Research article

A new fractional fuzzy dispersion entropy and its application in muscle fatigue detection

  • Received: 14 August 2023 Revised: 22 November 2023 Accepted: 03 December 2023 Published: 11 December 2023
  • Recently, fuzzy dispersion entropy (DispEn) has attracted much attention as a new nonlinear dynamics method that combines the advantages of both DispEn and fuzzy entropy. However, it suffers from limitation of insensitivity to dynamic changes. To solve this limitation, we proposed fractional fuzzy dispersion entropy (FFDispEn) based on DispEn, a novel fuzzy membership function and fractional calculus. The fuzzy membership function was defined based on the Euclidean distance between the embedding vector and dispersion pattern. Simulated signals generated by the one-dimensional (1D) logistic map were used to test the sensitivity of the proposed method to dynamic changes. Moreover, 29 subjects were recruited for an upper limb muscle fatigue experiment, during which surface electromyography (sEMG) signals of the biceps brachii muscle were recorded. Both simulated signals and sEMG signals were processed using a sliding window approach. Sample entropy (SampEn), DispEn and FFDispEn were separately used to calculate the complexity of each frame. The sensitivity of different algorithms to the muscle fatigue process was analyzed using fitting parameters through linear fitting of the complexity of each frame signal. The results showed that for simulated signals, the larger the fractional order q, the higher the sensitivity to dynamic changes. Moreover, DispEn performed poorly in the sensitivity to dynamic changes compared with FFDispEn. As for muscle fatigue detection, the FFDispEn value showed a clear declining tendency with a mean slope of −1.658 × 10−3 as muscle fatigue progresses; additionally, it was more sensitive to muscle fatigue compared with SampEn (slope: −0.4156 × 10−3) and DispEn (slope: −0.1675 × 10−3). The highest accuracy of 97.5% was achieved with the FFDispEn and support vector machine (SVM). This study provided a new useful nonlinear dynamic indicator for sEMG signal processing and muscle fatigue analysis. The proposed method may be useful for physiological and biomedical signal analysis.

    Citation: Baohua Hu, Yong Wang, Jingsong Mu. A new fractional fuzzy dispersion entropy and its application in muscle fatigue detection[J]. Mathematical Biosciences and Engineering, 2024, 21(1): 144-169. doi: 10.3934/mbe.2024007

    Related Papers:

  • Recently, fuzzy dispersion entropy (DispEn) has attracted much attention as a new nonlinear dynamics method that combines the advantages of both DispEn and fuzzy entropy. However, it suffers from limitation of insensitivity to dynamic changes. To solve this limitation, we proposed fractional fuzzy dispersion entropy (FFDispEn) based on DispEn, a novel fuzzy membership function and fractional calculus. The fuzzy membership function was defined based on the Euclidean distance between the embedding vector and dispersion pattern. Simulated signals generated by the one-dimensional (1D) logistic map were used to test the sensitivity of the proposed method to dynamic changes. Moreover, 29 subjects were recruited for an upper limb muscle fatigue experiment, during which surface electromyography (sEMG) signals of the biceps brachii muscle were recorded. Both simulated signals and sEMG signals were processed using a sliding window approach. Sample entropy (SampEn), DispEn and FFDispEn were separately used to calculate the complexity of each frame. The sensitivity of different algorithms to the muscle fatigue process was analyzed using fitting parameters through linear fitting of the complexity of each frame signal. The results showed that for simulated signals, the larger the fractional order q, the higher the sensitivity to dynamic changes. Moreover, DispEn performed poorly in the sensitivity to dynamic changes compared with FFDispEn. As for muscle fatigue detection, the FFDispEn value showed a clear declining tendency with a mean slope of −1.658 × 10−3 as muscle fatigue progresses; additionally, it was more sensitive to muscle fatigue compared with SampEn (slope: −0.4156 × 10−3) and DispEn (slope: −0.1675 × 10−3). The highest accuracy of 97.5% was achieved with the FFDispEn and support vector machine (SVM). This study provided a new useful nonlinear dynamic indicator for sEMG signal processing and muscle fatigue analysis. The proposed method may be useful for physiological and biomedical signal analysis.



    加载中


    [1] V. Khodadadi, F. N. Rahatabad, A. Sheikhani, N. J. Dabanloo, Nonlinear analysis of biceps surface EMG signals for chaotic approaches, Chaos Soliton Fract., 166 (2023), 112965. https://doi.org/10.1016/j.chaos.2022.112965 doi: 10.1016/j.chaos.2022.112965
    [2] X. Zhang, P. Zhou, Sample entropy analysis of surface EMG for improved muscle activity onset detection against spurious background spikes, J. Electromyogr. Kinesiology, 22 (2012), 901–907. https://doi.org/10.1016/j.jelekin.2012.06.005 doi: 10.1016/j.jelekin.2012.06.005
    [3] Z. Brari, S. Belghith, A new algorithm for largest Lyapunov exponent determination for noisy chaotic signal studies with application to Electroencephalographic signals analysis for epilepsy and epileptic seizures detection, Chaos Soliton Fract., 165 (2022), 112757. https://doi.org/10.1016/j.chaos.2022.112757 doi: 10.1016/j.chaos.2022.112757
    [4] S. B. He, K. H. Sun, R. X. Wang, Fractional fuzzy entropy algorithm and the complexity analysis for nonlinear time series, Eur. Phys. J. Special Topics, 227 (2018), 943–957. https://doi.org/10.1140/epjst/e2018-700098-x doi: 10.1140/epjst/e2018-700098-x
    [5] K. Harezlak, P. Kasprowski, Application of time-scale decomposition of entropy for eye movement analysis, Entropy, 22 (2020), 68. https://doi.org/10.3390/e22020168 doi: 10.3390/e22020168
    [6] S. Jia, B. Ma, W. Guo, Z. S. Li, A sample entropy based prognostics method for lithiumion batteries using relevance vector machine, J. Manuf. Sys., 61 (2021), 773–781. https://doi.org/10.1016/j.jmsy.2021.03.019 doi: 10.1016/j.jmsy.2021.03.019
    [7] J. Richman, J. Moorman, Physiological time-series analysis using approximate entropy and sample entropy, Am. J. Physiol. Heart Circ. Physiol., 278 (2000), H2039–H2049. https://doi.org/10.1152/ajpheart.2000.278.6.H2039 doi: 10.1152/ajpheart.2000.278.6.H2039
    [8] W. T. Chen, Z. Z. Wang, H. B. Xie, W. X. Yu, Characterization of surface EMG signal based on fuzzy entropy, IEEE Trans. Neural Syst. Rehabil. Eng., 15 (2007), 266–272. https://doi.org/10.1109/TNSRE.2007.897025 doi: 10.1109/TNSRE.2007.897025
    [9] M. Rostaghi, H. Azami, Dispersion Entropy: A measure for time-series analysis, IEEE Signal Proc. Let., 23 (2016), 610–614. https://doi.org/10.1109/LSP.2016.2542881 doi: 10.1109/LSP.2016.2542881
    [10] S. B. Jiao, B. Geng, Y. X. Li, Q. Zhang, Q. Wang, Fluctuation-based reverse dispersion entropy and its applications to signal classification, Appl. Acoust., 175 (2021), 107857. https://doi.org/10.1016/j.apacoust.2020.107857 doi: 10.1016/j.apacoust.2020.107857
    [11] H. Azami, M. Rostaghi, D. Abásolo, J. Escudero, Refined composite multiscale dispersion entropy and its application to biomedical signals, IEEE Trans. Bio-med. Eng., 64 (2017), 2872–2879. https://doi.org/10.1109/TBME.2017.2679136 doi: 10.1109/TBME.2017.2679136
    [12] S. Sharma, S. K. Tiwari, A novel feature extraction method based on weighted multi-scale fluctuation based dispersion entropy and its application to the condition monitoring of rotary machines, Mech. Syst. Signal Pr., 171 (2022), 108909. https://doi.org/10.1016/j.ymssp.2022.108909 doi: 10.1016/j.ymssp.2022.108909
    [13] C. J. Li, Y. C. Wu, H. J. Lin, J. M. Li, F. Zhang, Y. X. Yang, ECG denoising method based on an improved VMD algorithm, IEEE Sens J., 22 (2022), 22725–22733. https://doi.org/10.1109/JSEN.2022.3214239 doi: 10.1109/JSEN.2022.3214239
    [14] B. García-Martínez, A. Fernández-Caballero, R. Alcaraz, A. Martínez-Rodrigo, Application of dispersion entropy for the detection of emotions with electroencephalographic signals, IEEE T. Cogn. Dev. Syst., 14 (2022), 1179–1187. https://doi.org/10.1109/TCDS.2021.3099344 doi: 10.1109/TCDS.2021.3099344
    [15] E. Kafantaris, T. Y. M. Lo, J. Escudero, Stratified multivariate multiscale dispersion entropy for physiological signal analysis, IEEE Trans. Bio-med Eng., 70 (2023), 1024–1035. https://doi.org/10.1109/TBME.2022.3207582 doi: 10.1109/TBME.2022.3207582
    [16] Q. F. Wang, Y. Xiao, S. Wang, W. C. Liu, X. J. Liu, A method for constructing automatic rolling bearing fault identification model based on refined composite multi-scale dispersion entropy, IEEE Access, 9 (2021), 86412–86428. https://doi.org/10.1109/ACCESS.2021.3089251 doi: 10.1109/ACCESS.2021.3089251
    [17] M. Rostaghi, M. M. Khatibi, M. R. Ashory, H. Azami, Fuzzy dispersion entropy: A nonlinear measure for signal analysis, IEEE Trans. Fuzzy Syst., 30 (2021), 3785–3796. https://doi.org/10.1109/TFUZZ.2021.3128957 doi: 10.1109/TFUZZ.2021.3128957
    [18] Y. X. Li, B. Geng, B. Z. Tang, Simplified coded dispersion entropy: A nonlinear metric for signal analysis, Nonlinear Dyn., 111 (2023), 9327–9344. https://doi.org/10.1007/s11071-023-08339-4 doi: 10.1007/s11071-023-08339-4
    [19] J. P. Ugarte, J. A. Tenreiro Machado, C. Tobón, Fractional generalization of entropy improves the characterization of rotors in simulated atrial fibrillation, Appl. Math. Comput., 425 (2022), 127077. https://doi.org/10.1016/j.amc.2022.127077 doi: 10.1016/j.amc.2022.127077
    [20] A. D. Crescenzo, S. Kayal, A. Meoli, Fractional generalized cumulative entropy and its dynamic version, Commun. Nonlinear Sci., 102 (2021), 105899. https://doi.org/10.1016/j.cnsns.2021.105899 doi: 10.1016/j.cnsns.2021.105899
    [21] Y. Wang, P. J. Shang, Complexity analysis of time series based on generalized fractional order cumulative residual distribution entropy, Phys. A, 537 (2020), 122582. https://doi.org/10.1016/j.physa.2019.122582 doi: 10.1016/j.physa.2019.122582
    [22] J. T. Machado, Fractional order generalized information, Entropy, 16 (2014), 2350–2361. https://doi.org/10.3390/e16042350 doi: 10.3390/e16042350
    [23] S. R. Wang, H. Tang, B. Wang, J. Mo, Analysis of fatigue in the biceps brachii by using rapid refined composite multiscale sample entropy, Biomed. Signal Process., 67 (2021), 102510. https://doi.org/10.1016/j.bspc.2021.102510 doi: 10.1016/j.bspc.2021.102510
    [24] I. Yun, J. Jeung, Y. Song, Y. Chung, Non-Invasive quantitative muscle fatigue estimation based on correlation between sEMG signal and muscle mass, IEEE Access, 8 (2020), 191751–191757. https://doi.org/10.1109/ACCESS.2020.3029792 doi: 10.1109/ACCESS.2020.3029792
    [25] D. R. Rogers, D. T. MacIsaac, EMG-based muscle fatigue assessment during dynamic contractions using principal component analysis, J. Electromyogr. Kinesiology, 21 (2011), 811–818. https://doi.org/10.1016/j.jelekin.2011.05.002 doi: 10.1016/j.jelekin.2011.05.002
    [26] J. R. Mota-Carmona, F. Pérez-Escamirosa, A. Minor-Martínez, R. M. Rodríguez-Reyna, Muscle fatigue detection in upper limbs during the use of the computer mouse using discrete wavelet transform: A pilot study, Biomed. Signal Process., 76 (2022), 103711. https://doi.org/10.1016/j.bspc.2022.103711 doi: 10.1016/j.bspc.2022.103711
    [27] B. K. Barry, R. M. Enoka, The neurobiology of muscle fatigue: 15 years later, Integr. Comput. Biol., 47 (2007), 465–473. https://doi.org/10.1093/icb/icm047 doi: 10.1093/icb/icm047
    [28] W. K. Xu, B. Chu, E. Rogers, Iterative learning control for robotic-assisted upper limb stroke rehabilitation in the presence of muscle fatigue, Control Eng. Pract., 31 (2014), 63–72. https://doi.org/10.1016/j.conengprac.2014.05.009 doi: 10.1016/j.conengprac.2014.05.009
    [29] F. F. Wang, E. M. Yiu, Is surface Electromyography (sEMG) a useful tool in identifying muscle tension dysphonia? An integrative review of the current evidence, J. Voice, 10 (2021). https://doi.org/10.1016/j.jvoice.2021.10.006 doi: 10.1016/j.jvoice.2021.10.006
    [30] J. Hussain, K. Sundaraj, F. L. Yin, L. C. Kiang, S. Sundaraj, M. A. Ali, A systematic review on fatigue analysis in triceps brachii using surface electromyography, Biomed. Signal Process., 40 (2018), 396–414. https://doi.org/10.1016/j.bspc.2017.10.008 doi: 10.1016/j.bspc.2017.10.008
    [31] S. E. Jero, K. D. Bharathi, P. A. Karthick, S. Ramakrishnan, Muscle fatigue analysis in isometric contractions using geometric features of surface electromyography signals, Biomed. Signal Process., 68 (2021), 102603. https://doi.org/10.1016/j.bspc.2021.102603 doi: 10.1016/j.bspc.2021.102603
    [32] G. Y. Zhang, E. Morin, Y. X. Zhang, S. A. Etemad, Non-invasive detection of low-level muscle fatigue using surface EMG with wavelet decomposition, in 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (2018), 5648–5651. https://doi.org/10.1109/EMBC.2018.8513588
    [33] M. Cifrek, V. Medved, S. Tonković, S. Ostojić, Surface EMG based muscle fatigue evaluation in biomechanics, J Clin. Biomech., 24 (2009), 327–340. https://doi.org/10.1016/j.clinbiomech.2009.01.010 doi: 10.1016/j.clinbiomech.2009.01.010
    [34] W. W. Hu, Y. C. Huang, C. P. Li, Improved algorithm of muscle fatigue detection using linear regression analysis, Electron. Lett., 49 (2013), 89–91. https://doi.org/10.1049/el.2012.2316 doi: 10.1049/el.2012.2316
    [35] H. B. Xie, Z. Z. Wang, Mean frequency derived via Hilbert-Huang transform with application to fatigue EMG signal analysis, Comput. Methods Prog. Biomed., 82 (2006), 114–120. https://doi.org/10.1016/j.cmpb.2006.02.009 doi: 10.1016/j.cmpb.2006.02.009
    [36] H. B. Xie, J. Y. Guo, Y. P. Zheng, Fuzzy approximate entropy analysis of chaotic and natural complex systems: detecting muscle fatigue using electromyography signals, Ann. Biomed. Eng., 38 (2010), 1483–1496. https://doi.org/10.1007/s10439-010-9933-5 doi: 10.1007/s10439-010-9933-5
    [37] A. Shoeibi, M. Khodatars, M. Jafari, N. Ghassemi, P. Moridian, R. Alizadehsani, et al., Diagnosis of brain diseases in fusion of neuroimaging modalities using deep learning: A review, Inf. Fusion, 93 (2023), 85–117. https://doi.org/10.1016/j.inffus.2022.12.010 doi: 10.1016/j.inffus.2022.12.010
    [38] J. Murillo-Escobar, Y. E. Jaramillo-Munera, D. A. Orrego-Metaute, E. Delgado-Trejos, D. Cuesta-Frau, Muscle fatigue analysis during dynamic contractions based on biomechanical features and Permutation Entropy, Math. Biosci. Eng., 17 (2020), 2592–2615. https://doi.org/10.3934/mbe.2020142 doi: 10.3934/mbe.2020142
    [39] S. E. Jero, K. D. Bharathi, P. A. Karthick, S. Ramakrishnan, Muscle fatigue analysis in isometric contractions using geometric features of surface electromyography signals, Biomed. Signal Process., 68 (2021), 102603. https://doi.org/10.1016/j.bspc.2021.102603 doi: 10.1016/j.bspc.2021.102603
    [40] P. A. Karthick, D. M. Ghosh, S. Ramakrishnan, Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms, Comput. Methods Prog. Biomed., 154 (2018), 45–56. https://doi.org/10.1016/j.cmpb.2017.10.024 doi: 10.1016/j.cmpb.2017.10.024
    [41] J. H. Wang, Y. N. Sun, S. M. Sun. Recognition of muscle fatigue status based on improved wavelet threshold and CNN-SVM, IEEE Access, 8 (2020), 207914–207922. https://doi.org/10.1109/ACCESS.2020.3038422 doi: 10.1109/ACCESS.2020.3038422
    [42] J. H. Wang, S. M. Sun, Y. N. Sun, A muscle fatigue classification model based on LSTM and improved wavelet packet threshold, Sensors, 21 (2021), 6369. https://doi.org/10.3390/s21196369 doi: 10.3390/s21196369
    [43] A. Shoeibi, M. Rezaei, N. Ghassemi, Z. Namadchian, A. Zare, J. M. Gorriz, Automatic diagnosis of schizophrenia in EEG signals using functional connectivity features and CNN-LSTM model, in Proceedings of the International Work-Conference on the Interplay Between Natural and Artificial Computation (IWINAC), (2022), 63–73. https://doi.org/10.1007/978-3-031-06242-1_7
    [44] M. Jafari, D. Sadeghi, A. Shoeibi, H. Alinejad-Rokny, A. Beheshti, D. López-García, et al., Empowering precision medicine: AI-Driven schizophrenia diagnosis via EEG signals: A comprehensive review from 2002–2023, Appl. Intell., 2023 (2023), 1–45. https://doi.org/10.1007/s10489-023-05155-6 doi: 10.1007/s10489-023-05155-6
    [45] P. Chawla, S. B. Rana, H. Kaur, K. Singh, R. Yuvaraj, M. Murugappan, A decision support system for automated diagnosis of Parkinson's disease from EEG using FAWT and entropy features, Biomed. Signal Process., 79 (2023), 104116. https://doi.org/10.1016/j.bspc.2022.104116 doi: 10.1016/j.bspc.2022.104116
    [46] N. Makaram, P. A. Karthick, R. Swaminathan, Analysis of dynamics of EMG signal variations in fatiguing contractions of muscles using transition network approach, IEEE Trans. Instrum. Meas., 70 (2021), 4003608. https://doi.org/10.1109/TIM.2021.3063777 doi: 10.1109/TIM.2021.3063777
    [47] C. Tepe, M. C. Demir, Real-time classification of EMG Myo armband data using support vector machine, IRBM, 43 (2022), 300–308. https://doi.org/10.1016/j.irbm.2022.06.001 doi: 10.1016/j.irbm.2022.06.001
    [48] X. J. Wang, D. P. Dong, X. K. Chi, S. P. Wang, Y. N. Miao, M. L. An, et al., sEMG-based consecutive estimation of human lower limb movement by using multi-branch neural network, Biomed. Signal Process., 68 (2021), 102781. https://doi.org/10.1016/j.bspc.2021.102781 doi: 10.1016/j.bspc.2021.102781
    [49] J. R. Potvin, L. R. Bent, A validation of techniques using surface EMG signals from dynamic contractions to quantify muscle fatigue during repetitive tasks, J. Electromyogr. Kinesiology, 7 (1997), 131–139. https://doi.org/10.1016/S1050-6411(96)00025-9 doi: 10.1016/S1050-6411(96)00025-9
    [50] K. Dragomiretskiy, D. Zosso, Variational mode decomposition, IEEE Trans. Signal Process., 62 (2014), 531–544. https://doi.org/10.1109/TSP.2013.2288675 doi: 10.1109/TSP.2013.2288675
    [51] H. Ashraf, U. Shafiq, Q. Sajjad, A. Waris, O. Gilani, M. Boutaayamou, et al., Variational mode decomposition for surface and intramuscular EMG signal denoising, Biomed. Signal Process., 82 (2023), 104560. https://doi.org/10.1016/j.bspc.2022.104560 doi: 10.1016/j.bspc.2022.104560
    [52] S. H. Ma, B. Lv, C. Lin, X. J. Sheng, X. Y. Zhu, EMG signal filtering based on variational mode decomposition and sub-band thresholding, IEEE J. Biomed. Health., 25 (2021), 47–58. https://doi.org/10.1109/JBHI.2020.2987528 doi: 10.1109/JBHI.2020.2987528
    [53] D. L. Donoho, De-noising by soft-thresholding, IEEE Trans. Inf. Theory, 41 (1995), 613–627. https://doi.org/10.1109/18.382009 doi: 10.1109/18.382009
    [54] H. Ashraf, A. Waris, S. O. Gilani, M. U. Tariq, H. Alquhayz, Threshold parameters selection for empirical mode decomposition-based EMG signal denoising, Intell. Autom. Soft Comput., 27 (2021), 799–815. https://doi.org/10.32604/iasc.2021.014765 doi: 10.32604/iasc.2021.014765
    [55] S. Phatak, S. S. Rao, Logistic map: A possible random-number generator, Phys. Rev. E, 51 (1995), 3670. https://doi.org/10.1103/PhysRevE.51.3670 doi: 10.1103/PhysRevE.51.3670
    [56] L. Kahl, U. G. Hofmann, Comparison of algorithms to quantify muscle fatigue in upper limb muscles based on sEMG signals, Med. Eng. Phys., 38 (2016), 1260–1269. https://doi.org/10.1016/j.medengphy.2016.09.009 doi: 10.1016/j.medengphy.2016.09.009
    [57] Y. X. Li, B. Z. Tang, B. Geng, S. B. Jiao, Fractional order fuzzy dispersion entropy and its application in bearing fault diagnosis, Fractal Fract., 6 (2022), 544. https://doi.org/10.3390/fractalfract6100544 doi: 10.3390/fractalfract6100544
    [58] E. Z. Song, Y. Ke, C. Yao, Q. Dong, L. P. Yang, Fault diagnosis method for high-pressure common rail injector based on IFOA-VMD and hierarchical dispersion entropy, Entropy, 21 (2019), 923. https://doi.org/10.3390/e21100923 doi: 10.3390/e21100923
    [59] X. A. Yan, Y. D. Xu, M. P. Jia, Intelligent fault diagnosis of rolling-element bearings using a self-adaptive hierarchical multiscale fuzzy entropy, Entropy, 23 (2021), 1128. https://doi.org/10.3390/e23091128 doi: 10.3390/e23091128
    [60] R. J. Zhou, X. Wang, J. Wan, N. X. Xiong, EDM-Fuzzy: An Euclidean distance based multiscale fuzzy entropy technology for diagnosing faults of industrial systems, IEEE Trans. Ind. Inf., 17 (2021), 4046–4054. https://doi.org/10.1109/TII.2020.3009139 doi: 10.1109/TII.2020.3009139
    [61] A. Shoeibi, N. Ghassemi, M. Khodatars, P. Moridian, A. Khosravi, A. Zare, et al., Automatic diagnosis of schizophrenia and attention deficit hyperactivity disorder in RS-fMRI modality using convolutional autoencoder model and interval type-2 fuzzy regression, Cognit. Neurodyn., 17 (2023), 1501–1523. https://doi.org/10.1007/s11571-022-09897-w doi: 10.1007/s11571-022-09897-w
    [62] H. M. Qassim, W. Z. W. Hasan, H. R. Ramli, H. H. Harith, L. N. I. Mat, L. I. Ismail, Proposed fatigue index for the objective detection of muscle fatigue using surface electromyography and a double-step binary classifier, Sensors, 22 (2022), 1900. https://doi.org/10.3390/s22051900 doi: 10.3390/s22051900
    [63] K. D. Bharathi, P. A. Karthick, S. Ramakrishnan, Automated detection of muscle fatigue conditions from cyclostationary based geometric features of surface electromyography signals, Comput. Methods Biomech. Biomed. Eng., 25 (2022), 320–332. https://doi.org/10.1080/10255842.2021.1955104 doi: 10.1080/10255842.2021.1955104
    [64] N. Makaram, P. A. Karthick, V. Gopinath, R. Swaminathan, Surface Electromyography-based muscle fatigue analysis using binary and weighted visibility graph features, Fluctuation Noise Lett., 20 (2021), 2150016. https://doi.org/10.1142/S0219477521500164 doi: 10.1142/S0219477521500164
    [65] D. B. Krishnamani, P. A. Karthick, R. Swaminathan, Variational mode decomposition based differentiation of fatigue conditions in muscles using surface electromyography signals, IET Signal Process., 14 (2021), 745–753. https://doi.org/10.1049/iet-spr.2020.0315 doi: 10.1049/iet-spr.2020.0315
    [66] D. Sasidharan, V. Gopinath, R. Swaminathan, A proposal to analyze muscle dynamics under fatiguing contractions using surface Electromyography signals and fuzzy recurrence network features, Fluctuation Noise Lett., 22 (2023), 2350033. https://doi.org/10.1142/S0219477523500335 doi: 10.1142/S0219477523500335
    [67] D. Sasidharan, V. Gopinath, R. Swaminathan, Complexity analysis of surface Electromyography signals under fatigue using Hjorth parameters and bubble entropy, J. Mech. Med. Biol., 23 (2023), 2340051. https://doi.org/10.1142/S0219519423400511 doi: 10.1142/S0219519423400511
    [68] A. Greco, G. Valenza, A. Bicchi, M. Bianchi, E. P. Scilingo, Assessment of muscle fatigue during isometric contraction using autonomic nervous system correlates, Biomed. Signal Process., 51 (2019), 42–49. https://doi.org/10.1016/j.bspc.2019.02.007 doi: 10.1016/j.bspc.2019.02.007
    [69] W. D. Wang, H. H. Li, D. Z. Kong, M. H. Xiao, P. Zhang, A novel fatigue detection method for rehabilitation training of upper limb exoskeleton robot using multi-information fusion, Int. J. Adv. Robot Syst., 17 (2020), 1–11. https://doi.org/10.1177/1729881420974295 doi: 10.1177/1729881420974295
    [70] S. R. Wang, H. Tang, B. Wang, J. Mo, A novel approach to detecting muscle fatigue based on sEMG by using neural architecture search framework, IEEE Trans. Neural Network Learn., 34 (2023), 4932–4943. https://doi.org/10.1109/TNNLS.2021.3124330 doi: 10.1109/TNNLS.2021.3124330
    [71] S. K. Chen, K. L. Xu, X. W. Yao, J. Ge, L. Li, S. Y. Zhu, et al., Information fusion and multi-classifier system for miner fatigue recognition in plateau environments based on electrocardiography and electromyography signals, Comput. Methods Programs Biomed., 211 (2021), 106451. https://doi.org/10.1016/j.cmpb.2021.106451 doi: 10.1016/j.cmpb.2021.106451
    [72] S. K. Chen, K. L. Xu, X. W. Yao, S. Y. Zhu, B. H. Zhang, H. D. Zhou, et al., Psychophysiological data-driven multi-feature information fusion and recognition of miner fatigue in high-altitude and cold areas, Comput. Biol. Med., 133 (2021), 104413. https://doi.org/10.1016/j.compbiomed.2021.104413 doi: 10.1016/j.compbiomed.2021.104413
    [73] Q. Liu, Y. Liu, C. S. Zhang, Z. L. Ruan, W. Meng, Y. L. Cai, et al., SEMG-based dynamic muscle fatigue classification using SVM with improved whale optimization algorithm, IEEE Int. Things, 8 (2021), 16835–16844. https://doi.org/10.1109/JIOT.2021.3056126 doi: 10.1109/JIOT.2021.3056126
    [74] J. X. Liu, Q. Tao, B. Wu, Dynamic muscle fatigue state recognition based on deep learning fusion model, IEEE Access, 11 (2023), 95079–95091. https://doi.org/10.1109/ACCESS.2023.3309741 doi: 10.1109/ACCESS.2023.3309741
    [75] J. R. Suganthi, K. Rajeswari, Evaluation of muscle fatigue based on SEMG using deep learning techniques, in 2023 5th International Conference on Inventive Research in Computing Applications (ICIRCA), (2023), 1–6. https://doi.org/10.1109/ICIRCA57980.2023.10220926
    [76] Y. Q. Zhang, S. Y. Chen, W. P. Cao, P. Guo, D. R. Gao, M. Q. Wang, et al., MFFNet: Multi-dimensional feature fusion network based on attention mechanism for sEMG analysis to detect muscle fatigue, Exp. Syst. Appl., 185 (2021), 115639. https://doi.org/10.1016/j.eswa.2021.115639 doi: 10.1016/j.eswa.2021.115639
    [77] Y. K. Dang, Z. T. Liu, X. X. Yang, L. Q. Ge, S. Miao, A fatigue assessment method based on attention mechanism and surface electromyography, Int. Things Cyber-Phys. Syst., 3 (2023), 112–120. https://doi.org/10.1016/j.iotcps.2023.03.002 doi: 10.1016/j.iotcps.2023.03.002
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(835) PDF downloads(74) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog