Citation: Yonghua Xue, Yiqin Ge. Construction of lncRNA regulatory networks reveal the key lncRNAs associated with Pituitary adenomas progression[J]. Mathematical Biosciences and Engineering, 2020, 17(3): 2138-2149. doi: 10.3934/mbe.2020113
[1] | L. Koch, Functional genomics: Screening for lncRNA function, Nat. Rev. Genet., 18 (2017), 70. |
[2] | E. Lau, Non-coding RNA: Zooming in on lncRNA functions, Nat. Rev. Genet., 15 (2014), 574-575. |
[3] | G. St Laurent, C. Wahlestedt, P. Kapranov, The Landscape of long noncoding RNA classification, Trends Genet., 31 (2015), 239-251. |
[4] | Y. Zhao, Q. Guo, J. Chen, J. Hu, S. Wang, Y. Sun, Role of long non-coding RNA HULC in cell proliferation, apoptosis and tumor metastasis of gastric cancer: A clinical and in vitro investigation, Oncol. Rep., 31 (2014), 358-364. |
[5] | L. Ying, Y. Huang, H. Chen, Y. Wang, L. Xia, Y. Chen, et al., Downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer, Mol. Biosyst., 9 (2013), 407-411. |
[6] | J. T. Lee, Epigenetic regulation by long noncoding RNAs, Science, 338 (2012), 1435-1439. |
[7] | K. C. Wang, H. Y. Chang, Molecular mechanisms of long noncoding RNAs, Mol. Cell, 43 (2011), 904-914. |
[8] | F. Russo, G. Fiscon, F. Conte, M. Rizzo, P. Paci, M. Pellegrini, Interplay Between Long Noncoding RNAs and MicroRNAs in Cancer, in Computation Cell Biology, Humana Press, New York, (2018), 75-92. |
[9] | Y. Y. Qian, K. Li, Q. Y. Liu, Z. S. Liu, Long non-coding RNA PTENP1 interacts with miR-193a-3p to suppress cell migration and invasion through the PTEN pathway in hepatocellular carcinoma, Oncotarget, 8 (2017), 107859-107869. |
[10] | R. Zhang, Y. Guo, Z. Ma, G. Ma, Q. Xue, F. Li, et al., Long non-coding RNA PTENP1 functions as a ceRNA to modulate PTEN level by decoying miR-106b and miR-93 in gastric cancer, Oncotarget, 8 (2017), 26079-26089. |
[11] | L. Yang, C. Lin, C. Jin, J. C. Yang, B. Tanasa, W. Li, et al., lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs, Nature, 500 (2013), 598-602. |
[12] | S. Melmed, Pathogenesis of pituitary tumors, Nat. Rev. Endocrinol., 7 (2011), 257-266. |
[13] | B. M. Arafah, M. P. Nasrallah, Pituitary tumors: Pathophysiology, clinical manifestations and management, Endocr. Relat. Cancer, 8 (2001), 287-305. |
[14] | H. Fukuoka, O. Cooper, A. Ben-Shlomo, A. Mamelak, S. G. Ren, D. Bruyette, et al., EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas, J. Clin. Invest., 121 (2012), 4712-4721. |
[15] | J. Wang, B. Voellger, J. Benzel, U. Schlomann, C. Nimsky, J. W. Bartsch, Metalloproteinases ADAM12 and MMP-14 are associated with cavernous sinus invasion in pituitary adenomas, Int. J. Cancer, 139 (2016), 1327-1339. |
[16] | V. Leone, C. Langella, D. D'Angelo, P. Mussnich, A. Wierinckx, L. Terracciano, et al., Mir-23b and miR-130b expression is downregulated in pituitary adenomas, Mol. Cell. Endocrinol., 390 (2014), 1-7. |
[17] | E. Gentilin, F. Tagliati, C. Filieri, D. Mole, M. Minoia, M. R. Ambrosio, et al., miR-26a plays an important role in cell cycle regulation in ACTH-secreting pituitary adenomas by modulating protein kinase Cdelta, Endocrinology, 154 (2013), 1690-1700. |
[18] | G. Lu, J. Duan, D. Zhou, Long-noncoding RNA IFNG-AS1 exerts oncogenic properties by interacting with epithelial splicing regulatory protein 2 (ESRP2) in pituitary adenomas, Pathol. Res. Pract., 214 (2018), 2054-2061. |
[19] | H. Wang, G. Wang, Y. Gao, C. Zhao, X. Li, F. Zhang, Lnc-SNHG1 Activates the TGFBR2/SMAD3 and RAB11A/Wnt/beta-Catenin Pathway by Sponging MiR-302/372/373/520 in Invasive Pituitary Tumors, Cell. Physiol. Biochem., 48 (2018), 1291-1303. |
[20] | P. Chunharojrith, Y. Nakayama, X. Jiang, R. E. Kery, J. Ma, C. S. De La Hoz Ulloa, et al., Tumor suppression by MEG3 lncRNA in a human pituitary tumor derived cell line, Mol. Cell. Endocrinol., 416 (2015), 27-35. doi: 10.1016/j.mce.2015.08.018 |
[21] | K. A. Michaelis, A. J. Knox, M. Xu, K. Kiseljak-Vassiliades, M. G. Edwards, M. Geraci, et al., Identification of growth arrest and DNA-damage-inducible gene beta (GADD45beta) as a novel tumor suppressor in pituitary gonadotrope tumors, Endocrinology, 152 (2011), 3603-3613. |
[22] | Z. R. Wu, L. Yan, Y. T. Liu, L. Cao, Y. H. Guo, Y. Zhang, et al., Inhibition of mTORC1 by lncRNA H19 via disrupting 4E-BP1/Raptor interaction in pituitary tumours, Nat. Commun., 9 (2018), 4624. |
[23] | D. Fu, Y. Zhang, H. Cui, Long noncoding RNA CCAT2 is activated by E2F1 and exerts oncogenic properties by interacting with PTTG1 in pituitary adenomas, Am. J. Cancer Res., 8 (2018), 245-255. |
[24] | W. Xing, Z. Qi, C. Huang, N. Zhang, W. Zhang, Y. Li, et al., Genome-wide identification of lncRNAs and mRNAs differentially expressed in non-functioning pituitary adenoma and construction of a lncRNA-mRNA co-expression network, Biol. Open, 8 (2019), bio037127. |
[25] | L. Jin, Q. Cai, S. Wang, S. Wang, T. Mondal, J. Wang, et al., Long noncoding RNA MEG3 regulates LATS2 by promoting the ubiquitination of EZH2 and inhibits proliferation and invasion in gallbladder cancer, Cell Death Dis., 9 (2018), 1017. |
[26] | Z. Li, C. Li, C. Liu, S. Yu, Y. Zhang, Expression of the long non-coding RNAs MEG3, HOTAIR, and MALAT-1 in non-functioning pituitary adenomas and their relationship to tumor behavior, Pituitary, 18 (2015), 42-47. |
[27] | K. She, J. Huang, H. Zhou, T. Huang, G. Chen, J. He, LncRNA-SNHG7 promotes the proliferation, migration and invasion and inhibits apoptosis of lung cancer cells by enhancing the FAIM2 expression, Oncol. Rep., 36 (2016), 2673-2680. |
[28] | M. W. Wang, J. Liu, Q. Liu, Q. H. Xu, T. F. Li, S. Jin, et al., LncRNA SNHG7 promotes the proliferation and inhibits apoptosis of gastric cancer cells by repressing the P15 and P16 expression, Eur. Rev. Med. Pharmacol. Sci., 21 (2017), 4613-4622 |
[29] | X. Zhong, Z. Long, S. Wu, M. Xiao, W. Hu, LncRNA-SNHG7 regulates proliferation, apoptosis and invasion of bladder cancer cells assurance guidelines, J. BU ON, 23 (2018), 776-781 |
[30] | A. M. Schmitt, H. Y. Chang, Long Noncoding RNAs in Cancer Pathways, Cancer Cell, 29 (2016), 452-463. |
[31] | C. Chu, Q. C. Zhang, S. T. da Rocha, R. A. Flynn, M. Bharadwaj, J. M. Calabrese, et al., Systematic discovery of Xist RNA binding proteins, Cell, 161 (2015), 404-416. |
[32] | X. F. Zhang, Y. Ye, S. J. Zhao, LncRNA Gas5 acts as a ceRNA to regulate PTEN expression by sponging miR-222-3p in papillary thyroid carcinoma, Oncotarget, 9 (2018), 3519-3530. |
[33] | K. Zhang, J. Chen, H. Song, L. B. Chen, SNHG16/miR-140-5p axis promotes esophagus cancer cell proliferation, migration and EMT formation through regulating ZEB1, Oncotarget, 9 (2017), 1028-1040. |
[34] | Z. Dong, P. Yang, X. Qiu, S. Liang, B. Guan, H. Yang, et al., KCNQ1OT1 facilitates progression of non-small-cell lung carcinoma via modulating miRNA-27b-3p/HSP90AA1 axis, J. Cell. Physiol., 234 (2019), 11304-11314. |
[35] | W. Feng, C. Wang, C. Liang, H. Yang, D. Chen, X. Yu, et al., The Dysregulated Expression of KCNQ1OT1 and Its Interaction with Downstream Factors miR-145/CCNE2 in Breast Cancer Cells, Cell. Physiol. Biochem., 49 (2018), 432-446. |