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Abstract: Complex neuromuscular changes have been reported to occur in paretic muscles following 

stroke, but whether and how they can recover under rehabilitation therapy remain unclear. A tracking 

analysis protocol needs to be designed involving multiple sessions of surface electromyography 

(sEMG) examinations during the rehabilitation procedure. Following such a protocol, this pilot study 

is aimed to monitor paretic muscle changes using three sEMG indicators namely clustering index 

(CI), root mean square (RMS) and medium frequency (MDF). Initially, a single sEMG examination 

was performed on the abductor pollicis brevis (APB) muscle on both sides of 23 subjects with stroke 

and one side of 18 healthy control subjects. With these data to establish CI diagnostic criterion, the 

paretic muscles of all subjects with stroke showed a very board CI distribution pattern from 

abnormally low values through normality to abnormally high values. Afterwards, 9 out of 23 subjects 

with stroke had their paretic muscles examined at least twice before and after the treatment. Almost 

all paretic muscles had an increase of the RMS, a change of the MDF approaching to the value of the 

contralateral muscle, and a change of the CI returning to its normal range after common 

rehabilitation treatments. Finally, 4 of the 9 subjects with stroke participated into repeated 

examinations of their paretic muscles. The combined use of three indicators helped to reveal specific 

neuromuscular processes contributing to recovery of paretic muscles, due to their complementary 

diagnostic powers. Furthermore, neuromuscular processes were found to vary across subjects in type, 

order and timing during rehabilitation. In conclusion, given the 4 cases following the tracking 

analysis protocol, this pilot study preliminarily demonstrates usability of three sEMG indicators as 

tools for examining and monitoring stroke rehabilitation procedure in terms of improvements of 

paretic muscle changes. All the revealed complex neuromuscular processes imply the necessity of 
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applying sEMG examinations in monitoring rehabilitation procedure, with the potential of 

offering important guidelines for designing better and individualized protocols toward improved 

stroke rehabilitation. 

Keywords: paretic muscle monitoring; surface electromyography; neuromuscular changes; stroke 

rehabilitation; noninvasive examination 

 

Abbreviations: sEMG: surface electromyography; CI: clustering index; RMS: root mean square; 

MDF: medium frequency; APB: abductor pollicis brevis; B stage: Brunnstrom stage; F-M: 

Fugl-Meyer; EMG: electromyography; MU: motor unit; MUAP: motor unit action potential; 

MAS: modified Ashworth scale; MVC: maximal voluntary contraction; Rm: mean residual; SD: 

standard deviation 

1. Introduction  

Stroke is the leading cause of acquired disability in adults in most countries [1]. Two-thirds of 

stroke survivors suffer from moderate or severe disability within five years, with various 

body-functioning impairments including muscle weakness, spasticity, and abnormal motor 

coordination, which have disproportionate impact on the living quality of patients with stroke [2,3]. 

Although neurological damage is often irreversible, motor function is proven to probably recover 

well with effective rehabilitation intervention as early as possible [4–6]. As stroke population has 

been growing, the urgent demand of rehabilitation health-care has driven substantial amount of 

researches into understanding mechanisms associated with complex neuromuscular processes of 

post-stroke rehabilitation [7–11].  

A varieties of scales have been routinely used to evaluate motor function, mainly from its 

macroscopic appearance [12], including Brunnstrom stage (B stage) [13], Fugl-Meyer (F-M) 

Assessment [14], Barthel Index [15], and National Institutes of Health Stroke Scale [16–18]. 

Although tracking assessment could be easily performed by various clinical scales to monitor the 

improvement of motor function, it gives relatively subjective diagnosis as a result of lack in 

consensus between assessors [19]. More importantly, it only evaluates the degree of recovery for 

motor function [20] rather than provide sufficient information concerning recovery mechanism. 

Therefore, development of quantitative assessment methods, which can be used to evaluate motor 

performance as well as to explore the rehabilitation mechanisms of both central and peripheral 

nervous system, is driven by the aims at improved rehabilitation. 

Noting that motor unit (MU) is the most basic functional unit and final pathway of 

neuromuscular control. Its structure, function and control property alternations are direct causes of 

motor impairment [21]. Thus it is of great importance to identify pathological changes in MU 

following stroke. Both bioptic studies [8,9] and clinical electromyographic studies (e.g., concentric 

needle electromyography (EMG) [22,23], electrical stimulation [24] and macro-EMG [25], etc) have 

been continuously conducted in this direction. These studies draw contradictory conclusions on 

involvement of spinal motoneurons and MUs after stroke, indicating their underlying complex 

mechanisms. Recently, more evidences have demonstrated that spinal motoneurons can be affected 

as a result of central motoneuron damage after stroke, leading to considerable denervation and 
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therefore re-innervation [8–11]. In these studies, however, invasive or painful procedures are 

involved. Thus, they are not suitable for multi-site measurement and long-term monitoring. 

Moreover, implementation of these techniques always requires participation of medical professionals, 

which restricts their wide applications in community or home.  

Surface EMG (sEMG), as an alternative approach for electrophysiological examination, has 

attracted much research interest due to its noninvasive manner of measurement [26–28]. Although 

the sEMG always measures signals with lower signal-to-noise ratios than the invasive/needle EMG 

technique, it has all the basic research significance and clinical application potentials. Therefore, it is 

crucial to develop an algorithm to interpret the information convoyed in sEMG recordings effectively. 

Multiple methods for extracting information related to MU from sEMG has been proposed in broad 

research programs for clinical examination and diagnosis of neuromuscular diseases [27,28]. Simple 

amplitude-associated parameters such as root mean square (RMS) [29], mean rectified value [30], 

and peak amplitude distribution [31] can be used to illustrate the magnitude of muscle strength. 

Frequency-domain parameters such as median frequency (MDF) [32] and mean frequency [29,33] 

can be used for assessment of neuromuscular changes resulted from both peripheral and central 

factors. As reported in literature, the changes in spectral structure of sEMG may be associated with 

alternations of MUs in structure and type and their central control properties, i.e., the simultaneous 

firing of motor unit action potential (MUAP), the firing rate and the change of recruitment mode [34]. 

In addition, some researchers use time-frequency parameters (e.g., wavelet transform [35]) and 

nonlinear parameters (e.g., entropy [36–38]) to extract information related to MU alternations 

from sEMG. 

In recent years, clustering index (CI) analysis has been further confirmed to have high 

sensitivity to quantitatively discriminate neurogenic and myopathic changes [39,40]. Compared with 

the other sEMG analyses reporting differences at the group level, CI has capability of producing 

diagnostic decisions at the individual muscle level. Our previous work [41] adopted the CI method to 

explore the complex neuromuscular changes post-stroke, presenting possible contributors of MU 

alternations to neurogenic changes and myopathic changes. However, most studies including our 

previous work mainly focused on neuromuscular change examination at a single time point rather 

than tracking or monitoring the improvement of neuromuscular status during rehabilitation. 

Specifically, rehabilitation is a long-term process during which its mechanisms underlying muscle 

function recovery still remain unknown. Therefore, it is necessary to conduct continuous 

monitoring of the rehabilitation procedure so as to offer better understandings regarding 

recovery of paretic muscles. 

Beyond the previous findings mentioned above, we further hypothesize that there are complex 

and neuromuscular processes underlying the improvement of pathological changes as a result of 

stroke during the rehabilitation procedure, and that these processes can be effectively visualized by 

sEMG indicators such as CI, RMS and MDF. In order to verify this hypothesis, the paretic muscles 

were continuously monitored in this study by sEMG examination during the rehabilitation procedure. 

The usability of these sEMG indicators was confirmed in examining complex neuromuscular 

changes in patients with stroke during rehabilitation. Moreover, the combination of these indicators 

was found to provide a more comprehensive insight to underlying mechanisms concerning 

neuromuscular alternations and their recovery. Through four cases in this pilot study, complex and 

different neuromuscular processes were illustrated during the monitored rehabilitation procedure, and 

the order and timing of these neuromuscular processes varied across individuals. Our attempts at 
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sEMG tracking analysis successfully provides a noninvasive and convenient approach to evaluate the 

improvement of complex post-stroke neuromuscular changes during rehabilitation process at the 

individual level, thus offering better guideline for specifical design of more individualized 

rehabilitation protocol. 

Table 1. Demographic information of the stroke subjects. 

ID 

# 
Sex 

Age 

(years) 

Duration 

(days) 

Paretic 

side 

Dominant 

side 

B 

stage 
F-M MAS 

S1 F 51–55 702 R R 4 40 0 

S2 M 76–80 99 L R 3 33 0 

S3 M 46–50 48 L R 2 27 0 

S4 M 71–75 28 L R 2 15 0 

S5 M 56–60 72 L R 4 21 0 

S6 F 81–85 39 R R 3 32 0 

S7 M 56–60 45 R R 4 12 0 

S8 M 61–65 27 L R 2 20 0 

S9 M 51–55 57 R R 3 4 0 

S10 M 71–75 31 L R 4 39 0 

S11 F 76–80 224 L R 3 21 0 

S12 F 51–55 58 L R 3 35 0 

S13 M 61–65 57 R R 2 4 0 

S14 M 61–65 43 L R 4 45 0 

S15 M 41–45 45 R R 1 2 0 

S16 M 51–55 154 L R 5 45 0 

S17 M 81–85 36 L R 5 55 0 

S18 M 46–50 35 L R 4 43 1 

S19 M 56–50 74 R R 2 23 0 

S20 F 56–60 410 L R 5 50 0 

S21 F 51–55 40 R R 2 25 0 

S22 M 46–50 80 R R 5 55 0 

S23 M 56–60 42 L R 4 44 0 

B stage: Brunnstrom stage; F-M: upper extremity Fugl-Meyer assessment; MAS: modified 

Ashworth scale 

2. Materials and method 

2.1. Subjects 

Twenty-three subjects with stroke (S1–S23, age: 60 ± 11 years old, ranging from 46–82 years 

old), 7 age-matched eldly healthy control subjects (C1–C7, age: 60 ± 5 years old, ranging from 

55–67 years old) and 11 younger healthy control subjects (C8–C18, age: 24 ± 2 years old, ranging 

from 22–30 years old) participated in this study. All subjects with stroke were recruited from the 

inpatient department of rehabilitation medicine in the First Affiliated Hospital of Anhui Medical 
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University (Hefei, Anhui Province, China). This study was approved by the Ethic Review Committee 

of the hospital. All stroke patients were diagnosed by Computed Tomography or Magnetic 

Resonance Imaging scan and confirmed no brain trauma or other neurological diseases (such as 

multiple sclerosis). For each stroke patient, clinical assessment was performed by the same clinician 

before the experiment. Both the F-M scale and the modified Ashworth scale (MAS) [42] were used 

to assess motor function and muscle spasticity of the affected upper-extremities of the subjects with 

stroke, as shown in Table 1. All the control subjects were healthy volunteers without any known 

history of neural or muscular disorder. All subjects gave their informed and signed consent before 

any experimental procedure. 

2.2. Experiments protocol 

The abductor pollicis brevis (APB) muscle of the thenar eminence was examined by performing 

thumb abduction (corresponding to the main APB function) in this study. Due to its superficial 

location, the APB muscle was targeted by two Ag/AgCl disc surface electrodes (10 mm in diameter, 

JK-1A, JunKang Inc., Shanghai, China) placed over the thenar eminence along muscle fiber at a 

center-to-center distance of 20mm. A large round reference electrode (Dermatrode; American Imex, 

Irvine, CA) was placed on the back of the hand on the same side. A self-made sEMG recoding 

system was built with a two-stage amplifier at a total gain of 60dB and a band-pass filter at 20–500 

Hz. This system is the same with the one used in our previous studies with sufficient validation 

through scientific research [43–45]. The recorded sEMG signals were further digitized in a 24-bit 

A/D converter (ADS1299, Texas Instruments, TX) with a sample rate of 1 kHz, and displayed on 

the screen of the computer in a real-time manner to monitor the signal quality and then stored for 

offline analysis.   

The experiments had a protocol to conduct multiple sessions of sEMG examinations for all 

stroke subjects during their inpatient rehabilitation period, which was expected to be two months. 

During hospitalization, patients receive appropriate physiotherapy according to their doctor's 

prescription every morning and afternoon. According to the course of treatment, we chose 

appropriate time slots to carry out the experiment. Specifically, the execution session of each 

examination was scheduled two hours before and after the physiotherapeutic treatment, to ensure 

sufficient rest for the subjects and to avoid temporary changes of MU properties just following the 

physiotherapy. Moreover, the frequency of repeated examinations was designed to be once per week. 

In fact, each of the 23 subjects with stroke (S1–S23) participated into at least one session of the 

examination scheduled at the beginning of the treatment, where muscles on both sides were 

examined. However, the specific experimental arrangement was restricted by many factors such as 

time convenience of the subjects. By overcoming difficulties from many parties, 9 of the 23 subjects 

with stroke (S1–S9) had their paretic muscles examined at least twice, scheduled right at the 

beginning and the end of the treatment. Finally, 4 of the 9 subjects with stroke (S1–S4) truly 

completed multiple sessions of sEMG examinations of the paretic muscles during their inpatient 

rehabilitation treatments. In fact, the number of completed examinations for S1–S4 is 6, 10, 9 and 9, 

respectively. Each of 18 control subjects (C1–C18) was asked to participate into just a single session 

of examination, where the subject’s dominant side or non-dominant side was randomly selected. 

In order to reduce the interference of environmental noises, experiments were carried out in a 

quiet testing room. During a single session of the examination, subjects were comfortably seated 
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with their tested arm bent approximately 90 degrees and placed on a height-adjustable table. The 

palm of the tested hand should keep flat toward the body, while natural and slight finger flexion was 

allowed. After securely placing the EMG electrodes, the subjects were then instructed to perform 

thumb abduction by resisting the force exerted by the experimenter. Maximum voluntary contraction 

(MVC) of each tested muscle was roughly perceived by the experimenter while the subjects were 

encouraged to perform muscle contractions with maximal efforts. The determined MVC was used to 

guide generation of the resistant force at multiple levels. Several data recording trials were conducted 

in each examination session. In a single trial, the subject was instructed to perform isometric 

contractions with increasingly graded contraction levels from a very mild level to almost maximal 

level, roughly corresponding to 10%, 30%, 50%, 70%, submaximal (90%) and almost MVC. For 

each contraction level, subjects were asked to maintain as stable as possible for at least 3 seconds. 

Such a trial was repeated for at least 3 times. To avoid muscle fatigue, sufficient rest was allowed 

between consecutive trials. The recorded raw sEMG data were finally imported into the MATLAB 

(Version R2015, MathWorks, Natick, USA) software for offline analysis. 

2.3. Data analysis 

2.3.1. Data preprocessing 

The sEMG signals were filtered by a 4th order Butterworth filter with a filter bandwidth of 

20–500 Hz to filter motion artifacts, low-frequency baseline drift, and high-frequency noise. Power 

line interference and its harmonics caused by the power supply in the environment were filtered 

using a bandwidth adjustable notch filter. In order to obtain the electrophysiological signal during 

muscle contraction, active segment detection was conducted to the filtered signal. The most critical 

step in the detection of active segments is to determine the onset and offset of the corresponding 

signal segment during muscle contraction. This step can be done with an amplitude-based threshold 

detection method [46], which determines the onset and offset of the signal by comparing the rectified 

signal amplitude with a selected threshold (typically set to 3 times the standard deviation of the 

baseline). In a single trial, sEMG signals were divided into non-overlapping epochs at a length of 1s 

with stable contractions at certain force levels. Finally, approximately 30 epochs for each tested 

muscle were obtained for further analysis. 

2.3.2. Indicators from the sEMG Examination 

Three sEMG interference pattern analysis methods were applied for tracking analysis in this 

study, including CI [47], MDF [32] and RMS [29], as three indicators of neuromuscular status. For 

each data obtained by a single trial, the results of the three indicators can be given separately. Three 

indicators were used for double-measurement analysis before and after rehabilitation and multiple 

measurements during rehabilitation. We will introduce the three indicators, respectively. 

2.3.2.1. CI Analysis 

CI is used to measure the degree of signal area clustering. CI values range from 0 to 1, and 

especially high value of CI indicates highly clustered sEMG signal which characterized by isolated 
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and large MUAPs. As previous studies reported [41], sEMG recorded from muscles with neurogenic 

changes corresponds to relative high CI values. Moreover, signals with myopathic changes tend 

to be flat and dense, so the CI value is relatively low [48]. In the CI analysis method proposed by 

Uesugi [40,47], the sEMG collected under different force level of the subjects are processed into 1s 

smooth non-overlapping analysis window [48]. 

In this paper, we intercept 20~40 signal segments with 1s length of contraction force as stable as 

possible from each activity segment of each subject. In this process, an intensity distribution of 

epochs from the minimum to the maximum random contraction should be ensured. CI values were 

calculated for each epoch. The first step in CI calculation is to divide the 1s epoch into 

non-overlapping windows with the same size [40]. The window length was set at 15 ms, which were 

recommended to ensure that it covers at least a large and individual MUAP produced by a MU with 

neurogenic lesion. In this paper, the sampling rate of the signal is 1000Hz, that is, the time series of 

one window includes 15 sampling points. Finally, K (K = 66) windows are obtained. 

The CI is calculated as 

                       
    

        
    

        
    

          
  

   ,                  (1) 

where     is the differential sequences between every consecutive area value,     is the 

differential sequences between every second area value, and     is the differential sequences 

between every third area value.    is the window area. 

The normal range employed plots from neither dominant or non-dominant muscles of 18 

healthy individuals and contralateral muscles of the 23 stroke patients with single sEMG collection. 

In fact, it was reported that neuromuscular status of the contralateral muscle from patients with 

subacute stroke is close to healthy controls, whose plots were almost overlapped over those derived 

from the control subjects. Moreover, the diagnostic results would be more reliable by enlarging the 

sample size of the normal range. Therefore, it is feasible to employ plots from contralateral muscles 

for establishment of normal range. To define the distribution of the normal cloud for judging 

abnormality, linear regression was performed on double-logarithmic coordinates of normal cloud 

(see Figure 1, y = −0.188x – 0.588). The regression line was a represent to account for the 

relationship between the CI and muscle force, generally for the normal data. Then, the upright 

distance between the log(CI) and the regression line was calculated and termed as deviation of the 

processed epoch. The normal range (dashed lines) is presented within ±2.5 times the standard error 

of the deviation of all epochs from normal range. On each side of a subject (In this study, the 

equivalent of each muscle), the data plots of each epoch can obtain a distance to the regression line 

(residual deviation). Then, the distance values of all the data points of each individual muscle are 

averaged as the distance from the normal mean value of a single individual data and denoted as mean 

residual (Rm), which then can be used to assess the presence of abnormality for a tested muscle. For 

further quantification, the mean    and standard deviation (SD)    of the Rm values for muscles of 

healthy controls and the contralateral side of all the stroke patients were calculated. Finally, Z-score 

was calculated for each individual muscle as follows: 

                                    
     

  
                                    (2) 

A Z-score within ±2.5 was predefined as normal. Patient with a Z-score higher than +2.5 
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was diagnosed as being neurogenic changes and a Z-score lower than −2.5 indicated dominant 

myogenic changes.  

2.3.2.2. RMS and MDF Analyses 

RMS is a popular time-domain feature for characterizing sEMG signals, representing muscle 

strength [49]. MDF is a parameter widely used in power spectrum analysis, which reflects main 

frequency component and spectral structure of a time series signal [34]. Moreover, the MDF 

calculated from the sEMG signal is a reflection of various neuromuscular changes associated 

with both central (e.g., altered MU control properties) and peripheral factors (e .g., muscle fiber 

entropy) [32,34]. The MDF changes of paretic muscles with respect to corresponding contralateral 

muscles help to reveal neuromuscular alternations. For example, there might be re-innervation of 

muscle fibers in paretic muscles when their MDF is found to be higher than contralateral muscles [32,34]. 

On the contrary, paretic muscles with relative lower MDF may suffer from muscle fiber atrophy or 

decreased MU firing rate [32,34,50].  

In this study, both indicators are only calculated on the signals recorded during MVC for each 

muscle. The MDF is computed from each epoch of simulation and experimental sEMG with the 

periodogram-based spectrum estimation. 

2.4. Statistical analysis  

A total of 9 subjects with stroke (S1–S9) successfully completed at least two sessions of the 

sEMG examinations of the paretic muscles, scheduled at the beginning and end of the treatment 

procedure. For each of 9 subjects with stroke (S1–S9) completing both the first and final sessions, 

the absolute differences of the MDF between the paretic muscles and the contralateral muscles were 

calculated for the first session and the final session, and were denoted as D1 and D2, respectively. A 

paired t-test was applied between D1 and D2 to evaluate effect of rehabilitation treatment on the 

MDF values. In addition, in order to investigate whether the RMS, the absolute value of Z-score of 

CI, and other clinical evaluation scores can reflect the effect of rehabilitation and the recovery of 

paretic muscles, a series of paired t-tests were was applied to these indicators/scores between the first 

session and the final session, respectively. Moreover, we calculated the increments between the final 

session and the first session of the three indicators and the F-M score for paretic muscles of 9 

subjects with stroke, denoted them as I_RMS, I_MDF, I_CI and I_FM respectively. In order to 

evaluate whether and how any of three indicators was correlated with the clinical assessment scale, a 

series of correlation analyses were performed between the I_FM and each of the three indicator 

increments (I_RMS, I_MDF and I_CI). In addition, independent sample t-tests was performed of the 

Z-scores of CI indicator between 11 young healthy subjects and 7 age-matched elderly healthy 

subjects to examine the effect of age on the CI values. The significant level was set to be p < 0.05. 

All the tests were completed using SPSS software (ver. 16.0, SPSS Inc. Chicago, IL, USA). 

3. Results 

Figure 1 illustrates the CI-area plots from three different muscles. The normal range was 

established with data from any muscles of the 18 healthy individuals and the contralateral muscles of 
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the 23 subjects with stroke in a single examination session at the beginning of the treatments. Most 

data points from the paretic muscles of the subjects with stroke were distributed in the normal range, 

whereas a small number of data points were distributed outside in particular. In addition, independent 

sample t-tests reported that no significant difference in both variance (p = 0.524) and mean (p = 

0.122) of the Z-scores of CI between the 11 young healthy subjects and 7 elderly healthy subjects. 

This confirmed the correctness of establishing the CI normal limits by pooling all the data of both 

eldly and younger control subjects. 

 

Figure 1. The CI-area plot presented in double logarithmic scale, and the CI-area plot 

from both the (blue circle) 18 healthy control subjects and the contralateral side (black 

diamond) and the paretic side (red dot) of all 23 subjects with stroke. The regression 

analysis (blue solid line) was performed on normal data consisting of epochs (1≤total 

area≤100uVsec) from normal range. The normal range (dashed lines) is presented 

within ±2.5 times the standard error of the linear regression. 

Figure 2 shows values of three sEMG indicators and the F-M score obtained at the first session 

and the final session for 9 subjects with stroke, respectively. Paired T-tests analysis reported a 

significant main difference between both sessions for the F-M score (T = −6.275, p = 0.000) and the 

MDF (T = 3.502, p = 0.008) derived from the paretic muscles. However, the sEMG RMS (T = 

−1.901, p = 0.094) and Z-score of CI (T = 1.618, p = 0.144) did not report any significance. In details, 

the mean value of MDF (from 26.4222 to 10.3344) and mean Z-score of CI (from 1.8011 to 0.9855) 

were reduced and meanwhile the mean value of RMS (from 31.6211 to 55.6989) was increased after 

the rehabilitation therapy. In addition, correlation analyses reported that no significant correlation 

was observed between the increment of the F-M score and the increment of the RMS (r = 0.293, p = 

0.445), the increment of MDF (r = 0.174, p= 0.655) and the increment of Z-score of CI (r= 0.196, p 

= 0.613), respectively.  
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Figure 2. Results of three sEMG indicators and the Fugl-Meyer assessment scores for 9 

subjects with stroke (S1-S9), at the first and the final examination sessions, respectively. 

For the sEMG MDF, the MDF values from the contralateral muscles are reported as well.  

Figure 3 reports the curves of three sEMG indicators derived from the monitoring of paretic 

muscles during the rehabilitation procedure for four subjects with stroke. For the subject S1, both the 

RMS curve and the MDF curve values derived from the subject’s paretic muscle had an almost flat 

trend with slight variations. However, the Z-scores of CI for S1 kept falling down from neurogenic 

abnormality to the normal range. For the subject S2, the first examination at the beginning of the 

treatment reported low MDF and abnormally low Z-score of CI for the paretic muscle of the subject. 

Subsequently, the MDF exhibited an increasing trend during the first stage, and meanwhile Z-scores 

of CI increased significantly from the lower abnormality area through the normal range even to 

upper abnormality area. During the later stage, with further rehabilitation treatment, both RMS and 

MDF curves had slight fluctuations and a generally slight increasing trend, and Z-scores of CI fell 

down within the normal range. For the subject S3, the RMS curve derived from the paretic muscle of 

the subject S4 obviously climbed up to the level of corresponding contralateral muscle. By contrast, 

other two indicators did not change a lot. For the subject S4, in the first 25 days since stroke onset, 

MDF of the paretic muscle dropped sharply towards that of the contralateral muscle, and observed 

that the RMS curve was on the rise. Meanwhile, the Z-score of CI fluctuated slightly within the 

normal range during the treatment. During the later stage after 25 days post stroke, the RMS curve 

kept climbing up whereas the other two curves of the paretic muscles remains almost unchanged. 
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Figure 3. Three sEMG indicator curves derived from monitoring paretic muscles of S1(a), 

S2(b), S3(c), S4(d) during the rehabilitation treatment. Those indicator values from the 

corresponding contralateral muscles are shown with isolated symbols as the reference.  
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4. Discussion 

In this paper, three indicators derived from sEMG examination were used to monitor complex 

neuromuscular changes in paretic muscles of subjects with stroke during rehabilitation treatments. As 

a pilot study, only 4 cases preliminarily completed the monitoring and tracking analysis protocol and 

they are reported in this paper. Prior to the tracking analyses, the data from 18 healthy control 

subjects and the data from a single test on the contralateral side of 23 stroke patients, were pooled 

together to form the diagnostic criteria of CI method, which is the basis of using this method in 

tracking data analysis. When a single test was just performed, the Z-scores of CI obtained from 

paretic muscles of all subjects with stroke showed a very board distribution pattern from abnormally 

low values through normality to abnormally high values. This finding was consistent with our 

previous work [41], confirming the diversity of neuromuscular changes after stroke. A variety of 

neuromuscular changes have been reported in the literature, contributing to sEMG abnormalities 

following stroke. Review of these changes, both central and peripheral, helps to establish 

examination criteria given combination of three indicators. Specifically, RMS used in this study can 

be regarded to reflect capability of producing muscle strength. Decreased strength of paretic muscles 

is primarily associated with a deficit of descending central drive as a result of central nervous 

impairment [51], while various other changes may also contribute. The general changing trends of 

the MDF and CI with neuromuscular changes are shown in Table 2. The relative increase of MDF in 

paretic muscles as compared to corresponding contralateral muscles may be related to reorganization 

of the MU architecture (e.g. re-innervation of muscle fibers) [8,9,32,34], resulting in enlargement of 

a proportion of the remaining MUs [20,34,52,53]. By contrast, the relative decrease of MDF may be 

attributed into decreased number of MUs that are capable of being activated [32,53,54], selective 

loss or deactivation of larger and superficial MUs [34], changes in central control properties 

(including MU firing rate reduction [32,34,55,56], firing synchronization increase [32,57,58]) and 

atrophy of muscle fibers [34,50]. Please note that the decreased number of activable MUs can be 

contributed by two factors, given examination of voluntary EMG. One is the loss of MUs, which is 

due to the trans-synaptic degeneration of α-motor neurons [41,53,54]. In the other factor, some MUs 

fail to be activated to function properly, although they are anatomically intact, which is due to 

modification of MUs’ relationship within the motor neuron pool, not permanent degeneration of 

lower/spinal motor neurons. Therefore, this phenomenon was termed as decreased number of 

activiable MUs rather than loss of MUs. The CI method has been reported to have a different 

examination criteria. Abnormal increase of CI (i.e., Z-score of CI) may be associated with decreased 

number of activable MUs [41,53,54], changes in central control properties (including MU firing rate 

reduction [41,55,56], firing synchronization increase [41,57,58] and recruitment range 

compression [31,41,59]) and muscle fiber re-innervation [8,9,41] to produce enlarged MUs, all of 

which are factors indicating neurogenic changes. Meanwhile, abnormal decrease of CI may be 

represents that atrophy of muscle fibers, especially type II fiber atrophy [8,41] (which is myopathic), 

and selected loss of larger MUs [41,60] is likely to take place in paretic muscles following stroke. All 

the indicators and their criteria were used as examination tools in this pilot study. On this basis, 

any possible abnormalities can be better interpreted with a special tracking and monitoring 

experimental protocol. 

Among the 23 subjects with stroke, 9 of them have their paretic muscles tested at least twice, 

i.e., before and after the rehabilitation treatment. In pre- and post-treatment comparison, the changing 
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trend of three indicators as well as the clinical F-M scale truly reflects positive effect of the 

rehabilitation treatment with improvement in paretic muscle functions. In detail, the RMS values of 

the paretic muscles were found to generally rise up. Regardless of increase or decrease of the MDF 

values in the paretic muscles, they tended to approach to those values in the corresponding 

contralateral/unimpaired muscles. Similarly, paretic muscles had their Z-scores of CI return to the 

normal range, a small range beside 0, from abnormality beyond +2.5 or below −2.5. All these 

findings give a general verification of our hypothesis regarding the usability of the sEMG analyses 

with three indicators in examining therapeutic effect during rehabilitation procedure.  

Table 2. General changing trend of both sEMG indicators. 

Neuromuscular Changes MDF CI 

Decreased number of MUs decrease [32, 53, 54] increase [41, 53, 54] 

Selective loss or deactivation of 

larger and superficial MUs 

decrease [34] decrease [41, 60] 

MU firing rate reduction decrease [32, 34, 55, 56] increase [41, 55, 56] 

Firing synchronization decrease [32, 57, 58] increase [41, 57, 58] 

Recruitment range compression probably insensitive increase [31, 41, 59] 

Atrophy of muscle fibers decrease [34, 50] decrease [8, 41, 60] 

Re-innervation of muscle fibers increase [8, 9, 32, 34] increase [8, 9, 41] 

Moreover, the increment of any sEMG indicator was found to be not significantly correlated 

with the increment of F-M score during the entire rehabilitation procedure (p>0.05). It should be 

acknowledged that both sEMG examination and clinical F-M scale evaluate different aspects of 

muscle functions. The sEMG analysis is used to examine detailed neuromuscular changes, whereas 

the clinical F-M scale mainly quantifies gross motor functions of the paretic muscles. This can be 

used to explain no correlation between them even for a group of the same subjects.  

Following the protocol for monitoring paretic muscle changes, 4 of 23 subjects with stroke 

successfully participated into repeated examinations of their paretic muscles during the rehabilitation 

treatment. Each of four subjects showed a distinct recovery procedure regarding the curves of all 

sEMG indicators. Among these four subjects, the subject S1 showed a relatively simple trend with 

slight variations of both RMS and MDF curves of the examined paretic muscles. However, the 

Z-scores of CI for S1 kept falling down from neurogenic abnormality to the normal range. 

Combination of changing trends of all three sEMG indicators is likely to indicate all possible 

neurogenic changes (e.g. altered central control properties) that previously took place might be 

gradually recovered. It is worth noting that the weak variation of the subject S1’s RMS and MDF 

values during rehabilitation treatment might be related to the long-term duration since stroke onset. 

The physical characteristics of the subject in this chronic stage remained to be stable with slow 

improvement of motor functions. This was confirmed by the F-M score, which was obviously high 

before the treatment with a limited increase after the treatment for the subject S1. Insensitivity of 

both RMS and MDF to these sligh improvements also explains almost flat trend of both indicators. 

For the subject S2, the resultant three-indicator curves were much more informative, as 

compared with results of two tests just before and after the treatment. By visual inspection, the 

rehabilitation procedure of the subject S2 can be divided into two stages. The first stage began from 
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the treatment (on the 23rd day) to the 46th day since stroke onset. The first examination at the 

beginning of the treatment reported low MDF and abnormally low Z-score of CI for the paretic 

muscle of the subject, indicating that selective loss or deactivation of larger MUs [34,41,60] and 

therefore possible muscle fiber denervation and fiber type grouping [7,8,32,41,61] were very likely 

to occur in the paretic muscle. Subsequently, the MDF exhibited an increasing trend during the first 

stage, and meanwhile Z-scores of CI increased significantly from the lower abnormality area through 

the normal range even to upper abnormality area. Reasons for explaining these phenomena possibly 

include recalling of larger MUs as a result of central neural plasticity [8,41,60], and both 

re-innervation of previously denervated muscle fibers and remodeling of MUs [8,9,32,41] considered 

as peripheral compensation for previous decreased number of larger MUs [34,41,60]. These 

phenomena really help to contribute into paretic muscle recovery in the first stage. In this stage, 

alternations in control properties might take place or even be developed concurrently as a result of 

lesions to central nervous system, especially leading to abnormaly high CI around the 46thy day. The 

second stage continued till the end of treatment on the 98th day since stroke onset. With further 

rehabilitation treatment, both RMS and MDF curves had a generally increasing trend, and meanwhile 

Z-scores of CI fell down within the normal range. It can be speculated that previously damaged 

central control properties [32,34,41,55–58] might be gradually recovered during this stage. Ongoing 

central neural plasticity may also lead to recovery of descending central drives and increased number 

of MU to be activated [32,41,53,54], which generally contribute to recovery of paretic muscle 

functions for the subject S2.  

The RMS curve derived from the paretic muscle of the subject S3 obviously climbed up to the 

level of corresponding contralateral muscle. By contrast, other two indicators did not change a lot, 

remains around the value of contralateral muscle (for MDF) and within the normal range (for Z-score 

of CI). The probable cause is the more or less normal function of the paretic muscle. In this condition, 

initially impaired muscle strength was likely due to a deficit of descending central drive, and its 

recovery as a result of central plasticity contributed into the significant therapeutic effect [51].  

The motor recovery of S4 obviously had a stage-dependent character as well due to high 

variations in order and timing of fluctuations of the three-indicator curves. In the first 25 days since 

stroke onset, MDF of the paretic muscle dropped sharply towards that of the contralateral muscle, 

and an increasing trend of the RMS curve was observed. Meanwhile, the Z-score of CI fluctuated 

slightly within the normal range during the treatment. The probable process underlying the first-stage 

treatment is the gradual recovery of the decreased number of activated MUs [32,41,53,54]. It can be 

speculated that severe decreased number of activable MUs might be a possible factor contributing 

into the initial muscle impairment. As a compensation, muscle contraction had to recruit a more 

portion of larger/enlarged MUs with higher muscle fiber conduction velocity [34,62] and sharper 

MUAP waveforms [34,59], thus resulting in abnormally increased MDF values before the treatment. 

In a later stage after 25 days post stroke, the RMS curve kept climbing up whereas the other two 

curves of the paretic muscles remains almost unchanged with further application of the rehabilitation 

protocol. These three-indicator curves show a similar pattern to that of the subject S3, thus with the 

same reasons for explaining the therapeutic effect, as discussed in above paragraph. 

Beside the confirmed usability of three indicators, their different sensitivities to various types of 

neuromuscular changes are further reported and explained. It is demonstrated that the combination of 

three indicators truly helped to enhance the examination power in discriminating specific 

neuromuscular changes, given their complementary capabilities of revealing complex paretic muscle 
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changes. Our pilot study highlights the combined use of three indicators in monitoring the individual 

rehabilitation treatments in terms of recovery of paretic muscle changes, which was demonstrated by 

monitoring the outcomes in four cases as typical examples.  

Moreover, through the 4 subjects with stroke successfully participated into repeated 

examinations of their paretic muscles, we preliminarily found that there is a great diversity of 

neuromuscular changes, and different individuals have different changes during rehabilitation 

treatment. Seen from S1 and S2, the leading pathogen is different among individuals, so the process 

of neuromuscular change is different. We also found that the order and timing of neuromuscular 

processes contributing to recovery of paretic muscles were quite different from each other, so the 

sEMG examination tools proposed in this paper is more meaningful for personalized treatment 

during rehabilitation treatment. Above findings may be related to different severity in brain lesion 

after stroke. In a word, this exactly indicates that it is essential to track and monitor the paretic 

muscles of individuals, thus offering important guideline for promoting motor recovery. 

However, some limitations still exist in this paper. Our work focuses on the development of 

sEMG indicators for monitoring complex neuromuscular changes in paretic muscles of patients with 

stroke. It should be noted that at the expenses of quick and noninvasive implementation, the sEMG 

analyses have limitations in quantifying specific MU properties. Although the three adopted 

indicators give a useful assessment of complex neuromuscular changes in paretic muscles, more 

analytical methods such as EMG decomposition at MU level and muscle biopsy are required to offer 

more information. In addition, unsupervised learning has been widely used in the field of 

biomedicine (e.g. genetic detecting [63], gene expression data [64, 65] and disease diagnosis [66]). 

Therefore, we can also try to use unsupervised learning to assess complex neuromuscular changes in 

patients with stroke during rehabilitation in the future. Moreover, there may be inconsistencies in the 

assessment results of three indicators used in this pilot study. They can be attributed into some 

unrevealed neuromuscular changes or concurrent appearance of complex processes. As previously 

hypothesized in this study, the neuromuscular processes become even more complicated by 

considering a long time course of rehabilitation treatment. Therefore, it is necessary to combine more 

effective indiators toward precise interpretations of the examination results. It is also required to 

enrich the small sample size (i.e., 4) of the subjects who successfully completed the tracking protocol 

with multiple sessions. In general, this study only preliminarily demonstrates the feasibility of 

monitoring complex neuromuscular processes using sEMG examination in paretic muscles of 

patients with stroke during their rehabilitation. Our future efforts will focus on these 

above-mentioned directions to enchance usability of the sEMG examination tools and to enrich our 

knowledge regarding underneath mechanisms of stroke rehabilitation beyond the currently 

preliminary findings. 

5. Conclusion 

In summary, this pilot study reports four cases to illustrate complex and different neuromuscular 

processes during their rehabilitation procedure monitored by three sEMG indicators. Specifically, 

these progressive processes were found to vary in timing and order across individuals, mainly 

associated with the original types of stroke-induced neuromuscular changes at the MU level, 

including decreased number of activable MUs, alternations in the structure of MUs and the altered 

central control properties of MUs. The proposed multi-parameter sEMG tracking analysis provides a 
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convenient and effective approach to understand the complex neuromuscular changes in patients 

with stroke, and helps to view the improvement of MU alternations during the rehabilitation process, 

thus offering guidelines for a better design of individualized stroke rehabilitation protocol. 
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