In this paper we study ergodic measures of intermediate entropy for affine transformations of nilmanifolds. We prove that if an affine transformation $ \tau $ of nilmanifold has a periodic point, then for every $ a\in[0, h_{top}(\tau)] $ there exists an ergodic measure $ \mu_a $ of $ \tau $ such that $ h_{\mu_a}(\tau) = a $.
Citation: Wen Huang, Leiye Xu, Shengnan Xu. Ergodic measures of intermediate entropy for affine transformations of nilmanifolds[J]. Electronic Research Archive, 2021, 29(4): 2819-2827. doi: 10.3934/era.2021015
In this paper we study ergodic measures of intermediate entropy for affine transformations of nilmanifolds. We prove that if an affine transformation $ \tau $ of nilmanifold has a periodic point, then for every $ a\in[0, h_{top}(\tau)] $ there exists an ergodic measure $ \mu_a $ of $ \tau $ such that $ h_{\mu_a}(\tau) = a $.
[1] | Entropy for group endomorphisms and homogeneous spaces. Trans. Amer. Math. Soc. (1971) 153: 401-414. |
[2] | Topological and almost Borel universality for systems with the weak specification property. Ergodic Theory Dynam. Systems (2020) 40: 2098-2115. |
[3] | J. Buzzi, Intrinsic ergodicity of smooth interval maps, Israel J. Math., 100 (1997), 125–161. doi: 10.1007/BF02773637 |
[4] | N. Chandgotia and T. Meyerovitch, Borel subsystems and ergodic universality for compact $\mathbb{Z}^d$-systems via specification and beyond, arXiv: 1903.05716. |
[5] | Construction d'un difféomorphisme minimal d'entropie topologique non nulle. Ergodic Theory Dynam. Systems (1981) 1: 65-76. |
[6] | Relative entropy tuples, relative U.P.E. and C.P.E. extensions. Israel J. Math. (2007) 158: 249-283. |
[7] | Nonuniform hyperbolicity and structure of smooth dynamical systems. Proc. Int. Congress Math. (1983) 2: 1245-1253. |
[8] | A relativised variational principle for continuous transformations. J. London Math. Soc. (1977) 16: 568-576. |
[9] | Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold. Ergodic Theory Dynam. Systems (2005) 25: 201-213. |
[10] | Compact group automorphisms, addition formulas and Fuglede-Kadison determinants. Ann. of Math. (2012) 176: 303-347. |
[11] | Dynamical properties of quasihyperbolic toral automorphisms. Ergodic Theory Dynam. Systems (1982) 2: 49-68. |
[12] | M. Misiurewicz, A short proof of the variational principle for a Z+N action on a compact space, International Conference on Dynamical Systems in Mathematical Physics (Rennes, 1975), pp. 147–157. Astérisque, No. 40, Soc. Math. France, Paris, 1976. |
[13] | Weak mixing suspension flows over shifts of finite type are universal,. J. Mod. Dyn. (2012) 6: 427-449. |
[14] | Ergodic universality of some topological dynamical systems. Trans. Amer. Math. Soc. (2016) 368: 4137-4170. |