E_{8,1}(\mathfrak{t}^{8})+\mathfrak{t}E_{8,2}(\mathfrak{t}^{8})+\mathfrak{t}^{2}E_{8,3}(\mathfrak{t}^{8})+\mathfrak{t}^{3}E_{8,4}(\mathfrak{t}^{8})]\\ &-\mathfrak{p}[\mathfrak{t}^{8}E_{8,9}(\mathfrak{t}^{8})]-(1-\mathfrak{p})[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})+\mathfrak{t}^{5}E_{8,6}(\mathfrak{t}^{8})+\mathfrak{t}^{6}E_{8,7}(\mathfrak{t}^{8})+\mathfrak{t}^{7}E_{8,8}(\mathfrak{t}^{8})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})& = \mathfrak{p}[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]+(1-\mathfrak{p})[E_{8,1}(\mathfrak{t}^{8})+\mathfrak{t}E_{8,2}(\mathfrak{t}^{8})+\mathfrak{t}^{2}E_{8,3}(\mathfrak{t}^{8})+\mathfrak{t}^{3}E_{8,4}(\mathfrak{t}^{8})]\\ &-(2-\mathfrak{p})[\mathfrak{t}^{8}E_{8,9}(\mathfrak{t}^{8})]-(\mathfrak{p}-1)[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})+\mathfrak{t}^{5}E_{8,6}(\mathfrak{t}^{8})+\mathfrak{t}^{6}E_{8,7}(\mathfrak{t}^{8})+\mathfrak{t}^{7}E_{8,8}(\mathfrak{t}^{8})]. \end{align*}
    Figure 1.  Representation of the fuzzy solution of FIVP under the consideration of cases (1) and (2).

    \rm(3) If \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable and \vartheta^{''}(\mathfrak{t}) is (ıı) -differentiable, then from Definition 3.1 and Theorem 3.3, we concludes that:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t})& = (2-\mathfrak{p})[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]+(\mathfrak{p}-1)[E_{8,1}(\mathfrak{t}^{8})+\mathfrak{t}E_{8,2}(\mathfrak{t}^{8})+\mathfrak{t}^{2}E_{8,3}(\mathfrak{t}^{8})-\mathfrak{t}^{7}E_{8,8}(\mathfrak{t}^{8})]\\ &-\mathfrak{p}[\mathfrak{t}^{8}E_{8,9}(\mathfrak{t}^{8})]+(1-\mathfrak{p})[\mathfrak{t}^{3}E_{8,4}(\mathfrak{t}^{8})-\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})-\mathfrak{t}^{5}E_{8,6}(\mathfrak{t}^{8})-\mathfrak{t}^{6}E_{8,7}(\mathfrak{t}^{8})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})& = \mathfrak{p}[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]+(1-\mathfrak{p})[E_{8,1}(\mathfrak{t}^{8})+\mathfrak{t}E_{8,2}(\mathfrak{t}^{8})+\mathfrak{t}^{2}E_{8,3}(\mathfrak{t}^{8})-\mathfrak{t}^{7}E_{8,8}(\mathfrak{t}^{8})]\\ &-(2-\mathfrak{p})[\mathfrak{t}^{8}E_{8,9}(\mathfrak{t}^{8})]+(\mathfrak{p}-1)[\mathfrak{t}^{3}E_{8,4}(\mathfrak{t}^{8})-\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})-\mathfrak{t}^{5}E_{8,6}(\mathfrak{t}^{8})-\mathfrak{t}^{6}E_{8,7}(\mathfrak{t}^{8})]. \end{align*}

    \rm(4) If \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) are (ı) -differentiable and \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable, then Definition 3.1 and Theorem 3.3 implies that:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}) = \mathfrak{p}[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]+(\mathfrak{p}-1)[E_{4,1}(-\mathfrak{t}^{4})+\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})+\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})]+(1-\mathfrak{p})[\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t}) = (2-\mathfrak{p})[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]+(1-\mathfrak{p})[E_{4,1}(-\mathfrak{t}^{4})+\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})+\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})]+(\mathfrak{p}-1)[\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})]. \end{align*}
    Figure 2.  Solution of FIVP under the consideration of (3) and (4).

    \rm(5) If \vartheta(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable and \vartheta^{'}(\mathfrak{t}) is (ıı) -differentiable, then using Definition 3.1 and Theorem 3.3 gives the solution of given FIVP as:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t})& = (2-\mathfrak{p})[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]+(\mathfrak{p}-1)[E_{8,1}(\mathfrak{t}^{8})+\mathfrak{t}E_{8,2}(\mathfrak{t}^{8})+\mathfrak{t}^{2}E_{8,3}(\mathfrak{t}^{8})-\mathfrak{t}^{6}E_{8,7}(\mathfrak{t}^{8})-\mathfrak{t}^{7}E_{8,8}(\mathfrak{t}^{8})]\\ &-\mathfrak{p}[\mathfrak{t}^{8}E_{8,9}(\mathfrak{t}^{8})]+(1-\mathfrak{p})[\mathfrak{t}^{3}E_{8,4}(\mathfrak{t}^{8})-\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})-\mathfrak{t}^{5}E_{8,6}(\mathfrak{t}^{8})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})& = \mathfrak{p}[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]+(1-\mathfrak{p})[E_{8,1}(\mathfrak{t}^{8})+\mathfrak{t}E_{8,2}(\mathfrak{t}^{8})+\mathfrak{t}^{2}E_{8,3}(\mathfrak{t}^{8})-\mathfrak{t}^{6}E_{8,7}(\mathfrak{t}^{8})-\mathfrak{t}^{7}E_{8,8}(\mathfrak{t}^{8})]\\ &-(2-\mathfrak{p})[\mathfrak{t}^{8}E_{8,9}(\mathfrak{t}^{8})]+(\mathfrak{p}-1)[\mathfrak{t}^{3}E_{8,4}(\mathfrak{t}^{8})-\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})-\mathfrak{t}^{5}E_{8,6}(\mathfrak{t}^{8})]. \end{align*}

    \rm(6) If \vartheta(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable, then Definition 3.1 and Theorem 3.3 implies that:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}) = \mathfrak{p}[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]+(\mathfrak{p}-1)[E_{4,1}(-\mathfrak{t}^{4})+\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})]+(1-\mathfrak{p})[\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t}) = (2-\mathfrak{p})[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]+(1-\mathfrak{p})[E_{4,1}(-\mathfrak{t}^{4})+\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})]+(\mathfrak{p}-1)[\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})]. \end{align*}
    Figure 3.  Fuzzy solution of FIVP under the consideration of (5) and (6).

    \rm(7) If \vartheta(\mathfrak{t}) is (ı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable, then from Definition 3.1 and Theorem 3.3, it follows that:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t})& = (2-\mathfrak{p})[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]+(\mathfrak{p}-1)[E_{8,1}(\mathfrak{t}^{8})+\mathfrak{t}E_{8,2}(\mathfrak{t}^{8})+\mathfrak{t}^{3}E_{8,4}(\mathfrak{t}^{8})-\mathfrak{t}^{6}E_{8,7}(\mathfrak{t}^{8})]\\ &-\mathfrak{p}[\mathfrak{t}^{8}E_{8,9}(\mathfrak{t}^{8})]+(1-\mathfrak{p})[+\mathfrak{t}^{2}E_{8,3}(\mathfrak{t}^{8})-\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})-\mathfrak{t}^{5}E_{8,6}(\mathfrak{t}^{8})-\mathfrak{t}^{7}E_{8,8}(\mathfrak{t}^{8})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})& = \mathfrak{p}[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]+(1-\mathfrak{p})[E_{8,1}(\mathfrak{t}^{8})+\mathfrak{t}E_{8,2}(\mathfrak{t}^{8})+\mathfrak{t}^{3}E_{8,4}(\mathfrak{t}^{8})-\mathfrak{t}^{6}E_{8,7}(\mathfrak{t}^{8})]\\ &-(2-\mathfrak{p})[\mathfrak{t}^{8}E_{8,9}(\mathfrak{t}^{8})]+(\mathfrak{p}-1)[+\mathfrak{t}^{2}E_{8,3}(\mathfrak{t}^{8})-\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})-\mathfrak{t}^{5}E_{8,6}(\mathfrak{t}^{8})-\mathfrak{t}^{7}E_{8,8}(\mathfrak{t}^{8})]. \end{align*}

    \rm(8) If \vartheta(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ıı) -differentiable, then Definition 3.1 and Theorem 3.3 provides that:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}) = \mathfrak{p}[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]+(\mathfrak{p}-1)[E_{4,1}(-\mathfrak{t}^{4})+\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})]+(1-\mathfrak{p})[\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t}) = (2-\mathfrak{p})[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]+(1-\mathfrak{p})[E_{4,1}(-\mathfrak{t}^{4})+\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})]+(\mathfrak{p}-1)[\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})]. \end{align*}
    Figure 4.  Solution of FIVP under the consideration of (7) and (8).

    \rm(9) If \vartheta(\mathfrak{t}) is (ıı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable, then using Definition 3.1 and Theorem 3.3, we get:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t})& = (2-\mathfrak{p})[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]+(\mathfrak{p}-1)[E_{8,1}(\mathfrak{t}^{8})-\mathfrak{t}^{5}E_{8,6}(\mathfrak{t}^{8})-\mathfrak{t}^{6}E_{8,7}(\mathfrak{t}^{8})-\mathfrak{t}^{7}E_{8,8}(\mathfrak{t}^{8})]\\ &-\mathfrak{p}[\mathfrak{t}^{8}E_{8,9}(\mathfrak{t}^{8})]+(1-\mathfrak{p})[\mathfrak{t}E_{8,2}(\mathfrak{t}^{8})+\mathfrak{t}^{2}E_{8,3}(\mathfrak{t}^{8})+\mathfrak{t}^{3}E_{8,4}(\mathfrak{t}^{8})-\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})& = \mathfrak{p}[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]+(1-\mathfrak{p})[E_{8,1}(\mathfrak{t}^{8})-\mathfrak{t}^{5}E_{8,6}(\mathfrak{t}^{8})-\mathfrak{t}^{6}E_{8,7}(\mathfrak{t}^{8})-\mathfrak{t}^{7}E_{8,8}(\mathfrak{t}^{8})]\\ &-(2-\mathfrak{p})[\mathfrak{t}^{8}E_{8,9}(\mathfrak{t}^{8})]+(\mathfrak{p}-1)[\mathfrak{t}E_{8,2}(\mathfrak{t}^{8})+\mathfrak{t}^{2}E_{8,3}(\mathfrak{t}^{8})+\mathfrak{t}^{3}E_{8,4}(\mathfrak{t}^{8})-\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]. \end{align*}

    \rm(10) If \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable, then Definition 3.1 and Theorem 3.3 provides the following solution:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}) = \mathfrak{p}[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]+(\mathfrak{p}-1)[E_{4,1}(-\mathfrak{t}^{4})+\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})]+(1-\mathfrak{p})[\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t}) = (2-\mathfrak{p})[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]+(1-\mathfrak{p})[E_{4,1}(-\mathfrak{t}^{4})+\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})]+(\mathfrak{p}-1)[\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})]. \end{align*}
    Figure 5.  Graphical representation of the fuzzy solution determined by (9) and (10).

    \rm(11) If \vartheta(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable, then from Definition 3.1 and Theorem 3.3, we have:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}) = \mathfrak{p}[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]+(\mathfrak{p}-1)[E_{4,1}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})]+(1-\mathfrak{p})[\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})+\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t}) = (2-\mathfrak{p})[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]+(1-\mathfrak{p})[E_{4,1}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})]+(\mathfrak{p}-1)[\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})+\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})]. \end{align*}

    \rm(12) If \vartheta(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ı) -differentiable, then Definition 3.1 and Theorem 3.3 implies that:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}) = \mathfrak{p}[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]+(\mathfrak{p}-1)[E_{4,1}(-\mathfrak{t}^{4})]+(1-\mathfrak{p})[\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})+\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t}) = (2-\mathfrak{p})[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]+(1-\mathfrak{p})[E_{4,1}(-\mathfrak{t}^{4})]+(\mathfrak{p}-1)[\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})+\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})]. \end{align*}
    Figure 6.  Solution of FIVP under the consideration of (11) and (12).

    \rm(13) If \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable, then using Definition 3.1 and Theorem 3.3, we get:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}) = \mathfrak{p}[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]+(\mathfrak{p}-1)[E_{4,1}(-\mathfrak{t}^{4})+\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})]+(1-\mathfrak{p})[\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t}) = (2-\mathfrak{p})[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]+(1-\mathfrak{p})[E_{4,1}(-\mathfrak{t}^{4})+\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})]+(\mathfrak{p}-1)[\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})]. \end{align*}

    \rm(14) If \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{''}(\mathfrak{t}) is (ı) -differentiable, then Definition 3.1 and Theorem 3.3 implies that:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t})& = (2-\mathfrak{p})[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]+(\mathfrak{p}-1)[E_{8,1}(\mathfrak{t}^{8})+\mathfrak{t}^{2}E_{8,3}(\mathfrak{t}^{8})+\mathfrak{t}^{3}E_{8,4}(\mathfrak{t}^{8})-\mathfrak{t}^{5}E_{8,6}(\mathfrak{t}^{8})]\\ &-\mathfrak{p}[\mathfrak{t}^{8}E_{8,9}(\mathfrak{t}^{8})]+(1-\mathfrak{p})[\mathfrak{t}E_{8,2}(\mathfrak{t}^{8})-\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})-\mathfrak{t}^{6}E_{8,7}(\mathfrak{t}^{8})-\mathfrak{t}^{7}E_{8,8}(\mathfrak{t}^{8})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})& = \mathfrak{p}[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]+(1-\mathfrak{p})[E_{8,1}(\mathfrak{t}^{8})+\mathfrak{t}^{2}E_{8,3}(\mathfrak{t}^{8})+\mathfrak{t}^{3}E_{8,4}(\mathfrak{t}^{8})-\mathfrak{t}^{5}E_{8,6}(\mathfrak{t}^{8})]\\ &-(2-\mathfrak{p})[\mathfrak{t}^{8}E_{8,9}(\mathfrak{t}^{8})]+(\mathfrak{p}-1)[\mathfrak{t}E_{8,2}(\mathfrak{t}^{8})-\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})-\mathfrak{t}^{6}E_{8,7}(\mathfrak{t}^{8})-\mathfrak{t}^{7}E_{8,8}(\mathfrak{t}^{8})]. \end{align*}
    Figure 7.  Representation of the fuzzy solution under the consideration (13) and (14).

    \rm(15) If \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{'''}(\mathfrak{t}) is (ı) -differentiable, then Definition 3.1 and Theorem 3.3 gives:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t})& = (2-\mathfrak{p})[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]+(\mathfrak{p}-1)[E_{8,1}(\mathfrak{t}^{8})+\mathfrak{t}^{2}E_{8,3}(\mathfrak{t}^{8})-\mathfrak{t}^{5}E_{8,6}(\mathfrak{t}^{8})-\mathfrak{t}^{7}E_{8,8}(\mathfrak{t}^{8})]\\ &-\mathfrak{p}[\mathfrak{t}^{8}E_{8,9}(\mathfrak{t}^{8})]+(1-\mathfrak{p})[\mathfrak{t}E_{8,2}(\mathfrak{t}^{8})+\mathfrak{t}^{3}E_{8,4}(\mathfrak{t}^{8})-\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})-\mathfrak{t}^{6}E_{8,7}(\mathfrak{t}^{8})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})& = \mathfrak{p}[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]+(1-\mathfrak{p})[E_{8,1}(\mathfrak{t}^{8})+\mathfrak{t}^{2}E_{8,3}(\mathfrak{t}^{8})-\mathfrak{t}^{5}E_{8,6}(\mathfrak{t}^{8})-\mathfrak{t}^{7}E_{8,8}(\mathfrak{t}^{8})]\\ &-(2-\mathfrak{p})[\mathfrak{t}^{8}E_{8,9}(\mathfrak{t}^{8})]+(\mathfrak{p}-1)[\mathfrak{t}E_{8,2}(\mathfrak{t}^{8})+\mathfrak{t}^{3}E_{8,4}(\mathfrak{t}^{8})-\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})-\mathfrak{t}^{6}E_{8,7}(\mathfrak{t}^{8})]. \end{align*}

    \rm(16) If \vartheta(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{'}(\mathfrak{t}) is (ı) -differentiable, then from Definition 3.1 and Theorem 3.3, it follows that:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t})& = (2-\mathfrak{p})[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]+(\mathfrak{p}-1)[E_{8,1}(\mathfrak{t}^{8})+\mathfrak{t}^{3}E_{8,4}(\mathfrak{t}^{8})-\mathfrak{t}^{5}E_{8,6}(\mathfrak{t}^{8})-\mathfrak{t}^{6}E_{8,7}(\mathfrak{t}^{8})]\\ &-\mathfrak{p}[\mathfrak{t}^{8}E_{8,9}(\mathfrak{t}^{8})]+(1-\mathfrak{p})[\mathfrak{t}E_{8,2}(\mathfrak{t}^{8})+\mathfrak{t}^{2}E_{8,3}(\mathfrak{t}^{8})-\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})-\mathfrak{t}^{7}E_{8,8}(\mathfrak{t}^{8})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})& = \mathfrak{p}[\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})]+(1-\mathfrak{p})[E_{8,1}(\mathfrak{t}^{8})+\mathfrak{t}^{3}E_{8,4}(\mathfrak{t}^{8})-\mathfrak{t}^{5}E_{8,6}(\mathfrak{t}^{8})-\mathfrak{t}^{6}E_{8,7}(\mathfrak{t}^{8})]\\ &-(2-\mathfrak{p})[\mathfrak{t}^{8}E_{8,9}(\mathfrak{t}^{8})]+(\mathfrak{p}-1)[\mathfrak{t}E_{8,2}(\mathfrak{t}^{8})+\mathfrak{t}^{2}E_{8,3}(\mathfrak{t}^{8})-\mathfrak{t}^{4}E_{8,5}(\mathfrak{t}^{8})-\mathfrak{t}^{7}E_{8,8}(\mathfrak{t}^{8})]. \end{align*}
    Figure 8.  Solution of FIVP under the consideration of (15) and (16).

    All the plots are nearly identical in their behaviors represented by Figures 18. The plots represent the fuzzy solution of fourth-order fuzzy initial value problem. At every point in the domain, the solution is a fuzzy function and the fourth-order fuzzy initial value problem has strong links to the model features.

    Example 5.2. Consider following fourth-order FIVP

    \begin{align} \begin{cases} \vartheta^{(iv)}(\mathfrak{t})+\vartheta(\mathfrak{t})& = (\mathfrak{p}+2, 4-\mathfrak{p})\mathfrak{t},\\ \vartheta(0)& = (1+\mathfrak{p},3-\mathfrak{p}),\\ \vartheta^{'}(0)& = (1+\mathfrak{p},3-\mathfrak{p}),\\ \vartheta^{''}(0)& = (1+\mathfrak{p},3-\mathfrak{p}),\\ \vartheta^{'''}(0)& = (1+\mathfrak{p},3-\mathfrak{p}). \end{cases} \end{align} (5.6)

    Let us consider the crisp problem corresponding to system (5.6) to identify the behavior of the solution. The corresponding crisp problem is given by:

    \begin{align} \begin{cases} \vartheta^{(iv)}(\mathfrak{t})+\vartheta(\mathfrak{t}) = 3\mathfrak{t},\\ \vartheta(0) = 2, \; \; \vartheta^{'}(0) = 2,\\ \vartheta^{''}(0) = 2, \; \; \vartheta^{'''}(0) = 2. \end{cases} \end{align} (5.7)

    The analytical solution of the system (5.7) is determined as:

    \begin{align} \vartheta(\mathfrak{t}) = \frac{1}{4}e^{-\mathfrak{t}/ \sqrt{2}}\big(12e^{\mathfrak{t}/ \sqrt{2}}\mathfrak{t}+(4+ \sqrt{2})e^{\sqrt{2}\mathfrak{t}}-4+\sqrt{2}\big) \sin\bigg(\frac{\mathfrak{t}}{\sqrt{2}}\bigg)+\big((4-3\sqrt{2})e^{\sqrt{2}\mathfrak{t}}+4+3\sqrt{2}\big)\cos\bigg(\frac{\mathfrak{t}}{\sqrt{2}}\bigg). \end{align} (5.8)

    Before finding out the fuzzy solution of the given FIVP, we first determine the switching points of the crisp solution. For this sake, the graph of \vartheta(\mathfrak{t}) and its derivatives up to fourth-order is as follows:

    Figure 9.  Graph of \vartheta(\mathfrak{t}) and its fourth-order derivatives.

    The graph of Figure 9 indicates that \vartheta(\mathfrak{t}) . \vartheta^{'}(\mathfrak{t}) > 0 and \vartheta^{'}(\mathfrak{t}). \vartheta^{''}(\mathfrak{t}) < 0 for \mathfrak{t}\in [\frac{6\pi}{8}, \frac{9\pi}{8}] . This shows that \vartheta(\mathfrak{t}) is (ı) -differentiable and \vartheta^{'}(\mathfrak{t}) is (ıı) -differentiable. Similarly we can easily check that \vartheta^{''}(\mathfrak{t}) is (ıı) -differentiable and \vartheta^{'''}(\mathfrak{t}) is (ı) -differentiable for \mathfrak{t}\in [\frac{6\pi}{8}, \frac{9\pi}{8}] . Thus the solution is switched for \mathfrak{t} > \frac{9\pi}{8} .

    Now we evaluate the fuzzy solution of the given FIVP (5.6) corresponding to the switching point.

    If \vartheta(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ıı) -differentiable, then Definition 3.1 provides that:

    \begin{align} {\vartheta}^{iv}_{1(\mathfrak{p})}(\mathfrak{t})+{\vartheta}_{1}(\mathfrak{t}) = (\mathfrak{p}+2)\mathfrak{t},\; \; {\vartheta}^{iv}_{2(\mathfrak{p})}(\mathfrak{t})+{\vartheta}_{2}(\mathfrak{t}) = (4-\mathfrak{p})\mathfrak{t}. \end{align} (5.9)

    Equation (5.9) gives:

    \begin{align*} \mathfrak{L}[{\vartheta}^{iv}_{1(\mathfrak{p})}(\mathfrak{t})]+\mathfrak{L}[{\vartheta}_{1}(\mathfrak(h))] = \dfrac{\mathfrak{p}+2}{r^{2}},\; \; \mathfrak{L}[{\vartheta}^{iv}_{2(\mathfrak{p})}(\mathfrak{t})]+\mathfrak{L}[{\vartheta}_{2}(\mathfrak{t})] = \dfrac{4-\mathfrak{p}}{r^{2}}. \end{align*}

    From Theorem 3.3, it follows that:

    \begin{align} \begin{cases} \mathfrak{L}[{\vartheta}_{1(\mathfrak{p})}(\mathfrak{t})] = \dfrac{\mathfrak{p}+2}{r^{2}(r^{4}+1)}+(1+\mathfrak{p})\bigg[\dfrac{r^{3}}{r^{4}+1}+\dfrac{r^{2}}{r^{4}+1}+\dfrac{1}{r^{4}+1}\bigg] +(3-\mathfrak{p})\bigg[\dfrac{r}{r^{4}+1}\bigg],\\\\ \mathfrak{L}[{\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})] = \dfrac{4-\mathfrak{p}}{r^{2}(r^{4}+1)}+(3-\mathfrak{p})\bigg[\dfrac{r^{3}}{r^{4}+1}+\dfrac{r^{2}}{r^{4}+1}+\dfrac{1}{r^{4}+1}\bigg] +(1+\mathfrak{p})\bigg[\dfrac{r}{r^{4}+1}\bigg]. \end{cases} \end{align} (5.10)

    From system (5.10), we have:

    \begin{align*} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}) = (\mathfrak{p}+2)[\mathfrak{t}^{5}E_{4,6}(-\mathfrak{t}^{5})]+(1+\mathfrak{p})[E_{4,1}(-\mathfrak{t}^{4})+\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})]+(3-\mathfrak{p})[\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})] \end{align*}

    and

    \begin{align*} {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t}) = (4-\mathfrak{p})[\mathfrak{t}^{5}E_{4,6}(-\mathfrak{t}^{5})]+(3-\mathfrak{p})[E_{4,1}(-\mathfrak{t}^{4})+\mathfrak{t}E_{4,2}(-\mathfrak{t}^{4})+\mathfrak{t}^{3}E_{4,4}(-\mathfrak{t}^{4})]+(1+\mathfrak{p})[\mathfrak{t}^{2}E_{4,3}(-\mathfrak{t}^{4})]. \end{align*}
    Figure 10.  Solution of FIVP corresponding to switching point.

    Figure 10 represents the fuzzy solution of FIVP (5.6) corresponding to the switching point analyzed by Figure 9.

    Remark 5.1. The FIVPs may have more than one switching point that can be easily evaluated using the method which is mentioned in the Example 5.2.

    This section presents a real-world application of fourth-order FIVP by Laplace transform method in RL circuit (Resistance-Inductance circuit) with an AC source. The mathematical modelling of RL circuit can be defined by means of fuzzy differential equation. Environmental conditions, inaccuracy in element modeling, electrical noise, leakage, and other parameters cause uncertainty or vagueness in the RL circuit differential equation. The RL circuit is expressed by means of following fuzzy initial value problem

    \begin{align} \begin{cases} \vartheta^{(iv)}(\mathfrak{t})+\dfrac{R}{L}\vartheta(\mathfrak{t}) = \nu(\mathfrak{t}),\\ \vartheta(0) = 0, \; \; \vartheta^{'}(0) = 0,\\ \vartheta^{''}(0) = 0, \; \; \vartheta^{'''}(0) = 0, \end{cases} \end{align} (5.11)

    where \vartheta(\mathfrak{t}) represents the current in RL circuit, R is circuit resistance, L is the coefficient corresponding to the solenoid, and \nu = (\nu_{1(\mathfrak{p})}, \nu_{2(\mathfrak{p})}) is the uncertain voltage function. The solution of our proposed model expressed by system (5.11) can be evaluated using Definition 3.1 and Theorem 3.3 as under:

    Assume that \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable, then using Definition 3.1 and Theorem 3.3 we have:

    \begin{align*} [\vartheta^{'}_{(ı)}(\mathfrak{t})]^{\mathfrak{p}} = [{\vartheta}_{1(\mathfrak{p})}^{'}(\mathfrak{t}),{\vartheta}_{2(\mathfrak{p})}^{'}(\mathfrak{t})],\; \; [\vartheta^{''}_{(ı)}(\mathfrak{t})]^{\mathfrak{p}} = [{\vartheta}_{1(\mathfrak{p})}^{''}(\mathfrak{t}),{\vartheta}_{2(\mathfrak{p})}^{''}(\mathfrak{t})],\\ [\vartheta^{'''}_{(ı)}(\mathfrak{t})]^{\mathfrak{p}} = [{\vartheta}_{1(\mathfrak{p})}^{'''}(\mathfrak{t}),{\vartheta}_{2(\mathfrak{p})}^{'''}(\mathfrak{t})], [\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]^{\mathfrak{p}} = [{\vartheta}_{1(\mathfrak{p})}^{(iv)}(\mathfrak{t}),{\vartheta}_{2(\mathfrak{p})}^{(iv)}(\mathfrak{t})] \end{align*}

    and

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})] = (r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus (r^{3})[\vartheta(0)] \ominus (r^{2})[\vartheta^{'}_{(ı)}(0)] \ominus (r)[\vartheta^{''}_{(ı)}(0)] \ominus [\vartheta^{'''}_{(ı)}(0)]. \end{align*}

    System (5.11) implies that:

    \begin{align} \begin{cases} {\vartheta}^{iv}_{1(\mathfrak{p})}(\mathfrak{t})+\dfrac{R}{L}{\vartheta}_{1} = \nu_{1(\mathfrak{p})}(\mathfrak{t}),\; \; {\vartheta}^{iv}_{2(\mathfrak{p})}(\mathfrak{t})+\dfrac{R}{L}{\vartheta}_{1} = \nu_{2(\mathfrak{p})}(\mathfrak{t}). \end{cases} \end{align} (5.12)

    Applying Laplace transform on both sides of Eq (5.12), we get:

    \begin{align*} \mathfrak{L}[{\vartheta}^{iv}_{1(\mathfrak{p})}(\mathfrak{t})]+\dfrac{R}{L}\mathfrak{L}[{\vartheta}_{1}] = \dfrac{\nu_{1(\mathfrak{p})}(\mathfrak{t})}{r},\; \; \mathfrak{L}[{\vartheta}^{iv}_{2(\mathfrak{p})}(\mathfrak{t})]+\dfrac{R}{L}\mathfrak{L}[{\vartheta}_{2}] = \dfrac{\nu_{2(\mathfrak{p})}(\mathfrak{t})}{r}. \end{align*}

    After simplification, we have:

    \begin{align} \begin{cases} \mathfrak{L}[{\vartheta}_{1(\mathfrak{p})}(\mathfrak{t})] = \dfrac{\nu_{1(\mathfrak{p})}}{r(r^{4}+\frac{R}{L})},\\\\ \mathfrak{L}[{\vartheta}_{2(\mathfrak{p})}(\mathfrak{t})] = \dfrac{\nu_{2(\mathfrak{p})}}{r(r^{4}+\frac{R}{L})}. \end{cases} \end{align} (5.13)

    Taking inverse laplace transform to system (5.13), it follows that:

    \begin{align} \begin{cases} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}) = \nu_{1(\mathfrak{p})}[\mathfrak{t}^{4}E_{4,5}(-\frac{R}{L}\mathfrak{t}^{4})],\\\\ {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t}) = \nu_{2(\mathfrak{p})}[\mathfrak{t}^{4}E_{4,5}(-\frac{R}{L}\mathfrak{t}^{4})]. \end{cases} \end{align} (5.14)

    The fuzzy solution to fuzzy RL circuit initial value problem is expressed by system (5.14).

    Consider R = 1 Ohm, L = 1 Henry and \nu(\mathfrak{t}) = (\nu_{1(\mathfrak{p})}, \nu_{2(\mathfrak{p})}) = (1+\mathfrak{p}, 3-\mathfrak{p}) in system (5.14). Then the fuzzy solution of system (5.11) according to the type of differentiability is determined as:

    \begin{align} \begin{cases} {\vartheta}_{1(\mathfrak{p})}(\mathfrak{t}) = (1+\mathfrak{p})[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})],\\ {\vartheta}_{2(\mathfrak{p})}(\mathfrak{t}) = (3-\mathfrak{p})[\mathfrak{t}^{4}E_{4,5}(-\mathfrak{t}^{4})]. \end{cases} \end{align} (5.15)
    Figure 11.  Solution of FIVP in RL circuit.

    Figure 11 represents the fuzzy solution of RL circuit as an application of fourth-order fuzzy initial value problem using Laplace transform.

    Evaluating exact solution to fuzzy ordinary differential equations (FODEs) using common techniques is considered a very hectic task. To overcome this difficulty, we have proposed a new method to extract the exact solution of the fourth-order fuzzy initial value problem using the Laplace transform under the SGH-differentiability. The solution to the fourth-order FIVP can be easily evaluated using this new technique. The introduced method acts as a bridge between FIVP and the fuzzy Laplace transform. We face a lot of difficulties when solving FIVP, but this new idea alleviates that difficulty as it is a very productive technique for dealing with higher-order FIVP. The fuzzy derivative of FVF depends on their differentiability types, i.e., either a FVF is (ı) -differentiable or (ıı) -differentiable. The parameteric FVF has two parameters, the lower FVF and the upper FVF, in the same sense that we have examined the fourth-order derivative of the FVF, including 16 cases. We have discussed all the cases in this research article. In addition, a meaningful relationship between the fourth-order derivative of the FVF and its Laplace transform is presented, and the results are demonstrated here. We developed an algorithm to understand the steps to take when solving FIVP. The characteristic theorem of the fourth-order FIVP solution is expounded and proved. A general numerical example of FIVP has been solved in this paper to determine the effectiveness of the presented method. The concept of switching points has also been illustrated by another example. The Mittag-Leffler function is used for the FIVP solution. Admittedly, the method we introduced has some limitations related to FODE order. Although, this is a useful technique for dealing with higher-order FODEs, as the FODE order increases, the computations become bulky and tedious. This case is then handled by using the Mittag-Leffler function in the solution while finding the inverse Laplace transform. Optimization methods are increasingly used in various fields and play a crucial role in dealing with real-life problems. We plan to extend our work to develop fuzzy optimizations algorithms and network optimizations.

    Fourth author extends his appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under grant number (R.G.P.2/48/43).

    The authors declare no conflict of interest.

    Proof. \rm 4) If \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) are (ı) -differentiable and \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})] = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ı)}(0)\oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})]\ominus r^{3}\vartheta(0)\ominus r^{2}\vartheta^{'}_{(ı)}(0). \end{align*}

    Let \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) be (ı) -differentiable and \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) be (ıı) -differentiable, then Theorem 3.1 implies that:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus \vartheta(0),\\ \mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})] \ominus \vartheta^{'}_{(ı)}(0),\\ \mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{''}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})]. \end{cases} \end{align} (A.1)

    By combining the identities of system (A.1), we have:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ıı)}(0)) \ominus (-r)\bigg[(-\vartheta^{''}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})]\bigg],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ı)}(0)\oplus r^{2}\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ı)}(0)\oplus r^{2}\bigg[r\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})] \ominus \vartheta^{'}_{(ı)}(0)\bigg],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ı)}(0)\oplus r^{3}\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})] \ominus r^{2}\vartheta^{'}_{(ı)}(0),\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ı)}(0)\oplus r^{3}\bigg[r\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus \vartheta(0)\bigg]\ominus r^{2}\vartheta^{'}_{(ı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ı)}(0)\oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})]\ominus r^{3}\vartheta(0) \ominus r^{2}\vartheta^{'}_{(ı)}(0). \end{align*}

    \rm 5) If \vartheta(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable and \vartheta^{'}(\mathfrak{t}) is (ıı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})] = -r^{2}\vartheta^{'}_{(ı)}(0)\ominus (-r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})]\oplus (-r^{3})\vartheta(0)\ominus r\vartheta^{''}_{(ıı)}(0)\ominus \vartheta^{'''}_{(ı)}(0). \end{align*}

    Let us consider that \vartheta(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable and \vartheta^{'}(\mathfrak{t}) is (ıı) -differentiable, then Theorem 3.1 provides:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus \vartheta(0),\\ \mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{'''}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{''}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{'''}_{(ı)}(\mathfrak{t})] \ominus \vartheta^{'''}_{(ı)}(0). \end{cases} \end{align} (A.2)

    From system (A.2), it follows that:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = r\bigg[r\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{''}_{(ıı)}(0)\bigg] \ominus \vartheta^{'''}_{(ı)}(0),\\ & = r^{2}\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus r\vartheta^{''}_{(ıı)}(0) \ominus \vartheta^{'''}_{(ı)}(0),\\ & = r^{2}\bigg[(-\vartheta^{'}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]\bigg]\ominus r\vartheta^{''}_{(ıı)}(0) \ominus \vartheta^{'''}_{(ı)}(0),\\ & = (-r^{2})\vartheta^{'}_{(ı)}(0)\ominus (-r^{3})\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})] \ominus r\vartheta^{''}_{(ıı)}(0) \ominus \vartheta^{'''}_{(ı)}(0),\\ & = (-r^{2})\vartheta^{'}_{(ı)}(0)\ominus (-r^{3})\bigg[r\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus \vartheta(0)\bigg] \ominus r\vartheta^{''}_{(ıı)}(0) \ominus \vartheta^{'''}_{(ı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = (-r^{2})\vartheta^{'}_{(ı)}(0)\ominus (-r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})]\oplus (-r^{3})\vartheta(0) \ominus r\vartheta^{''}_{(ıı)}(0) \ominus \vartheta^{'''}_{(ı)}(0). \end{align*}

    \rm 6) If \vartheta(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})] = (-\vartheta^{'''}_{(ı)}(0))\ominus r^{2}\vartheta^{'}_{(ı)}(0)\oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})]\oplus (-r^{3})\vartheta(0)\oplus (-r)\vartheta^{''}_{(ıı)}(0). \end{align*}

    Suppose that \vartheta(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable, then Theorem 3.1 implies that:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus \vartheta(0),\\ \mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{'''}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{''}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'''}_{(ı)}(\mathfrak{t})]. \end{cases} \end{align} (A.3)

    From system (A.3), we have:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r)\bigg[r\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{''}_{(ıı)}(0)\bigg],\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r^{2})\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \oplus (-r)\vartheta^{''}_{(ıı)}(0),\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r^{2})\bigg[(-\vartheta^{'}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]\bigg]\oplus (-r)\vartheta^{''}_{(ıı)}(0),\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus (r^{2})\vartheta^{'}_{(ı)}(0)\oplus r^{3}\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]\oplus (-r)\vartheta^{''}_{(ıı)}(0),\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus (r^{2})\vartheta^{'}_{(ı)}(0)\oplus r^{3}\bigg[r\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus \vartheta(0)\bigg]\oplus (-r)\vartheta^{''}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ı)}(0)) \ominus (r^{2})\vartheta^{'}_{(ı)}(0)\oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})]\ominus r^{3}\vartheta(0)\oplus (-r)\vartheta^{''}_{(ıı)}(0). \end{align*}

    \rm 7) If \vartheta(\mathfrak{t}) is (ı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})] = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ıı)}(0)\oplus (-r^{2})\vartheta^{'}_{(ı)}(0)\ominus (-r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})] \oplus (-r^{3})\vartheta(0). \end{align*}

    Let \vartheta(\mathfrak{t}) be (ı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) be (ıı) -differentiable, then using Theorem 3.1 we get:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus \vartheta(0),\\ \mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{''}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})]. \end{cases} \end{align} (A.4)

    System (A.4) yields:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ıı)}(0)) \ominus (-r)\bigg[(-\vartheta^{''}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})]\bigg],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ıı)}(0)\oplus r^{2}\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ıı)}(0)\oplus r^{2}\bigg[(-\vartheta^{'}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]\bigg],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ıı)}(0)\oplus (-r^{2})\vartheta^{'}_{(ı)}(0)\ominus (-r^{3})\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ıı)}(0)\oplus (-r^{2})\vartheta^{'}_{(ı)}(0)\ominus (-r^{3})\bigg[r\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus \vartheta(0)\bigg],\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ıı)}(0))\ominus r\vartheta^{''}_{(ıı)}(0)\oplus (-r^{2})\vartheta^{'}_{(ı)}(0)\ominus (-r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})] \oplus (-r^{3})\vartheta(0). \end{align*}

    \rm 8) If \vartheta(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ıı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})] = (-r)\vartheta^{''}_{(ıı)}(0)\ominus r^{2})\vartheta^{'}_{(ı)}(0)\oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})]\ominus r^{3}\vartheta(0)\ominus \vartheta^{'''}_{(ıı)}(0). \end{align*}

    Assume that \vartheta(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ıı) -differentiable, then Theorem 3.1 gives:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus \vartheta(0),\\ \mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{''}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{'''}_{(ıı)}(0). \end{cases} \end{align} (A.5)

    From system (A.5), it follows that:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = r\bigg[(-\vartheta^{''}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})]\bigg]\ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ıı)}(0)\ominus (-r^{2})\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ıı)}(0)\ominus (-r^{2})\bigg[(-\vartheta^{'}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]\bigg]\ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ıı)}(0)\ominus r^{2}\vartheta^{'}_{(ı)}(0) \oplus r^{3}\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]\ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ıı)}(0)\ominus r^{2}\vartheta^{'}_{(ı)}(0) \oplus r^{3}\bigg[r\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus \vartheta(0)\bigg]\ominus \vartheta^{'''}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = (-r)\vartheta^{''}_{(ıı)}(0)\ominus r^{2}\vartheta^{'}_{(ı)}(0) \oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus r^{3}\vartheta(0)\ominus \vartheta^{'''}_{(ıı)}(0). \end{align*}

    \rm 9) If \vartheta(\mathfrak{t}) is (ıı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})] = (-r^{3}\vartheta(0))\ominus (-r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus r^{2}\vartheta^{'}_{(ıı)}(0)\ominus r\vartheta^{''}_{(ı)}(0)\ominus \vartheta^{'''}_{(ı)}(0). \end{align*}

    Let \vartheta(\mathfrak{t}) be (ıı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) be (ı) -differentiable, then from Theorem 3.1 we have:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})]& = (-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{'}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{'''}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})] \ominus \vartheta^{''}_{(ı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{'''}_{(ı)}(\mathfrak{t})] \ominus \vartheta^{'''}_{(ı)}(0). \end{cases} \end{align} (A.6)

    System (A.6) implies that:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = r\bigg[r\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})] \ominus \vartheta^{''}_{(ı)}(0)\bigg]\ominus \vartheta^{'''}_{(ı)}(0),\\ & = r^{2}\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})]\ominus r\vartheta^{''}_{(ı)}(0)\ominus \vartheta^{'''}_{(ı)}(0),\\ & = r^{2}\bigg[r\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{'}_{(ıı)}(0)\bigg]\ominus r\vartheta^{''}_{(ı)}(0)\ominus \vartheta^{'''}_{(ı)}(0),\\ & = r^{3}\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})] \ominus r^{2}\vartheta^{'}_{(ıı)}(0) \ominus r\vartheta^{''}_{(ı)}(0)\ominus \vartheta^{'''}_{(ı)}(0),\\ & = r^{3}\bigg[(-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})]\bigg]\ominus r^{2}\vartheta^{'}_{(ıı)}(0) \ominus r\vartheta^{''}_{(ı)}(0)\ominus \vartheta^{'''}_{(ı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = (-r^{3})\vartheta(0))\ominus (-r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})]\ominus r^{2}\vartheta^{'}_{(ıı)}(0) \ominus r\vartheta^{''}_{(ı)}(0)\ominus \vartheta^{'''}_{(ı)}(0). \end{align*}

    \rm 10) If \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})] = (-\vartheta^{'''}_{(ıı)}(0))\ominus r\vartheta^{''}_{(ıı)}(0)\oplus (-r^{2})\vartheta^{'}_{(ıı)}(0)\ominus r^{3})\vartheta(0)\oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})]. \end{align*}

    Suppose that \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable, then Theorem 3.1 provides that:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})]& = (-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{''}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})]. \end{cases} \end{align} (A.7)

    By combining the identities of system (A.7) we have:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ıı)}(0)) \ominus (-r)\bigg[(-\vartheta^{''}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})]\bigg],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ıı)}(0)\oplus r^{2}\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ıı)}(0)\oplus r^{2}\bigg[(-\vartheta^{'}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})]\bigg],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ıı)}(0)\oplus (-r^{2})\vartheta^{'}_{(ıı)}(0)\ominus (-r^{3})\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ıı)}(0)\oplus (-r^{2})\vartheta^{'}_{(ıı)}(0)\ominus (-r^{3})\bigg[(-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})]\bigg],\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ıı)}(0)\oplus (-r^{2})\vartheta^{'}_{(ıı)}(0)\ominus (r^{3})\vartheta(0) \oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})]. \end{align*}

    \rm 11) If \vartheta(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})] = (-r)\vartheta^{''}_{(ı)}(0)\ominus (r^{3})\vartheta(0) \oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})]\oplus (-r^{2})\vartheta^{'}_{(ıı)}(0)\ominus \vartheta^{'''}_{(ıı)}(0). \end{align*}

    Let \vartheta(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) be (ıı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) be (ı) -differentiable, then from Theorem 3.1 we have:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})]& = (-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{'}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{''}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{'''}_{(ıı)}(0). \end{cases} \end{align} (A.8)

    From system (A.8), it follows that:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = r\bigg[(-\vartheta^{''}_{(ı)}(0))\ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})]\bigg]\ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ı)}(0)\ominus (-r^{2})\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})]\ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ı)}(0)\ominus (-r^{2})\bigg[r\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{'}_{(ıı)}(0)\bigg]\ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ı)}(0)\ominus (-r^{3})\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})] \ominus (-r^{2})\vartheta^{'}_{(ıı)}(0)\ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ı)}(0)\ominus (-r^{3})\bigg[(-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})]\bigg]\ominus (-r^{2})\vartheta^{'}_{(ıı)}(0)\ominus \vartheta^{'''}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = (-r)\vartheta^{''}_{(ı)}(0)\ominus r^{3}\vartheta(0) \oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})]\oplus (-r^{2})\vartheta^{'}_{(ıı)}(0)\ominus \vartheta^{'''}_{(ıı)}(0). \end{align*}

    \rm 12) If \vartheta(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})] = (-\vartheta^{'''}_{(ı)}(0))\ominus r^{3}\vartheta(0)\oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})]\oplus (-r^{2})\vartheta^{'}_{(ı)}(0)\oplus (-r)\vartheta^{''}_{(ıı)}(0). \end{align*}

    Given that \vartheta(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ı) -differentiable, then Theorem 3.1 provides that:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})]& = (-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})] \ominus \vartheta^{'}_{(ı)}(0),\\ \mathfrak{L}[\vartheta^{'''}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{''}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'''}_{(ı)}(\mathfrak{t})]. \end{cases} \end{align} (A.9)

    System (A.9) yields that:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r)\bigg[r\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{''}_{(ıı)}(0)\bigg],\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r^{2})\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \oplus (-r)\vartheta^{''}_{(ıı)}(0),\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r^{2})\bigg[r\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})] \ominus \vartheta^{'}_{(ı)}(0)\bigg]\oplus (-r)\vartheta^{''}_{(ıı)}(0),\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r^{3})\mathfrak{L}[\vartheta^{'}_{(ı)}(\mathfrak{t})] \oplus (-r^{2})\vartheta^{'}_{(ı)}(0)\oplus (-r)\vartheta^{''}_{(ıı)}(0),\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r^{3})\bigg[(-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})]\bigg] \oplus (-r^{2})\vartheta^{'}_{(ı)}(0)\oplus (-r)\vartheta^{''}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ı)}(0)) \ominus r^{3}\vartheta(0) \oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})] \oplus (-r^{2})\vartheta^{'}_{(ı)}(0)\oplus (-r)\vartheta^{''}_{(ıı)}(0). \end{align*}

    \rm 13) If \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})] = (-r^{2})\vartheta^{'}_{(ıı)}(0)\ominus r^{3}\vartheta(0) \oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus r\vartheta^{''}_{(ıı)}(0)\ominus \vartheta^{'''}_{(ı)}(0). \end{align*}

    Suppose that \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ı) -differentiable, then using Theorem 3.1 we have:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})]& = (-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{'''}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{''}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{'''}_{(ı)}(\mathfrak{t})] \ominus \vartheta^{'''}_{(ı)}(0). \end{cases} \end{align} (A.10)

    By combining the expressions of system (A.10) we get:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = r\bigg[r\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{''}_{(ıı)}(0)\bigg]\ominus \vartheta^{'''}_{(ı)}(0),\\ & = r^{2}\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus r\vartheta^{''}_{(ıı)}(0)\ominus \vartheta^{'''}_{(ı)}(0),\\ & = r^{2}\bigg[(-\vartheta^{'}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})]\bigg]\ominus r\vartheta^{''}_{(ıı)}(0)\ominus \vartheta^{'''}_{(ı)}(0),\\ & = (-r^{2})\vartheta^{'}_{(ıı)}(0)\ominus (-r^{3})\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})]\ominus r\vartheta^{''}_{(ıı)}(0)\ominus \vartheta^{'''}_{(ı)}(0),\\ & = (-r^{2})\vartheta^{'}_{(ıı)}(0)\ominus (-r^{3})\bigg[(-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})]\bigg]\ominus r\vartheta^{''}_{(ıı)}(0)\ominus \vartheta^{'''}_{(ı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = (-r^{2})\vartheta^{'}_{(ıı)}(0)\ominus r^{3}\vartheta(0) \oplus r^{4}\mathfrak{L}[\vartheta(\mathfrak{t})]\ominus r\vartheta^{''}_{(ıı)}(0)\ominus \vartheta^{'''}_{(ı)}(0). \end{align*}

    \rm 14) If \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{''}(\mathfrak{t}) is (ı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})] = (-\vartheta^{'''}_{(ı)}(0))\ominus r^{2}\vartheta^{'}_{(ıı)}(0)\oplus (-r^{3})\vartheta(0)\ominus (- r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})]\oplus (-r)\vartheta^{''}_{(ıı)}(0). \end{align*}

    Suppose that \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{''}(\mathfrak{t}) is (ı) -differentiable, then Theorem 3.1 implies that:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})]& = (-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{'''}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{''}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'''}_{(ı)}(\mathfrak{t})]. \end{cases} \end{align} (A.11)

    From system (A.11), it follows that:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r)\bigg[r\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{''}_{(ıı)}(0)\bigg],\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r^{2})\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \oplus (-p)\vartheta^{''}_{(ıı)}(0),\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus (-r^{2})\bigg[(-\vartheta^{'}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})]\bigg]\oplus (-r)\vartheta^{''}_{(ıı)}(0),\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus r^{2}\vartheta^{'}_{(ıı)}(0) \oplus (r^{3})\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})] \oplus (-r)\vartheta^{''}_{(ıı)}(0),\\ & = (-\vartheta^{'''}_{(ı)}(0)) \ominus r^{2}\vartheta^{'}_{(ıı)}(0) \oplus (r^{3})\bigg[(-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})]\bigg]\oplus (-r)\vartheta^{''}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ı)}(0)) \ominus r^{2}\vartheta^{'}_{(ıı)}(0) \oplus (-r^{3})\vartheta(0) \ominus (-r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})] \oplus (-r)\vartheta^{''}_{(ıı)}(0). \end{align*}

    \rm 15) If \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{'''}(\mathfrak{t}) is (ı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})] = (-r)\vartheta^{''}_{(ıı)}(0)\ominus r^{2}\vartheta^{'}_{(ıı)}(0) \oplus (-r^{3})\vartheta(0) \ominus (-r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})]\ominus \vartheta^{'''}_{(ıı)}(0). \end{align*}

    Assume that \vartheta(\mathfrak{t}) , \vartheta^{'}(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{'''}(\mathfrak{t}) is (ı) -differentiable, then from Theorem 3.1 we have:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})]& = (-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{''}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{'''}_{(ıı)}(0). \end{cases} \end{align} (A.12)

    System (A.12) gives:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = r\bigg[(-\vartheta^{''}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})]\bigg]\ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ıı)}(0)\ominus (-r^{2})\mathfrak{L}[\vartheta^{''}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ıı)}(0)\ominus (-r^{2})\bigg[(-\vartheta^{'}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})]\bigg]\ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ıı)}(0)\ominus r^{2}\vartheta^{'}_{(ıı)}(0) \oplus r^{3}\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{'''}_{(ıı)}(0),\\ & = (-r)\vartheta^{''}_{(ıı)}(0)\ominus r^{2}\vartheta^{'}_{(ıı)}(0) \oplus r^{3}\bigg[(-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})]\bigg] \ominus \vartheta^{'''}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ı)}(\mathfrak{t})]& = (-r)\vartheta^{''}_{(ıı)}(0)\ominus r^{2}\vartheta^{'}_{(ıı)}(0) \oplus (-r^{3})\vartheta(0) \ominus (-r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus \vartheta^{'''}_{(ıı)}(0). \end{align*}

    \rm 16) If \vartheta(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) are (ıı) -differentiable and \vartheta^{'}(\mathfrak{t}) is (ı) -differentiable, then

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})] = (-\vartheta^{'''}_{(ıı)}(0))\ominus r\vartheta^{''}_{(ı)}(0)\oplus (-r^{3})\vartheta(0) \ominus (-r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})]\ominus r^{2}\vartheta^{'}_{(ıı)}(0). \end{align*}

    Let \vartheta(\mathfrak{t}) , \vartheta^{''}(\mathfrak{t}) , \vartheta^{'''}(\mathfrak{t}) be (ıı) -differentiable and \vartheta^{'}(\mathfrak{t}) be (ı) -differentiable, then using Theorem 3.1 we have:

    \begin{align} \begin{cases} \mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})]& = (-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})]& = r\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{'}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{''}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})],\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ıı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{'''}_{(ıı)}(\mathfrak{t})]. \end{cases} \end{align} (A.13)

    From system (A.13), it follows that:

    \begin{align*} \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ıı)}(0)) \ominus (-r)\bigg[(-\vartheta^{''}_{(ı)}(0)) \ominus (-r)\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})]\bigg],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ı)}(0) \oplus r^{2}\mathfrak{L}[\vartheta^{''}_{(ı)}(\mathfrak{t})],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ı)}(0) \oplus r^{2}\bigg[r\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})] \ominus \vartheta^{'}_{(ıı)}(0)\bigg],\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ı)}(0) \oplus r^{3}\mathfrak{L}[\vartheta^{'}_{(ıı)}(\mathfrak{t})] \ominus r^{2}\vartheta^{'}_{(ıı)}(0),\\ & = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ı)}(0) \oplus r^{3}\bigg[(-\vartheta(0)) \ominus (-r)\mathfrak{L}[\vartheta(\mathfrak{t})]\bigg] \ominus r^{2}\vartheta^{'}_{(ıı)}(0),\\ \mathfrak{L}[\vartheta^{(iv)}_{(ıı)}(\mathfrak{t})]& = (-\vartheta^{'''}_{(ıı)}(0)) \ominus r\vartheta^{''}_{(ı)}(0) \oplus (-r^{3})\vartheta(0) \ominus (-r^{4})\mathfrak{L}[\vartheta(\mathfrak{t})] \ominus r^{2}\vartheta^{'}_{(ıı)}(0). \end{align*}


    [1] V. Khodadadi, F. N. Rahatabad, A. Sheikhani, N. J. Dabanloo, Nonlinear analysis of biceps surface EMG signals for chaotic approaches, Chaos Soliton Fract., 166 (2023), 112965. https://doi.org/10.1016/j.chaos.2022.112965 doi: 10.1016/j.chaos.2022.112965
    [2] X. Zhang, P. Zhou, Sample entropy analysis of surface EMG for improved muscle activity onset detection against spurious background spikes, J. Electromyogr. Kinesiology, 22 (2012), 901–907. https://doi.org/10.1016/j.jelekin.2012.06.005 doi: 10.1016/j.jelekin.2012.06.005
    [3] Z. Brari, S. Belghith, A new algorithm for largest Lyapunov exponent determination for noisy chaotic signal studies with application to Electroencephalographic signals analysis for epilepsy and epileptic seizures detection, Chaos Soliton Fract., 165 (2022), 112757. https://doi.org/10.1016/j.chaos.2022.112757 doi: 10.1016/j.chaos.2022.112757
    [4] S. B. He, K. H. Sun, R. X. Wang, Fractional fuzzy entropy algorithm and the complexity analysis for nonlinear time series, Eur. Phys. J. Special Topics, 227 (2018), 943–957. https://doi.org/10.1140/epjst/e2018-700098-x doi: 10.1140/epjst/e2018-700098-x
    [5] K. Harezlak, P. Kasprowski, Application of time-scale decomposition of entropy for eye movement analysis, Entropy, 22 (2020), 68. https://doi.org/10.3390/e22020168 doi: 10.3390/e22020168
    [6] S. Jia, B. Ma, W. Guo, Z. S. Li, A sample entropy based prognostics method for lithiumion batteries using relevance vector machine, J. Manuf. Sys., 61 (2021), 773–781. https://doi.org/10.1016/j.jmsy.2021.03.019 doi: 10.1016/j.jmsy.2021.03.019
    [7] J. Richman, J. Moorman, Physiological time-series analysis using approximate entropy and sample entropy, Am. J. Physiol. Heart Circ. Physiol., 278 (2000), H2039–H2049. https://doi.org/10.1152/ajpheart.2000.278.6.H2039 doi: 10.1152/ajpheart.2000.278.6.H2039
    [8] W. T. Chen, Z. Z. Wang, H. B. Xie, W. X. Yu, Characterization of surface EMG signal based on fuzzy entropy, IEEE Trans. Neural Syst. Rehabil. Eng., 15 (2007), 266–272. https://doi.org/10.1109/TNSRE.2007.897025 doi: 10.1109/TNSRE.2007.897025
    [9] M. Rostaghi, H. Azami, Dispersion Entropy: A measure for time-series analysis, IEEE Signal Proc. Let., 23 (2016), 610–614. https://doi.org/10.1109/LSP.2016.2542881 doi: 10.1109/LSP.2016.2542881
    [10] S. B. Jiao, B. Geng, Y. X. Li, Q. Zhang, Q. Wang, Fluctuation-based reverse dispersion entropy and its applications to signal classification, Appl. Acoust., 175 (2021), 107857. https://doi.org/10.1016/j.apacoust.2020.107857 doi: 10.1016/j.apacoust.2020.107857
    [11] H. Azami, M. Rostaghi, D. Abásolo, J. Escudero, Refined composite multiscale dispersion entropy and its application to biomedical signals, IEEE Trans. Bio-med. Eng., 64 (2017), 2872–2879. https://doi.org/10.1109/TBME.2017.2679136 doi: 10.1109/TBME.2017.2679136
    [12] S. Sharma, S. K. Tiwari, A novel feature extraction method based on weighted multi-scale fluctuation based dispersion entropy and its application to the condition monitoring of rotary machines, Mech. Syst. Signal Pr., 171 (2022), 108909. https://doi.org/10.1016/j.ymssp.2022.108909 doi: 10.1016/j.ymssp.2022.108909
    [13] C. J. Li, Y. C. Wu, H. J. Lin, J. M. Li, F. Zhang, Y. X. Yang, ECG denoising method based on an improved VMD algorithm, IEEE Sens J., 22 (2022), 22725–22733. https://doi.org/10.1109/JSEN.2022.3214239 doi: 10.1109/JSEN.2022.3214239
    [14] B. García-Martínez, A. Fernández-Caballero, R. Alcaraz, A. Martínez-Rodrigo, Application of dispersion entropy for the detection of emotions with electroencephalographic signals, IEEE T. Cogn. Dev. Syst., 14 (2022), 1179–1187. https://doi.org/10.1109/TCDS.2021.3099344 doi: 10.1109/TCDS.2021.3099344
    [15] E. Kafantaris, T. Y. M. Lo, J. Escudero, Stratified multivariate multiscale dispersion entropy for physiological signal analysis, IEEE Trans. Bio-med Eng., 70 (2023), 1024–1035. https://doi.org/10.1109/TBME.2022.3207582 doi: 10.1109/TBME.2022.3207582
    [16] Q. F. Wang, Y. Xiao, S. Wang, W. C. Liu, X. J. Liu, A method for constructing automatic rolling bearing fault identification model based on refined composite multi-scale dispersion entropy, IEEE Access, 9 (2021), 86412–86428. https://doi.org/10.1109/ACCESS.2021.3089251 doi: 10.1109/ACCESS.2021.3089251
    [17] M. Rostaghi, M. M. Khatibi, M. R. Ashory, H. Azami, Fuzzy dispersion entropy: A nonlinear measure for signal analysis, IEEE Trans. Fuzzy Syst., 30 (2021), 3785–3796. https://doi.org/10.1109/TFUZZ.2021.3128957 doi: 10.1109/TFUZZ.2021.3128957
    [18] Y. X. Li, B. Geng, B. Z. Tang, Simplified coded dispersion entropy: A nonlinear metric for signal analysis, Nonlinear Dyn., 111 (2023), 9327–9344. https://doi.org/10.1007/s11071-023-08339-4 doi: 10.1007/s11071-023-08339-4
    [19] J. P. Ugarte, J. A. Tenreiro Machado, C. Tobón, Fractional generalization of entropy improves the characterization of rotors in simulated atrial fibrillation, Appl. Math. Comput., 425 (2022), 127077. https://doi.org/10.1016/j.amc.2022.127077 doi: 10.1016/j.amc.2022.127077
    [20] A. D. Crescenzo, S. Kayal, A. Meoli, Fractional generalized cumulative entropy and its dynamic version, Commun. Nonlinear Sci., 102 (2021), 105899. https://doi.org/10.1016/j.cnsns.2021.105899 doi: 10.1016/j.cnsns.2021.105899
    [21] Y. Wang, P. J. Shang, Complexity analysis of time series based on generalized fractional order cumulative residual distribution entropy, Phys. A, 537 (2020), 122582. https://doi.org/10.1016/j.physa.2019.122582 doi: 10.1016/j.physa.2019.122582
    [22] J. T. Machado, Fractional order generalized information, Entropy, 16 (2014), 2350–2361. https://doi.org/10.3390/e16042350 doi: 10.3390/e16042350
    [23] S. R. Wang, H. Tang, B. Wang, J. Mo, Analysis of fatigue in the biceps brachii by using rapid refined composite multiscale sample entropy, Biomed. Signal Process., 67 (2021), 102510. https://doi.org/10.1016/j.bspc.2021.102510 doi: 10.1016/j.bspc.2021.102510
    [24] I. Yun, J. Jeung, Y. Song, Y. Chung, Non-Invasive quantitative muscle fatigue estimation based on correlation between sEMG signal and muscle mass, IEEE Access, 8 (2020), 191751–191757. https://doi.org/10.1109/ACCESS.2020.3029792 doi: 10.1109/ACCESS.2020.3029792
    [25] D. R. Rogers, D. T. MacIsaac, EMG-based muscle fatigue assessment during dynamic contractions using principal component analysis, J. Electromyogr. Kinesiology, 21 (2011), 811–818. https://doi.org/10.1016/j.jelekin.2011.05.002 doi: 10.1016/j.jelekin.2011.05.002
    [26] J. R. Mota-Carmona, F. Pérez-Escamirosa, A. Minor-Martínez, R. M. Rodríguez-Reyna, Muscle fatigue detection in upper limbs during the use of the computer mouse using discrete wavelet transform: A pilot study, Biomed. Signal Process., 76 (2022), 103711. https://doi.org/10.1016/j.bspc.2022.103711 doi: 10.1016/j.bspc.2022.103711
    [27] B. K. Barry, R. M. Enoka, The neurobiology of muscle fatigue: 15 years later, Integr. Comput. Biol., 47 (2007), 465–473. https://doi.org/10.1093/icb/icm047 doi: 10.1093/icb/icm047
    [28] W. K. Xu, B. Chu, E. Rogers, Iterative learning control for robotic-assisted upper limb stroke rehabilitation in the presence of muscle fatigue, Control Eng. Pract., 31 (2014), 63–72. https://doi.org/10.1016/j.conengprac.2014.05.009 doi: 10.1016/j.conengprac.2014.05.009
    [29] F. F. Wang, E. M. Yiu, Is surface Electromyography (sEMG) a useful tool in identifying muscle tension dysphonia? An integrative review of the current evidence, J. Voice, 10 (2021). https://doi.org/10.1016/j.jvoice.2021.10.006 doi: 10.1016/j.jvoice.2021.10.006
    [30] J. Hussain, K. Sundaraj, F. L. Yin, L. C. Kiang, S. Sundaraj, M. A. Ali, A systematic review on fatigue analysis in triceps brachii using surface electromyography, Biomed. Signal Process., 40 (2018), 396–414. https://doi.org/10.1016/j.bspc.2017.10.008 doi: 10.1016/j.bspc.2017.10.008
    [31] S. E. Jero, K. D. Bharathi, P. A. Karthick, S. Ramakrishnan, Muscle fatigue analysis in isometric contractions using geometric features of surface electromyography signals, Biomed. Signal Process., 68 (2021), 102603. https://doi.org/10.1016/j.bspc.2021.102603 doi: 10.1016/j.bspc.2021.102603
    [32] G. Y. Zhang, E. Morin, Y. X. Zhang, S. A. Etemad, Non-invasive detection of low-level muscle fatigue using surface EMG with wavelet decomposition, in 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (2018), 5648–5651. https://doi.org/10.1109/EMBC.2018.8513588
    [33] M. Cifrek, V. Medved, S. Tonković, S. Ostojić, Surface EMG based muscle fatigue evaluation in biomechanics, J Clin. Biomech., 24 (2009), 327–340. https://doi.org/10.1016/j.clinbiomech.2009.01.010 doi: 10.1016/j.clinbiomech.2009.01.010
    [34] W. W. Hu, Y. C. Huang, C. P. Li, Improved algorithm of muscle fatigue detection using linear regression analysis, Electron. Lett., 49 (2013), 89–91. https://doi.org/10.1049/el.2012.2316 doi: 10.1049/el.2012.2316
    [35] H. B. Xie, Z. Z. Wang, Mean frequency derived via Hilbert-Huang transform with application to fatigue EMG signal analysis, Comput. Methods Prog. Biomed., 82 (2006), 114–120. https://doi.org/10.1016/j.cmpb.2006.02.009 doi: 10.1016/j.cmpb.2006.02.009
    [36] H. B. Xie, J. Y. Guo, Y. P. Zheng, Fuzzy approximate entropy analysis of chaotic and natural complex systems: detecting muscle fatigue using electromyography signals, Ann. Biomed. Eng., 38 (2010), 1483–1496. https://doi.org/10.1007/s10439-010-9933-5 doi: 10.1007/s10439-010-9933-5
    [37] A. Shoeibi, M. Khodatars, M. Jafari, N. Ghassemi, P. Moridian, R. Alizadehsani, et al., Diagnosis of brain diseases in fusion of neuroimaging modalities using deep learning: A review, Inf. Fusion, 93 (2023), 85–117. https://doi.org/10.1016/j.inffus.2022.12.010 doi: 10.1016/j.inffus.2022.12.010
    [38] J. Murillo-Escobar, Y. E. Jaramillo-Munera, D. A. Orrego-Metaute, E. Delgado-Trejos, D. Cuesta-Frau, Muscle fatigue analysis during dynamic contractions based on biomechanical features and Permutation Entropy, Math. Biosci. Eng., 17 (2020), 2592–2615. https://doi.org/10.3934/mbe.2020142 doi: 10.3934/mbe.2020142
    [39] S. E. Jero, K. D. Bharathi, P. A. Karthick, S. Ramakrishnan, Muscle fatigue analysis in isometric contractions using geometric features of surface electromyography signals, Biomed. Signal Process., 68 (2021), 102603. https://doi.org/10.1016/j.bspc.2021.102603 doi: 10.1016/j.bspc.2021.102603
    [40] P. A. Karthick, D. M. Ghosh, S. Ramakrishnan, Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms, Comput. Methods Prog. Biomed., 154 (2018), 45–56. https://doi.org/10.1016/j.cmpb.2017.10.024 doi: 10.1016/j.cmpb.2017.10.024
    [41] J. H. Wang, Y. N. Sun, S. M. Sun. Recognition of muscle fatigue status based on improved wavelet threshold and CNN-SVM, IEEE Access, 8 (2020), 207914–207922. https://doi.org/10.1109/ACCESS.2020.3038422 doi: 10.1109/ACCESS.2020.3038422
    [42] J. H. Wang, S. M. Sun, Y. N. Sun, A muscle fatigue classification model based on LSTM and improved wavelet packet threshold, Sensors, 21 (2021), 6369. https://doi.org/10.3390/s21196369 doi: 10.3390/s21196369
    [43] A. Shoeibi, M. Rezaei, N. Ghassemi, Z. Namadchian, A. Zare, J. M. Gorriz, Automatic diagnosis of schizophrenia in EEG signals using functional connectivity features and CNN-LSTM model, in Proceedings of the International Work-Conference on the Interplay Between Natural and Artificial Computation (IWINAC), (2022), 63–73. https://doi.org/10.1007/978-3-031-06242-1_7
    [44] M. Jafari, D. Sadeghi, A. Shoeibi, H. Alinejad-Rokny, A. Beheshti, D. López-García, et al., Empowering precision medicine: AI-Driven schizophrenia diagnosis via EEG signals: A comprehensive review from 2002–2023, Appl. Intell., 2023 (2023), 1–45. https://doi.org/10.1007/s10489-023-05155-6 doi: 10.1007/s10489-023-05155-6
    [45] P. Chawla, S. B. Rana, H. Kaur, K. Singh, R. Yuvaraj, M. Murugappan, A decision support system for automated diagnosis of Parkinson's disease from EEG using FAWT and entropy features, Biomed. Signal Process., 79 (2023), 104116. https://doi.org/10.1016/j.bspc.2022.104116 doi: 10.1016/j.bspc.2022.104116
    [46] N. Makaram, P. A. Karthick, R. Swaminathan, Analysis of dynamics of EMG signal variations in fatiguing contractions of muscles using transition network approach, IEEE Trans. Instrum. Meas., 70 (2021), 4003608. https://doi.org/10.1109/TIM.2021.3063777 doi: 10.1109/TIM.2021.3063777
    [47] C. Tepe, M. C. Demir, Real-time classification of EMG Myo armband data using support vector machine, IRBM, 43 (2022), 300–308. https://doi.org/10.1016/j.irbm.2022.06.001 doi: 10.1016/j.irbm.2022.06.001
    [48] X. J. Wang, D. P. Dong, X. K. Chi, S. P. Wang, Y. N. Miao, M. L. An, et al., sEMG-based consecutive estimation of human lower limb movement by using multi-branch neural network, Biomed. Signal Process., 68 (2021), 102781. https://doi.org/10.1016/j.bspc.2021.102781 doi: 10.1016/j.bspc.2021.102781
    [49] J. R. Potvin, L. R. Bent, A validation of techniques using surface EMG signals from dynamic contractions to quantify muscle fatigue during repetitive tasks, J. Electromyogr. Kinesiology, 7 (1997), 131–139. https://doi.org/10.1016/S1050-6411(96)00025-9 doi: 10.1016/S1050-6411(96)00025-9
    [50] K. Dragomiretskiy, D. Zosso, Variational mode decomposition, IEEE Trans. Signal Process., 62 (2014), 531–544. https://doi.org/10.1109/TSP.2013.2288675 doi: 10.1109/TSP.2013.2288675
    [51] H. Ashraf, U. Shafiq, Q. Sajjad, A. Waris, O. Gilani, M. Boutaayamou, et al., Variational mode decomposition for surface and intramuscular EMG signal denoising, Biomed. Signal Process., 82 (2023), 104560. https://doi.org/10.1016/j.bspc.2022.104560 doi: 10.1016/j.bspc.2022.104560
    [52] S. H. Ma, B. Lv, C. Lin, X. J. Sheng, X. Y. Zhu, EMG signal filtering based on variational mode decomposition and sub-band thresholding, IEEE J. Biomed. Health., 25 (2021), 47–58. https://doi.org/10.1109/JBHI.2020.2987528 doi: 10.1109/JBHI.2020.2987528
    [53] D. L. Donoho, De-noising by soft-thresholding, IEEE Trans. Inf. Theory, 41 (1995), 613–627. https://doi.org/10.1109/18.382009 doi: 10.1109/18.382009
    [54] H. Ashraf, A. Waris, S. O. Gilani, M. U. Tariq, H. Alquhayz, Threshold parameters selection for empirical mode decomposition-based EMG signal denoising, Intell. Autom. Soft Comput., 27 (2021), 799–815. https://doi.org/10.32604/iasc.2021.014765 doi: 10.32604/iasc.2021.014765
    [55] S. Phatak, S. S. Rao, Logistic map: A possible random-number generator, Phys. Rev. E, 51 (1995), 3670. https://doi.org/10.1103/PhysRevE.51.3670 doi: 10.1103/PhysRevE.51.3670
    [56] L. Kahl, U. G. Hofmann, Comparison of algorithms to quantify muscle fatigue in upper limb muscles based on sEMG signals, Med. Eng. Phys., 38 (2016), 1260–1269. https://doi.org/10.1016/j.medengphy.2016.09.009 doi: 10.1016/j.medengphy.2016.09.009
    [57] Y. X. Li, B. Z. Tang, B. Geng, S. B. Jiao, Fractional order fuzzy dispersion entropy and its application in bearing fault diagnosis, Fractal Fract., 6 (2022), 544. https://doi.org/10.3390/fractalfract6100544 doi: 10.3390/fractalfract6100544
    [58] E. Z. Song, Y. Ke, C. Yao, Q. Dong, L. P. Yang, Fault diagnosis method for high-pressure common rail injector based on IFOA-VMD and hierarchical dispersion entropy, Entropy, 21 (2019), 923. https://doi.org/10.3390/e21100923 doi: 10.3390/e21100923
    [59] X. A. Yan, Y. D. Xu, M. P. Jia, Intelligent fault diagnosis of rolling-element bearings using a self-adaptive hierarchical multiscale fuzzy entropy, Entropy, 23 (2021), 1128. https://doi.org/10.3390/e23091128 doi: 10.3390/e23091128
    [60] R. J. Zhou, X. Wang, J. Wan, N. X. Xiong, EDM-Fuzzy: An Euclidean distance based multiscale fuzzy entropy technology for diagnosing faults of industrial systems, IEEE Trans. Ind. Inf., 17 (2021), 4046–4054. https://doi.org/10.1109/TII.2020.3009139 doi: 10.1109/TII.2020.3009139
    [61] A. Shoeibi, N. Ghassemi, M. Khodatars, P. Moridian, A. Khosravi, A. Zare, et al., Automatic diagnosis of schizophrenia and attention deficit hyperactivity disorder in RS-fMRI modality using convolutional autoencoder model and interval type-2 fuzzy regression, Cognit. Neurodyn., 17 (2023), 1501–1523. https://doi.org/10.1007/s11571-022-09897-w doi: 10.1007/s11571-022-09897-w
    [62] H. M. Qassim, W. Z. W. Hasan, H. R. Ramli, H. H. Harith, L. N. I. Mat, L. I. Ismail, Proposed fatigue index for the objective detection of muscle fatigue using surface electromyography and a double-step binary classifier, Sensors, 22 (2022), 1900. https://doi.org/10.3390/s22051900 doi: 10.3390/s22051900
    [63] K. D. Bharathi, P. A. Karthick, S. Ramakrishnan, Automated detection of muscle fatigue conditions from cyclostationary based geometric features of surface electromyography signals, Comput. Methods Biomech. Biomed. Eng., 25 (2022), 320–332. https://doi.org/10.1080/10255842.2021.1955104 doi: 10.1080/10255842.2021.1955104
    [64] N. Makaram, P. A. Karthick, V. Gopinath, R. Swaminathan, Surface Electromyography-based muscle fatigue analysis using binary and weighted visibility graph features, Fluctuation Noise Lett., 20 (2021), 2150016. https://doi.org/10.1142/S0219477521500164 doi: 10.1142/S0219477521500164
    [65] D. B. Krishnamani, P. A. Karthick, R. Swaminathan, Variational mode decomposition based differentiation of fatigue conditions in muscles using surface electromyography signals, IET Signal Process., 14 (2021), 745–753. https://doi.org/10.1049/iet-spr.2020.0315 doi: 10.1049/iet-spr.2020.0315
    [66] D. Sasidharan, V. Gopinath, R. Swaminathan, A proposal to analyze muscle dynamics under fatiguing contractions using surface Electromyography signals and fuzzy recurrence network features, Fluctuation Noise Lett., 22 (2023), 2350033. https://doi.org/10.1142/S0219477523500335 doi: 10.1142/S0219477523500335
    [67] D. Sasidharan, V. Gopinath, R. Swaminathan, Complexity analysis of surface Electromyography signals under fatigue using Hjorth parameters and bubble entropy, J. Mech. Med. Biol., 23 (2023), 2340051. https://doi.org/10.1142/S0219519423400511 doi: 10.1142/S0219519423400511
    [68] A. Greco, G. Valenza, A. Bicchi, M. Bianchi, E. P. Scilingo, Assessment of muscle fatigue during isometric contraction using autonomic nervous system correlates, Biomed. Signal Process., 51 (2019), 42–49. https://doi.org/10.1016/j.bspc.2019.02.007 doi: 10.1016/j.bspc.2019.02.007
    [69] W. D. Wang, H. H. Li, D. Z. Kong, M. H. Xiao, P. Zhang, A novel fatigue detection method for rehabilitation training of upper limb exoskeleton robot using multi-information fusion, Int. J. Adv. Robot Syst., 17 (2020), 1–11. https://doi.org/10.1177/1729881420974295 doi: 10.1177/1729881420974295
    [70] S. R. Wang, H. Tang, B. Wang, J. Mo, A novel approach to detecting muscle fatigue based on sEMG by using neural architecture search framework, IEEE Trans. Neural Network Learn., 34 (2023), 4932–4943. https://doi.org/10.1109/TNNLS.2021.3124330 doi: 10.1109/TNNLS.2021.3124330
    [71] S. K. Chen, K. L. Xu, X. W. Yao, J. Ge, L. Li, S. Y. Zhu, et al., Information fusion and multi-classifier system for miner fatigue recognition in plateau environments based on electrocardiography and electromyography signals, Comput. Methods Programs Biomed., 211 (2021), 106451. https://doi.org/10.1016/j.cmpb.2021.106451 doi: 10.1016/j.cmpb.2021.106451
    [72] S. K. Chen, K. L. Xu, X. W. Yao, S. Y. Zhu, B. H. Zhang, H. D. Zhou, et al., Psychophysiological data-driven multi-feature information fusion and recognition of miner fatigue in high-altitude and cold areas, Comput. Biol. Med., 133 (2021), 104413. https://doi.org/10.1016/j.compbiomed.2021.104413 doi: 10.1016/j.compbiomed.2021.104413
    [73] Q. Liu, Y. Liu, C. S. Zhang, Z. L. Ruan, W. Meng, Y. L. Cai, et al., SEMG-based dynamic muscle fatigue classification using SVM with improved whale optimization algorithm, IEEE Int. Things, 8 (2021), 16835–16844. https://doi.org/10.1109/JIOT.2021.3056126 doi: 10.1109/JIOT.2021.3056126
    [74] J. X. Liu, Q. Tao, B. Wu, Dynamic muscle fatigue state recognition based on deep learning fusion model, IEEE Access, 11 (2023), 95079–95091. https://doi.org/10.1109/ACCESS.2023.3309741 doi: 10.1109/ACCESS.2023.3309741
    [75] J. R. Suganthi, K. Rajeswari, Evaluation of muscle fatigue based on SEMG using deep learning techniques, in 2023 5th International Conference on Inventive Research in Computing Applications (ICIRCA), (2023), 1–6. https://doi.org/10.1109/ICIRCA57980.2023.10220926
    [76] Y. Q. Zhang, S. Y. Chen, W. P. Cao, P. Guo, D. R. Gao, M. Q. Wang, et al., MFFNet: Multi-dimensional feature fusion network based on attention mechanism for sEMG analysis to detect muscle fatigue, Exp. Syst. Appl., 185 (2021), 115639. https://doi.org/10.1016/j.eswa.2021.115639 doi: 10.1016/j.eswa.2021.115639
    [77] Y. K. Dang, Z. T. Liu, X. X. Yang, L. Q. Ge, S. Miao, A fatigue assessment method based on attention mechanism and surface electromyography, Int. Things Cyber-Phys. Syst., 3 (2023), 112–120. https://doi.org/10.1016/j.iotcps.2023.03.002 doi: 10.1016/j.iotcps.2023.03.002
  • This article has been cited by:

    1. Muhammad Akram, Ghulam Muhammad, Tofigh Allahviranloo, Witold Pedrycz, Solution of initial-value problem for linear third-order fuzzy differential equations, 2022, 41, 2238-3603, 10.1007/s40314-022-02111-x
    2. Muhammad Akram, Ghulam Muhammad, Tofigh Allahviranloo, Ghada Ali, A solving method for two-dimensional homogeneous system of fuzzy fractional differential equations, 2023, 8, 2473-6988, 228, 10.3934/math.2023011
    3. Muhammad Akram, Ghulam Muhammad, Daud Ahmad, Analytical solution of the Atangana–Baleanu–Caputo fractional differential equations using Pythagorean fuzzy sets, 2023, 2364-4966, 10.1007/s41066-023-00364-3
    4. Muhammad Akram, Tayyaba Ihsan, Solving Pythagorean fuzzy partial fractional diffusion model using the Laplace and Fourier transforms, 2022, 2364-4966, 10.1007/s41066-022-00349-8
    5. Muhammad Akram, Ghulam Muhammad, Analysis of incommensurate multi-order fuzzy fractional differential equations under strongly generalized fuzzy Caputo’s differentiability, 2022, 2364-4966, 10.1007/s41066-022-00353-y
    6. Fazlollah Abbasi, Tofigh Allahviranloo, Muhammad Akram, A New Framework for Numerical Techniques for Fuzzy Nonlinear Equations, 2023, 12, 2075-1680, 222, 10.3390/axioms12020222
    7. Muhammad Akram, Ghulam Muhammad, Tofigh Allahviranloo, Explicit analytical solutions of an incommensurate system of fractional differential equations in a fuzzy environment, 2023, 645, 00200255, 119372, 10.1016/j.ins.2023.119372
    8. Awais Younus, Muhammad Asif, Usama Atta, Tehmina Bashir, Thabet Abdeljawad, Applications of fuzzy conformable Laplace transforms for solving fuzzy conformable differential equations, 2023, 27, 1432-7643, 8583, 10.1007/s00500-023-08181-1
    9. Muhammad Akram, Muhammad Yousuf, Muhammad Bilal, Solution method for fifth-order fuzzy initial value problem, 2023, 8, 2364-4966, 1229, 10.1007/s41066-023-00403-z
    10. Muhammad Akram, Ghulam Muhammad, Tofigh Allahviranloo, Witold Pedrycz, Incommensurate non-homogeneous system of fuzzy linear fractional differential equations using the fuzzy bunch of real functions, 2023, 473, 01650114, 108725, 10.1016/j.fss.2023.108725
    11. Ghulam Muhammad, Muhammad Akram, Fuzzy fractional epidemiological model for Middle East respiratory syndrome coronavirus on complex heterogeneous network using Caputo derivative, 2024, 659, 00200255, 120046, 10.1016/j.ins.2023.120046
    12. Ghulam Muhammad, Muhammad Akram, Fuzzy fractional generalized Bagley–Torvik equation with fuzzy Caputo gH-differentiability, 2024, 133, 09521976, 108265, 10.1016/j.engappai.2024.108265
    13. Hamzeh Zureigat, Mohammad A. Tashtoush, Ali F. Al Jassar, Emad A. Az-Zo’bi, Mohammad W. Alomari, Deng-Shan Wang, A Solution of the Complex Fuzzy Heat Equation in Terms of Complex Dirichlet Conditions Using a Modified Crank–Nicolson Method, 2023, 2023, 1687-9139, 1, 10.1155/2023/6505227
    14. Mourad Kchaou, G. Narayanan, M. Syed Ali, Sumaya Sanober, Grienggrai Rajchakit, Bandana Priya, Finite-time Mittag-Leffler synchronization of delayed fractional-order discrete-time complex-valued genetic regulatory networks: Decomposition and direct approaches, 2024, 664, 00200255, 120337, 10.1016/j.ins.2024.120337
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1914) PDF downloads(119) Cited by(3)

Figures and Tables

Figures(10)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog