Citation: Ge Zhu, Xu Zhang, Xiao Tang, Xiang Chen, Xiaoping Gao. Examining and monitoring paretic muscle changes during stroke rehabilitation using surface electromyography: A pilot study[J]. Mathematical Biosciences and Engineering, 2020, 17(1): 216-234. doi: 10.3934/mbe.2020012
[1] | S. Mendis, Stroke disability and rehabilitation of stroke: World Health Organization perspective,Int. J. Stroke, 8 (2013), 3-4. |
[2] | D. T. Wade, Measurement in neurological rehabilitation, Curr. Opin. Neurol., 5 (1992), 682-686. |
[3] | P. Langhorne, F. Coupar and A. Pollock, Motor recovery after stroke: A systematic review, Lancet Neurol., 8 (2009), 741-754. |
[4] | G. Kwakkel, B. Kollen and E. Linderman, Understanding the pattern of functional recovery after stroke: facts and theories, Restor. Neurol. Neurosci., 22 (2004), 281-299. |
[5] | R. H. Nijland, E. Wegen, H. Wel, et al., Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery. Early prediction of functional outcome after stroke: the EPOS cohort study, Stroke, 41 (2010), 745-750. |
[6] | R. H. Nijland, E. Wegen, J. Verbunt, et al., A comparison of two validated tests for upper limb function after stroke: the Wolf Motor Function Test and the Action Research Arm Test, J. Rehabil. Med., 42 (2010), 694-696. |
[7] | L. Brewer, F. Horgan, A. Hickey, et al., Stroke rehabilitation: Recent advances and future therapies, QJM, 106, (2013), 11-25. |
[8] | R. Dattola, P. Girlanda, G. Vita, et al., Muscle rearrangement in patients with hemiparesis after stroke: an electrophysiological and morphological study, Eur. Neurol., 33 (1993), 109-114. |
[9] | R. P. Segura and V. Sahgal, Hemiplegic atrophy: Electrophysiological and morphological studies, Muscle Nerve, 4 (1981), 246-248. |
[10] | C. W. Chang, Evident trans-synaptic degeneration of motor neurons after stroke: A study of neuromuscular jitter by axonal microstimulation, Electroencephalogr. Clin. Neurophysiol, 109 (1998), 199-202. |
[11] | M. Lukács, L. Vécsei and S. Beniczky, Changes in muscle fiber density following a stroke, Clin. Neurophysiol., 120 (2009), 1539-1542. |
[12] | C. Bérard, C. Payan, J. Fermanian, et al., A motor function measure scale for neuromuscular diseases. Construction and validation study, Neuromuscular Disorders, 15 (2005), 463-470. |
[13] | S. Brunnstrom and D. Carson, Movement therapy in hemiplegia: A neurophysiological approach, Gerontologist, 12 (1970). |
[14] | A. R. Fugl-Meyer, L. Jaasko, I. Leyman, et al., The poststroke hemiplegic patient. 1. A method for evaluation of physical performance, Scand. J. Rehabil. Med., 7 (1975), 13-31. |
[15] | F. I. Mahoney, Functional evaluation (the Barthel Index), Md. State Med. J., 14 (1965), 61-65. |
[16] | T. Brott, H. P. Adams, C. P. Olinger, et al., Measurements of acute cerebral infarction: A clinical examination scale, Stroke, 20 (1989), 864-870. doi: 10.1161/01.STR.20.7.864 |
[17] | T. Brott, J. R. Marler, C. P. Olinger, et al., Measurements of acute cerebral infarction: Lesion size by computed tomography, Stroke, 20 (1989), 871-875. |
[18] | P. Lyden, T. Brott, B. Tilley, et al., Improved reliability of the NIH Stroke Scale using video training. NINDS TPA Stroke Study Group, Stroke,25 (1994), 2220-2226. |
[19] | A. Fugl-Meyer, L. Jaasko, S. Olsson, et al., The post-stroke hemiplegic patient-Part1: A method for evaluation of physical performance, Scand. J. Rehabil. Med., 7 (1975), 13-31. |
[20] | D. Gladstone, C. Danells and S. Black, The Fugl-Meyer assessment of motor recovery after stroke: A critical review of its measurement properties, Neurorehabil. Neural Repair, 16 (2002), 232-240. |
[21] | T. Adel and D. Stashuk, Clinical Quantitative Electromyography, in Electrodiagnosis in New Frontiers of Clinical Research,IntechOpen, (2013). |
[22] | M. Lukács, Electrophysiological signs of changes in motor units after ischaemic stroke, Clin. Neurophysiol., 116 (2005), 1566-1570. |
[23] | T. Artuğ, O. Osman, İ. Göker, et al., Classification of neuromuscular diseases in neuromuscular junction and tendon recordings with needle EMG by using Welch's method, Med. Technol. Nat. Congress IEEE, (2017), 1-4. |
[24] | C. S. Bickel, C. M. Gregory and J. C. Dean, Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal, Eur. J. Appl. Physiol., 111 (2011), 2399. |
[25] | C. A. Knight and G. Kamen, Superficial motor units are larger than deeper motor units in human vastus lateralis muscle, Muscle Nerve, 31(2005), 475-480. |
[26] | P. Sbriccoli, F. Felici, A. Rosponi, et al., Exercise induced muscle damage and recovery assessed by means of linear and non-linear sEMG analysis and ultrasonography, J. Electromyogr. Kinesiol., 11 (2001), 73-83. |
[27] | A. Holtermann, C. Grönlund, J. S. Karlsson, et al., Motor unit synchronization during fatigue: described with a novel sEMG method based on large motor unit samples, J. Electromyogr. Kinesiol., 19 (2009), 232-241. |
[28] | F. Palermo, M. Cognolato, A. Gijsberts, et al., Repeatability of grasp recognition for robotic hand prosthesis control based on sEMG data, IEEE Int. Conf. Rehabil. Robot, (2017), 1154. |
[29] | J. Y. Hogrel, Clinical applications of surface electromyography in neuromuscular disorders, Neurophysiol. Clin., 35 (2005), 59-71. |
[30] | C. J. Luca, Physiology and mathematics of myoelectric signals, IEEE Trans. Biomed. Eng., 26 (1979), 313-325. |
[31] | X. Li, A. Suresh, P. Zhou, et al., Alterations in the peak amplitude distribution of the surface electromyogram poststroke, IEEE Trans. Biomed. Eng., 60 (2013), 845-852. doi: 10.1109/TBME.2012.2205249 |
[32] | B. Yao, X. Zhang, S. Li, et al., Analysis of linear electrode array EMG for assessment of hemiparetic biceps brachii muscles, Front. Hum. Neurosci., 9 (2015), 569. |
[33] | S. Karlsson and B. Gerdle, Mean frequency and signal amplitude of the surface EMG of the quadriceps muscles increase with increasing torque-a study using the continuous wavelet transform, J. Electromyogr. Kinesiol.,11 (2001), 131-140. |
[34] | X. Li, H. Shin, P. Zhou, et al., Power spectral analysis of surface electromyography (EMG) at matched contraction levels of the first dorsal interosseous muscle in stroke survivors, Clin. Neurophysiol., 125 (2014), 988-994. |
[35] | N. S. Arikidis, E. W. Abel and A. Forster, Interscale wavelet maximum-a fine to coarse algorithm for wavelet analysis of the EMG interference pattern, IEEE Trans. Biomed. Eng., 49 (2002), 337-344. |
[36] | A. I. Meigal, S. Rissanen, M. P. Tarvainen, et al., Novel parameters of surface EMG in patients with Parkinson's disease and healthy young and old controls, J. Electromyogr. Kinesiol., 19 (2009), 206-213. |
[37] | W. Chen, Z. Wang, H. Xie, et al., Characterization of surface EMG signal based on fuzzy entropy, IEEE Trans. Neural Syst. Rehabil. Eng., 15(2007), 266-272. |
[38] | P. A. Kaplanis, C. S. Pattichis and D. Zazula, Multiscale entropy-based approach to automated surface EMG classification of neuromuscular disorders, Med. Biol. Eng. Comput., 48 (2010), 773-781. |
[39] | X. Zhang, P. E. Barkhaus, W. Z. Rymer, et al., Machine learning for supporting diagnosis of amyotrophic lateral sclerosis using surface electromyogram, IEEE Trans. Neural Syst. Rehabil. Eng., 22 (2014), 96-103. doi: 10.1109/TNSRE.2013.2274658 |
[40] | M. Higashihara, M. Sonoo, T. Yamamoto, et al., Evaluation of spinal and bulbar muscular atrophy by the clustering index method, Muscle Nerve, 44 (2011), 539-546. |
[41] | X. Zhang, Z. Wei, X. Ren, et al., Complex Neuromuscular changes post-stroke revealed by clustering index analysis of surface electromyogram, IEEE Trans. Neural Syst. Rehabil. Eng., 25 (2017), 2105-2112. doi: 10.1109/TNSRE.2017.2707582 |
[42] | J. M. Gregson, M. Leathley, A. P. Moore, et al., Reliability of the tone assessment scale and the modified ashworth scale as clinical tools for assessing poststroke spasticity, Arch. Phys. Med. Rehabil., 80 (1999), 1013-1016. |
[43] | C. Huang, X. Chen, S. Cao, et al., An isometric muscle force estimation framework based on a high-density surface EMG array and an NMF algorithm, J. Neural Eng., 14 (2017), 046005. doi: 10.1088/1741-2552/aa63ba |
[44] | W. Tang, X. Zhang, X. Tang, et al., surface electromyographic examination of Poststroke neuromuscular changes in Proximal and Distal Muscles Using clustering index analysis, Front. Neurol., 8 (2018), 731. |
[45] | X. Tang, X. Zhang, X. Gao, et al., A novel interpretation of sample entropy in surface electromyographic examination of complex neuromuscular alternations in subacute and chronic stroke, IEEE Trans. Neural Syst. Rehabil. Eng., 26 (2018), 1878-1888. doi: 10.1109/TNSRE.2018.2864317 |
[46] | P. W. Hodges and B. H. Bui, A comparison of computer-based methods for the determination of onset of muscle contraction using electromyography, Electroencephalogr. Clin. Neurophysiol., 101 (1996), 511-519. |
[47] | H. Uesugi, M. Sonoo, E. Stålberg, et al., "Clustering Index method": A new technique for differentiation between neurogenic and myopathic changes using surface EMG, Clin. Neurophysiol., 122 (2011), 1032-1041. |
[48] | X. Zhang and P. Zhou, Clustering index analysis of the surface electromyogram poststroke, International IEEE/EMBS Conference on Neural Engineering, (2013), 1586-1589. |
[49] | J. H. Lawrence and C. J. Luca, Myoelectric signal versus force relationship in different human muscles, J. Appl. Physiol. Respir. Environ. Exerc. Physiol., 54 (1983), 1653-1659. |
[50] | X. L. Hu, K. Y. Tong and L. K. Hung, Firing properties of motor units during fatigue in subjects after stroke, J. Electromyogr. Kinesiol.,16 (2006), 469-476. |
[51] | M. S. Fimland, P. M. Moen, T. Hill et al., Neuromuscular performance of paretic versus non-paretic plantar flexors after stroke, Eur. J. Appl. Physiol., 111 (2011), 3041-3049. |
[52] | A. C. Martinez, F. Campo, M. R. Mingo, et al., Altered motor unit architecture in hemiparetic patients. A single fibre EMG study, J. Neurol. Neurosurg. Psychiatry, 45 (1982), 756. |
[53] | S. Chokroverty, M. G. Reyes, F. A. Rubino, et al., Hemiplegic amyotrophy: Muscle and motor point biopsy study, Arch. Neurol., 33 (1976), 104-110. |
[54] | Y. Hara, Y. Masakado and N. Chino, The physiological functional loss of single thenar motor units in the stroke patients: when does it occur? Does it progress?,Clin. Neurophysiol., 115 (2004), 97-103. |
[55] | J. J. Gemperline, S. Allen, D. Walk, et al., Characteristics of motor unit discharge in subjects with hemiparesis, Muscle Nerve, 18 (1995), 1101-1114. |
[56] | X. Li, A. Holobar, M. Gazzoni, et al., Examination of poststroke alteration in motor unit firing behavior using high-density surface EMG decomposition, IEEE Trans. Biomed. Eng, 62 (2015), 1242-1252. |
[57] | A. K. Datta, S. F. Farmer and J. A. Stephens, Central nervous pathways underlying synchronization of human motor unit firing studied during voluntary contractions, J. Physiol., 432 (1991), 401-425. |
[58] | I. Hausmanowa-Petrusewicz and J. Kopec, EMG parameters changes in the effort pattern at various loads in diseased muscle, Electromyogr. Clin. Neurophysiol., 23 (1983), 213-228. |
[59] | P. Zhou, N. L. Suresh and W. Z. Rymer, Model based sensitivity analysis of EMG-force relation with respect to motor unit properties: applications to muscle paresis in stroke, Ann. Biomed. Eng., 35 (2007), 1521-1531. |
[60] | M. Lukacs, L. Vécsei and S. Beniczky, Large motor units are selectively affected following a stroke, Clin. Neurophysiol., 119 (2008), 2555-2558. |
[61] | E. Stalberg, Electrogenesis in human dystrophic muscle, In: L. P. Rowland,Pathogenesis of human muscular dystrophies, (1977), 570-587. |
[62] | R. Dengler, R. B. Stein and C. K. Thomas, Axonal conduction velocity and force of single human motor units, Muscle Nerve, 11 (1988), 136-145. |
[63] | J. Xi, A. Li and M, Wang, A novel unsupervised learning model for detecting driver genes from pan-cancer data through matrix tri-factorization framework with pairwise similarities constraints, Neurocomputing, 296 (2018), 64-73. |
[64] | Q. Huang, X. Huang, Z. Kong, et al., Bi-Phase evolutionary searching for biclusters in gene expression data,IEEE Trans. Evol. Comput.,In press, (2018). |
[65] | Q. Huang, D. Tao, X. Li, et al., Parallelized evolutionary learning for detection of biclusters in gene expression data, IEEE/ACM Trans. Comput. Biol. Bioinform.,9 (2012), 560-570. |
[66] | G. Singh and L. Samavedham, Unsupervised learning based feature extraction for differential diagnosis of neurodegenerative diseases: A case study on early-stage diagnosis of Parkinson disease,J. Neurosci. Methods, 256 (2015), 30-40. |