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1. Introduction

The limit theorem plays a pivotal role in the study of probability theory. Furthermore, the almost
sure convergence is integral to the development of the limit theorem, a subject many scholars have
studied. So far, a lot of excellent results have been obtained under the condition that the model holds
with certainty. However, many uncertain phenomena of quantum mechanics and risk management
cannot be explained by additive probability or expectation. To deal with this issue, many scholars have
made great attempts and efforts. In particular, Peng [1,2] proposed the theory frame of the sub-linear
expectations under a generic function space to solve this distributional uncertainty. In recent years,
based on Peng, more and more scholars in the industry have done extensive research and obtained
many related results; the study of the almost sure convergence has remained a hot-button issue. For
example, Chen [3], Cheng [4], and Feng and Lan [5] obtained the SLLN (strong law of large numbers)
of i.i.d.r.v. (independent identically distributed random variables), and Cheng [6] studied the SLLN of
independent r.v. with supi≥1 Ê [|Xi| l (|Xi|)] < ∞. Through further research, Wu and Jiang [7] obtained
the SLLN of the extended independent and identically distributed r.v.; Chen and Liu [8], Gao et al. [9],
and Liang and Wu [10] proved the SLLN of ND (negatively dependent) r.v.; Zhang [11] built the
exponential inequality and the law of logarithm of independent and ND r.v.; Wang and Wu [12] and
Feng [13] offered the almost sure covergence for weighted sums of ND r.v.; Zhang [14] derived the
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SLLN of the extended independent and END (extended negatively dependent) r.v.; Wang and Wu [15]
obtained the almost sure convergence of END r.v.; Lin [16] achieved the SLLN of WND (widely
negative dependence) r.v.; and Hwang [17] investigated the almost sure convergence of WND r.v..

Anna [18] proposed the definition of WNOD r.v. for the first time and obtained the limiting
conclusions for WNOD r.v. in Peng’s theory frame. Based on Yan’s results [19], this paper promotes
them to the sub-linear expectation space. Compared to the previously mentioned ND and END r.v.,
dominating coefficients g(n) have been added to the definition of WNOD r.v., leading to a broader
range. Besides, the sub-additivity property of the sub-linear expectation and capacity is added,
making the research more meaningful and complex. Finally, the conclusions of almost sure
convergence for WNOD r.v. are achieved. This paper contributes to the relevant research results of
limiting behavior of WNOD r.v. in Peng’s theory frame.

Our essay is arranged as follows: Section 2 recommends interrelated definitions and properties as
well as some important lemmas in the frame. Section 3 gives the conclusions including two theorems
and two corollaries. Section 4 shows that the process of proving the conclusions is given in detail.

Running through this essay, we point out that c will be a positive constant, its value is not important,
and it may take different values according to the situation. ax ∼ bx means limx→∞

ax
bx
= 1. an ≪ bn

means there must be a positive number c, satifying an ≤ cbn when n is large enough. Denote log (y) =
ln (max {e, y}).

2. Preliminaries

This article uses the theory frame and concepts proposed by Peng [1, 2]. Suppose (Ω,F ) is a given
measurable space andH is a linear space of real functions defined on (Ω,F ) so that if X1, X2, . . . , Xn ∈

H , then φ (X1, X2, . . . , Xn) ∈ H for every φ ∈ Cl, Lip (Rn), where φ ∈ Cl, Lip (Rn) shows the linear space
of (local Lipschitz) functions φ satisfying

|φ(x) − φ(y)| ≤ c (1 + |x|m + |y|m) |x − y|, ∀x, y ∈ Rn,

for some c > 0,m ∈ N depending on φ. H is considered as a space of random variable. In this
circumstance, we denote X ∈ H .

Definition 2.1. (Peng [1]). A sub-linear expectation Ê onH is a function Ê : H → [−∞,∞] satisfying
the following properties: for all X,Y ∈ H , we have

(a) Monotonicity: if X ≥ Y , then Ê(X) ≥ Ê(Y);
(b) Constant preserving: Ê(c) = c;
(c) Sub-additivity: Ê(X + Y) ≤ Ê(X) + Ê(Y);
(d) Positive homogeneity: Ê(λX) = λÊ(X), λ ≥ 0.
The triple (Ω,H , Ê) is known as a sub-linear expectation space.
Next, give the definition of the conjugate expectation Ê of Ê by

Ê(X) := −Ê(−X),∀X ∈ H .

By the above definitions of Ê and Ê, the following inequality is feasible for all X,Y ∈ H ,

Ê(X) ≤Ê(X),
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Ê(X − Y) ≥Ê(X) − Ê(Y),

Ê(X + c) =Ê(X) + c,

|Ê(X − Y)| ≤Ê|X − Y |.

When we are talking about Ê and Ê in the course of the proof, we often use the above formula.

Definition 2.2. (Peng [1]). Make G ⊂ F , a function V : G → [0, 1] is described to be a capacity, when

V(∅) = 0,V(Ω) = 1 and V(A) ≤ V(B) for A ⊂ B, A, B ∈ G.

Similar to sub-linear expectations, it is known as sub-additive when V(A ∪ B) ≤ V(A) + V(B) for
every A, B ∈ G. Now, represent V andV, respectively corresponing to Ê and Ê, using

V(A) := inf
{
Ê[ξ], IA ≤ ξ, ξ ∈ H

}
,V(A) := 1 − V (Ac) , A ∈ F ,

where Ac denotes the complement set of A.
From the definion and sub-additivity property of (V,V), the following formulas are true

Êζ ≤ V(C) ≤ Êη, Êζ ≤ V(C) ≤ Êη, if ζ ≤ I(C) ≤ η, ζ, η ∈ H .

And now we have Markov inequality:

V(|Y | ≥ y) ≤ Ê|Y |P/yp,∀y > 0, p > 0.

Definition 2.3. (Peng [1]). The Choquet integrals (CV) is defined as follows

CV(X) =
∫ ∞

0
V(X ≥ x)dx +

∫ 0

−∞

[V(X ≥ x) − 1]dx,

where V andV can replace V when required.

Definition 2.4. (Zhang [11]). (i) Ê is referred to be countably sub-additive, when

Ê(X) ≤
∞∑

n=1

Ê (Xn) , whenever X ≤
∞∑

n=1

Xn, X, Xn ∈ H , X ≥ 0, Xn ≥ 0, n ≥ 1.

(ii)V is referred to be countably sub-additive when

V

 ∞⋃
n=1

An

 ≤ ∞∑
n=1

V (An) ,∀An ∈ F .

Definition 2.5. {Xn, n ≥ 1} is a sequence of r.v. and it is known to be stochastically dominated by a
random variable X if for a positive number c, there has

Ê
[
f (|Xn|)

]
≤ cÊ

[
f (|X|)

]
, for n ≥ 1, 0 ≤ f ∈ Cl,Lip (R) .
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Definition 2.6. (Anna [18]. Widely negative orthant dependent (WNOD)) {Xn, n ≥ 1} is called to be
widely negative orthant dependent if there is a finite positive array {g (n) , n ≥ 1} satisfying for every
n ≥ 1,

Ê

 n∏
i=1

φi (Xi)

 ≤ g (n)
n∏

i=1

Ê (φi (Xi)) ,

where φi ∈ Cb,Lip (R) , φi ≥ 0, 1 ≤ i ≤ n and all functions φi are uniformly monotonous. Where the
coefficients g (n) (n ≥ 1) are known as dominating coefficients.

It is visible that, when {Xn, n ≥ 1} is widely negative orthant dependent and all functions
fk (x) ∈ Cl,Lip (R) (where k = 1, 2, · · · , n) are uniformly monotonous, then { fn (Xn) , n ≥ 1} is also
widely negative orthant dependent .

Definition 2.7. (Seneta [20]). (i) A positive function l (x) defined on [a,∞) , a > 0 is known to be a
slowly varying function, satisfying

lim
x→∞

l (tx)
l (x)

= 1, for each t ≥ 0.

(ii) Each slowly varying function l (x) can be expressed as

l (x) = C (x) exp
{∫ x

1

f (y)
y

dy
}
,

whenever limx→∞C (x) = c > 0, as well as limy→∞ f (y) = 0.

In this article, we want to research the almost sure convergence of WNOD sequence under sub-
linear expectations. Since V is only sub-addictive, the definition of almost sure convergence is a little
different and is described in detail in Wu and Jiang [7].

Next, we give some lemmas before reaching our conclusions.

Lemma 2.1. (Seneta [20]). For ∀α > 0, there is a non-decreasing function φ (x) and a non-increasing
function ξ (x) such that

xαl (x) ∼ φ (x) , x−αl (x) ∼ ξ (x) , x→ ∞,

where l (x) is a slowly varying function.

In the following section, we assume l (x) , x > 0 is a non-decreasing slowly varying function that
can be expressed as l (x) = cexp

{∫ x

1
f (y)
y dy

}
, where c > 0, limx→∞ f (x) = 0.

Let

τn = nl (n)−1 , n ≥ 1. (2.1)

X
′

n = −τ
1/p
n I

(
Xn < −τ

1/p
n

)
+ XnI

(
|Xn| ≤ τ

1/p
n

)
+ τ1/p

n I
(
Xn > τ

1/p
n

)
. (2.2)

X
′′

n = Xn − X
′

n =
(
Xn + τ

1/p
n

)
I
(
Xn < −τ

1/p
n

)
+

(
Xn − τ

1/p
n

)
I
(
Xn > τ

1/p
n

)
. (2.3)

Lemma 2.2. Assume X ∈ H , 0 < p < 2, τn defined by Eq (2.1).
(i) For every c > 0,

CV (|X|p) < ∞ ⇐⇒
∞∑

n=1

l−1 (n)V (|X|p > cτn) < ∞. (2.4)
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(ii) When CV (|X|p) < ∞, and now for every c > 0,

∞∑
k=1

2k

l
(
2k)V (|X|p > cτ2k) < ∞. (2.5)

Proof. (i) Obviously,

CV (|X|p) < ∞ ⇐⇒ CV (|X|p /c) < ∞.

CV (|X|p /c) ∼
∫ ∞

1
V (|X|p > cx) dx

∼

∫ ∞

1

l (y) − yl (y) · f (y)
y

l2 (y)
V

(
|X|p > c ·

y
l (y)

)
dy

(
make x =

y
l (y)

)
∼

∫ ∞

1

1
l (y)
V

(
|X|p > cτy

)
dy.

So

CV (|X|p) < ∞ ⇐⇒
∞∑

n=1

l−1 (n)V (|X|p > cτn) < ∞.

(ii) For every positive c, using the conclusion of (i), because of the monotonically increasing property
of l (x),

∞ >

∞∑
n=1

l−1 (n)V (|X|p > cτn)

=

∞∑
k=1

∑
2k−1≤n<2k

l−1 (n)V (|X|p > cτn)

≥

∞∑
k=1

∑
2k−1≤n<2k

l−1
(
2k

)
V (|X|p > cτ2k)

= 2−1
∞∑

k=1

2kl−1
(
2k

)
V (|X|p > cτ2k) .

As such, we have completed the proof of (ii). □

Lemma 2.3. {Xn, n ≥ 1} is a sequence of random variables, as well as stochastically dominated by a
r.v. X and CV (|X|p) < ∞, 1 ≤ p < 2, Ê has countable sub-additivity, then

∞∑
n=1

τ−2/p
n l−1 (n) Ê

(
X′n

)2 < ∞, (2.6)

moreover, when 1 < p < 2,
∞∑

n=1

τ−1/p
n l−1 (n) Ê

∣∣∣X′′n ∣∣∣ < ∞. (2.7)

Where X′n, X
′′
n are respectively defined by Eqs (2.2) and (2.3).
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Proof. For 0 < µ < 1, assume an even function h (x) ∈ Cl,Lip (R) and h (x) ↓ when x > 0, so that the
value of h (x) is [0, 1], for ∀x ∈ R and h (x) ≡ 1 when |x| ≤ µ, h (x) ≡ 0 when |x| > 1. We have

I (|x| ≤ µ) ≤ h (|x|) ≤ I (|x| ≤ 1) , I (|x| > 1) ≤ 1 − h (x) ≤ I (|x| > µ) . (2.8)

For α = 1, 2, ∣∣∣X′k∣∣∣α = |Xk|
α I

(
|Xk| ≤ τ

1/p
k

)
+ τ
α/p
k I

(
|Xk| > τ

1/p
k

)
≤

∣∣∣X′k∣∣∣α h

µ |Xk|

τ
1/p
k

 + τα/pk

1 − h

 |Xk|

τ
1/p
k

 . (2.9)

∣∣∣X′′k ∣∣∣α = ∣∣∣Xk + τ
1/p
k

∣∣∣α I
(
Xk < −τ

1/p
k

)
+

∣∣∣Xk − τ
1/p
k

∣∣∣α I
(
Xk > τ

1/p
k

)
=

∣∣∣− |Xk| + τ
1/p
k

∣∣∣α I
(
Xk < −τ

1/p
k

)
+

∣∣∣|Xk| − τ
1/p
k

∣∣∣α I
(
Xk > τ

1/p
k

)
=

∣∣∣|Xk| − τ
1/p
k

∣∣∣α I
(
|Xk| > τ

1/p
k

)
≤ |Xk|

α I
(
|Xk| > τ

1/p
k

)
≤ |Xk|

α

1 − h

 |Xk|

τ
1/p
k

 .
(2.10)

So, by (2.8) and Definition 2.7,

Ê
∣∣∣X′k∣∣∣α ≤ Ê |Xk|

α h

µ |Xk|

τ
1/p
k

 + τα/pk Ê

1 − h

 |Xk|

τ
1/p
k


≤ Ê |X|α h

µ |X|
τ

1/p
k

 + τα/pk Ê

1 − h

 |X|
τ

1/p
k


≤ Ê |X|α h

µ |X|
τ

1/p
k

 + τα/pk V
(
|X| > µτ1/p

k

)
.

(2.11)

Ê
∣∣∣X′′k ∣∣∣α ≤ Ê |X|α 1 − h

 |X|
τ

1/p
k

 . (2.12)

Assume that h j (x) ∈ Cl,Lip (R) , j ≥ 1, consider that the value of h j (x) is [0, 1] for ∀x ∈ R . h j (x) ≡ 1
when τ1/p

2 j−1 < |x| ≤ τ
1/p
2 j ; h j (x) ≡ 0 when |x| ≤ µτ1/p

2 j−1 or |x| > (1 + µ) τ1/p
2 j . The following formulas can

be derived,

I
(
τ

1/p
2 j−1 < |x| ≤ τ

1/p
2 j

)
≤ h j (|x|) ≤ I

(
µτ

1/p
2 j−1 < |x| ≤ (1 + µ) τ1/p

2 j

)
. (2.13)

|X|r h

 |X|
τ

1/p
2k

 ≤ 1 +
k∑

j=1

|X|r h j (|X|) , r > 0. (2.14)

|X|r
1 − h

 |X|
τ

1/p
2k


 ≤ ∞∑

j=k

|X|r h j

(
|X|
µ

)
, r > 0. (2.15)

First, prove (2.6). For 1 ≤ p < 2 , by (2.11) and (2.4),
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H1 : =
∞∑

n=1

τ−2/p
n l−1 (n) Ê

(
X′n

)2

≤

∞∑
n=1

τ−2/p
n l−1 (n)

[
Ê

(
X2h

(
µ |X|

τ
1/p
n

))
+ τ2/p

n V
(
|X| > µτ1/p

n

)]
=

∞∑
n=1

τ−2/p
n l−1 (n) Ê

[
X2h

(
µ |X|

τ
1/p
n

)]
+

∞∑
n=1

l−1 (n)V
(
|X| > µτ1/p

n

)
≪

∞∑
n=1

τ−2/p
n l−1 (n) Ê

[
X2h

(
µ |X|

τ
1/p
n

)]
.

Then, because h (x) is decreasing in (0,∞), according to Lemma 2.1, τ−2/p
n l−1 (n) is decreasing in (0,∞).

So,

H1 ≪

∞∑
k=1

∑
2k−1≤n<2k

τ−2/p
n l−1 (n) Ê

[
X2h

(
µ |X|

τ
1/p
n

)]

≤

∞∑
k=1

∑
2k−1≤n<2k

τ
−2/p
2k−1 l−1

(
2k−1

)
Ê

X2h

µ |X|
τ

1/p
2k




≪

∞∑
k=1

∑
2k−1≤n<2k

τ
−2/p
2k l−1

(
2k

)
Ê

X2h

µ |X|
τ

1/p
2k




≪

∞∑
k=1

2kτ
−2/p
2k l−1

(
2k

)
Ê

X2h

µ |X|
τ

1/p
2k


 .

Last by (2.14), (2.13), and (2.5),

H1 ≪

∞∑
k=1

2kτ
−2/p
2k l−1

(
2k

)
+

∞∑
k=1

2kτ
−2/p
2k l−1

(
2k

) k∑
j=1

Ê
(
X2h j (µ |X|)

)
≪

∞∑
j=1

∞∑
k= j

2kτ
−2/p
2k l−1

(
2k

)
Ê

(
X2h j (µ |X|)

)
≪

∞∑
j=1

2 jτ
−2/p
2 j l−1

(
2 j

)
τ

2/p
2 j V

(
|X| > τ1/p

2 j−1

)
≪

∞∑
j=1

2 j

l (2 j)
V

(
|X| > τ1/p

2 j

)
< ∞.

Therefore, (2.6) holds.
Next, our proof of (2.7) is similar to (2.6). For 1 < p < 2, by (2.12) and the monotonically

decreasing propety of h (x) in (0,∞), according to Lemma 2.1, τ−1/p
n l−1 (n) is decreasing in (0,∞), we
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have,

H2 : =
∞∑

n=1

τ−1/p
n l−1 (n) Ê

∣∣∣X′′n ∣∣∣
≤

∞∑
n=1

τ−1/p
n l−1 (n) Ê

[
|X|

(
1 − h

(
|X|

τ
1/p
n

))]
=

∞∑
k=1

∑
2k−1≤n<2k

τ−1/p
n l−1 (n) Ê

[
|X|

(
1 − h

(
|X|

τ
1/p
n

))]

≤

∞∑
k=1

2kτ
−1/p
2k−1 l−1

(
2k−1

)
Ê

|X|
1 − h

 |X|
τ

1/p
2k−1





≪

∞∑
k=1

2kτ
−1/p
2k l−1

(
2k

)
Ê

|X|
1 − h

 |X|
τ

1/p
2k



 .

Then, from (2.15), (2.13), and (2.5), countable sub-additivity of Ê,

H2 ≪

∞∑
k=1

2kτ
−1/p
2k l−1

(
2k

) ∞∑
j=k

Ê

(
|X| h j

(
|X|
µ

))

=

∞∑
j=1

j∑
k=1

2kτ
−1/p
2k l−1

(
2k

)
Ê

(
|X| h j

(
|X|
µ

))

≪

∞∑
j=1

2 jτ
−1/p
2 j l−1

(
2 j

)
τ

1/p
2 j V

(
|X| > µ2τ

1/p
2 j−1

)
≪

∞∑
j=1

2 j

l (2 j)
V

(
|X| > µ2τ

1/p
2 j

)
< ∞.

Therefore, (2.7) holds. □

Lemma 2.4. (Zhang [11] Borel-Cantelli Lemma ) Suppose {Bn; n ≥ 1} is an array of matters in F .
Suppose V has countable sub-additivity. We can obtain V (Bn; i.o.) = 0 provided that

∑∞
n=1V (Bn) < ∞,

where (Bn; i.o.) =
⋂∞

n=1
⋃∞

m=n Bm.

3. Main conclusions

Theorem 3.1. Suppose {Xn, n ≥ 1} is a sequence of WNOD r.v., and its dominating coefficients are
g (n). The sequence is stochastically dominated by a r.v. X. Ê andV both have countable sub-additivity,
and satisfying

CV (|X|p) < ∞, 1 < p < 2. (3.1)

Make {ank, 1 ≤ k ≤ n, n ≥ 1} be a positive sequence according to

max
1≤k≤n

ank = O
(
τ−1/p

n l−1 (n)
)
, n→ ∞, (3.2)
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where τn is defined by (2.1) .
If for some 0 < δ < 1,

∞∑
n=1

e(δ−2)l(n)g (n) < ∞, (3.3)

then,

lim sup
n→∞

n∑
k=1

ank

(
Xk − ÊXk

)
≤ 0 a.s.V, (3.4)

lim inf
n→∞

n∑
k=1

ank

(
Xk − ÊXk

)
≥ 0 a.s.V, (3.5)

in particular, when ÊXk = ÊXk, then

lim
n→∞

n∑
k=1

ank

(
Xk − ÊXk

)
= 0 a.s.V. (3.6)

Remark 3.1. Theorem 3.1 under sub-linear expectations space is an extension of Theorem 2.1 of
Yan [19] of the classical probability space.

Remark 3.2. If g (n) = M, for each n ≥ 1, then the sequence is simplified to END. When let l (n) =
logn, n ≥ 1, for 0 < δ < 1,

∞∑
n=1

e(δ−2)l(n)g (n) = M
∞∑

n=1

n−(2−δ) < ∞,

condition (3.3) is satisfied. By Theorem 3.1, Eqs (3.4)–(3.6) hold.

Remark 3.3. We can obtain different conclusions by taking different forms of slowly varying function
l (x). By taking l (n) = logn and l (n) = exp

{(
logn

)ν} (0 < ν < 1), we will get the following two
corollaries.

Corollary 3.1. Suppose {Xn, n ≥ 1} is a sequence of WNOD r.v., and its dominating coefficients are
g (n). The sequence is stochastically dominated by a r.v. X. Besides, the sequence is satisfied (3.1).
Ê and V both have countable sub-additivity. Make sure {ank, 1 ≤ k ≤ n, n ≥ 1} is a positive sequence
according to

max
1≤k≤n

ank = O
(

1
n1/plog1−1/pn

)
, n→ ∞. (3.7)

For some 0 < b < 1 − δ,
g (n) n−b ≤ c, (3.8)

then (3.4)–(3.6) hold.

Corollary 3.2. Suppose {Xn, n ≥ 1} is a sequence of WNOD random variables, and its dominating
coefficients are g (n). The sequence is stochastically dominated by a r.v. X. Besides, the sequence
is satisfied (3.1). Ê and V both have countable sub-additivity. Make sure {ank, 1 ≤ k ≤ n, n ≥ 1} is a
positive sequence according to

max
1≤k≤n

ank = O
(
n−1/pe(−1+1/p)(logn)ν) , n→ ∞, (3.9)
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where 0 < ν < 1.
For some m > 0,

g (n) n−m ≤ c, (3.10)

then (3.4)–(3.6) hold.

Then, we will think about the situation of p = 1.

Theorem 3.2. Suppose {Xn, n ≥ 1} is a sequence of WNOD r.v., and its dominating coefficients are
g (n) and are satisfied (3.3). The sequence is stochastically dominated by a r.v. X. Ê and V both have
countable sub-additivity, and satisfying

CV
(
|X| log |X|

)
< ∞. (3.11)

Suppose {ank, 1 ≤ k ≤ n, n ≥ 1} is a positive sequence according to

max
1≤k≤n

ank = O
(
n−1

)
, n→ ∞, (3.12)

then (3.4)–(3.6) hold.

4. Proofs of the main conclusions

4.1. Proof of Theorem 3.1.

Because the sequence {−Xk, k ≥ 1} fulfills the criterion of Theorem 3.1, making {−Xk, k ≥ 1} as a
substitute for {Xk, k ≥ 1} in formula (3.4), by ÊX = −Ê (−X), there is

0 ≥ lim sup
n→∞

n∑
k=1

ank

(
(−Xk) − Ê (−Xk)

)
= lim sup

n→∞

n∑
k=1

ank

(
(−Xk) + ÊXk

)
= lim sup

n→∞

n∑
k=1

ank

(
−

(
Xk − ÊXk

))
.

⇒ lim inf
n→∞

n∑
k=1

ank

(
Xk − ÊXk

)
≥ 0.

Therefore, (3.5) holds. Then, by ÊXk = ÊXk, (3.4) and (3.5), we can get (3.6). So we just need to
prove (3.4).

We denote X′n, X′′n respectively by equations (2.2) and (2.3). By Definition 2.6,
{
X′k − ÊX′k, k ≥ 1

}
is

also WNOD. Denote X̃′k := X′k − ÊX′k.
Therefore,

n∑
k=1

ank

(
Xk − ÊXk

)
=

n∑
k=1

ankX̃′k +
n∑

k=1

ankX′′k +
n∑

k=1

ank

(
ÊX′k − ÊXk

)
:= I1 + I2 + I3.

So, if we want to prove (3.4), just prove

lim sup
n→∞

Ii ≤ 0 a.s.V, i = 1, 2, and lim
n→∞

I3 = 0. (4.1)
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By (3.2) and the formula ex ≤ 1 + x + x2

2 e|x|, x ∈ [−∞,∞], for all t > 0, 1 ≤ k ≤ n as well as large
enough n,

exp
{
tankX̃′k

}
≤ 1 + tankX̃′k +

t2a2
nk

(
X̃′k

)2

2
exp

{
tank

∣∣∣X̃′k∣∣∣}
≤ 1 + tankX̃′k + cτ−2/p

n l−2 (n) t2
(
X̃′k

)2
exp

{
ctl−1 (n)

}
.

(4.2)

By Definition 2.6, let φi (x) = etXi , i ≥ 1, we can get for WNOD r.v.,

Êexp

t
n∑

i=1

Xi

 ≤ g (n)
n∏

i=1

Êexp {tXi} . (4.3)

By (4.2), (4.3), and the inequality 1 + x ≤ ex,∀x ∈ R, for all t > 0 as well as large enough n,

Êexp

t
n∑

k=1

ankX̃′k

 ≤ g (n)
n∏

k=1

Êexp
{
tankX̃′k

}
≤ g (n)

n∏
k=1

Ê
[
1 + tankX̃′k + cτ−2/p

n l−2 (n) t2
(
X̃′k

)2
exp

{
ctl−1 (n)

}]
≤ g (n)

n∏
k=1

[
1 + cτ−2/p

n l−2 (n) t2exp
{
ctl−1 (n)

}
Ê

(
X̃′k

)2
]

≤ g (n) exp

cτ−2/p
n l−2 (n) t2exp

{
ctl−1 (n)

} n∑
k=1

Ê
(
X̃′k

)2
 .

For ε > 0, let t = 2ε−1l (n). According to Markov inequality, we can get

V

 n∑
k=1

ankX̃′k > ε

 ≤ e−εtÊexp

t
n∑

k=1

ankX̃′k


≤ e−εtg (n) exp

cτ−2/p
n l−2 (n) t2exp

{
ctl−1 (n)

} n∑
k=1

Ê
(
X̃′k

)2


≤ e−2l(n)g (n) exp

cε−2exp
{
cε−1

}
l (n) τ−2/p

n l−1 (n)
n∑

k=1

Ê
(
X̃′k

)2
 .

Combining Ê
(
X̃′k

)2
≤ 4Ê

(
X′k

)2
, (2.6), and Kronecker’s Lemma,

τ−2/p
n l−1 (n)

n∑
k=1

Ê
(
X̃′k

)2
→ 0, n→ ∞.

So, for ∀0 < δ < 1, and large enough n, l (n) is non-decreasing in (0,∞), we can get

cε−2exp
{
cε−1

}
τ−2/p

n l−1 (n)
n∑

k=1

Ê
(
X̃′k

)2
l (n) ≤ δl (1) ≤ δl (n) .
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Therefore, by (3.3),
∞∑

n=1

V

 n∑
k=1

ankX̃′k > ε

 ≤ c
∞∑

n=1

e−2l(n)g (n) eδl(n) = c
∞∑

n=1

e(δ−2)l(n)g (n) < ∞.

Because V has countable sub-additivity, and for every ε > 0, we obtain from Lemma 2.4,

lim sup
n→∞

I1 ≤ 0, a.s.V. (4.4)

For each n, there must be a m such that 2m−1 ≤ n < 2m, by (2.12) and (3.2), h (x) is decreasing in (0,∞),
according to Lemma 2.1, τ−1/p

n l−1 (n) is decreasing in (0,∞),

H3 : =
n∑

k=1

ank

∣∣∣ÊXk − ÊX′k
∣∣∣

≤

n∑
k=1

ankÊ
∣∣∣X′′k ∣∣∣

≤

n∑
k=1

ankÊ

|X| 1 − h

 |X|
τ

1/p
k


≪ τ−1/p

n l−1 (n) nÊ
[
|X|

(
1 − h

(
|X|

τ
1/p
n

))]
≤

2m

τ
1/p
2m−1l

(
2m−1) Ê

|X|
1 − h

 |X|
τ

1/p
2m−1





≪
2m

τ
1/p
2m l (2m)

Ê

|X| 1 − h

 |X|
τ

1/p
2m

 .
Then, by (2.15) and (2.13), Ê is countably sub-additive,

H3 ≪
2m

τ
1/p
2m l (2m)

∞∑
j=m

Ê

[
|X| h j

(
|X|
µ

)]

≤
2m

τ
1/p
2m l (2m)

∞∑
j=m

τ
1/p
2 j V

(
|X| > µ2τ

1/p
2 j−1

)
≤

∞∑
j=m

2 j

τ
1/p
2 j l (2 j)

τ
1/p
2 j V

(
|X| > µ2τ

1/p
2 j

)
=

∞∑
j=m

2 j

l (2 j)
V

(
|X| > µ2τ

1/p
2 j

)
.

Combining (2.5), we get
lim
n→∞

I3 = 0. (4.5)

If we want to prove (3.4), just prove

lim sup
n→∞

I2 ≤ 0, a.s.V. (4.6)
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Using (3.2) as well as the Lemma 2.1,

max
2m≤n<2m+1

∣∣∣∣∣∣∣
n∑

k=1

ankX′′k

∣∣∣∣∣∣∣ ≤ c max
2m≤n<2m+1

τ−1/p
n l−1 (n)

n∑
k=1

∣∣∣X′′k ∣∣∣
≤ cτ−1/p

2m l−1 (2m)
2m+1∑
k=1

∣∣∣X′′k ∣∣∣ ,
for ∀ε > 0, by (2.7) and Markov inequality,

∞∑
m=1

V

 max
2m≤n<2m+1

∣∣∣∣∣∣∣
n∑

k=1

ankX′′k

∣∣∣∣∣∣∣ > ε
 ≤ ∞∑

m=1

V

cτ−1/p
2m l−1 (2m)

2m+1∑
k=1

∣∣∣X′′k ∣∣∣ > ε
≤ c

∞∑
m=1

τ
−1/p
2m l−1 (2m)

2m+1∑
k=1

Ê
∣∣∣X′′k ∣∣∣

= c
∞∑

k=1

Ê
∣∣∣X′′k ∣∣∣ ∑

m:2m+1≥k

τ
−1/p
2m l−1 (2m)

≪

∞∑
k=1

τ
−1/p
k l−1 (k) Ê

∣∣∣X′′k ∣∣∣
< ∞.

By Lemma 2.4, for ∀ε > 0,

lim sup
m→∞

max
2m≤n<2m+1

∣∣∣∣∣∣∣
n∑

k=1

ankX′′k

∣∣∣∣∣∣∣ ≤ ε, a.s.V.
Combining

∣∣∣∑n
k=1 ankX′′

∣∣∣ ≤ max2m≤n<2m+1

∣∣∣∑n
k=1 ankX′′k

∣∣∣ and the arbitrariness of ε, (4.6) holds. So far,
Theorem 3.1 has been proved.

4.2. Proof of Corollary 3.1.

Let l (n) = log (n), for 0 < b < 1 − δ, by (3.8), we have

∞∑
n=1

e(δ−2)l(n)g (n) =
∞∑

n=1

nδ−2g (n) =
∞∑

n=1

nδ−2+bg (n) n−b ≤ c
∞∑

n=1

nδ−2+b < ∞.

Then, (3.4) holds. From Theorem 3.1, Eqs (3.4)–(3.6) hold.

4.3. Proof of Corollary 3.2.

Let l (n) = exp
{(

logn
)ν} , 0 < ν < 1. For ∀q > 0, we have(

logn
)ν
≥ qloglogn,

so,
exp

{(
logn

)ν}
≥ eqloglogn = logqn ≥ qlogn.
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By (3.10), 0 < δ < 1, when q > m+1
2−δ , we have

∞∑
n=1

e(δ−2)l(n)g (n) =
∞∑

n=1

exp
{
(δ − 2) exp

{
logνn

}}
g (n)

≤

∞∑
n=1

exp
{
(δ − 2) qlogn

}
g (n)

=

∞∑
n=1

n(δ−2)q+mg (n) n−m

≤ c
∞∑

n=1

n(δ−2)q+m

< ∞.

Then, (3.4) holds. From Theorem 3.1, Eqs (3.4)–(3.6) hold.

4.4. Proof of Theorem 3.2.

When p = 1, CV (|X|) ≤ CV
(
|X| log |X|

)
< ∞, thus (4.4) and (4.5) are still valid, we just need to

prove (4.6). Imitating the proof of Lemma 2.2, from CV
(
|X| log |X|

)
< ∞, we can obtain

∞∑
k=1

2kk
l
(
2k)V (|X| > cτ2k) < ∞. (4.7)

Combining (2.12) and the monotonically decreasing property of h (x) in (0,∞),

H4 : =
∞∑

n=1

1
n
Ê

∣∣∣X′′n ∣∣∣ ≤ ∞∑
n=1

1
n
Ê |X|

(
1 − h

(
|X|
τn

))
=

∞∑
k=1

∑
2k−1≤n<2k

1
n
Ê |X|

(
1 − h

(
|X|
τn

))

≤

∞∑
k=1

2k−1 1
2k−1 Ê |X|

(
1 − h

(
|X|
τ2k−1

))
≪

∞∑
k=1

Ê |X|
(
1 − h

(
|X|
τ2k

))
.

Then, by (2.15) and (4.7),

H4 ≪

∞∑
k=1

∞∑
j=k

Ê |X| h j

(
|X|
µ

)

≤

∞∑
j=1

jτ2 jV
(
|X| > µ2τ2 j−1

)
≪

∞∑
j=1

2 j j
l (2 j)

V
(
|X| > µ2τ2 j

)
< ∞.
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For ∀ε > 0, by (3.12) and Markov inequality,
∞∑

m=1

V

 max
2m≤n<2m+1

∣∣∣∣∣∣∣
n∑

k=1

ankX′′k > ε

∣∣∣∣∣∣∣
 ≤ c

∞∑
m=1

max
2m≤n<2m+1

1
n

n∑
k=1

Ê
∣∣∣X′′k ∣∣∣

≤ c
∞∑

m=1

1
2m

2m+1∑
k=1

Ê
∣∣∣X′′k ∣∣∣

= c
∞∑

k=1

Ê
∣∣∣X′′k ∣∣∣ ∑

m:2m+1>k

1
2m

≪ c
∞∑

k=1

1
k
Ê

∣∣∣X′′k ∣∣∣
< ∞.

By Lemma 2.4, for ∀ε > 0,

lim sup
m→∞

max
2m≤n<2m+1

∣∣∣∣∣∣∣
n∑

k=1

ankX′′k

∣∣∣∣∣∣∣ ≤ ε, a.s.V.
Combining

∣∣∣∑n
k=1 ankX′′

∣∣∣ ≤ max2m≤n<2m+1

∣∣∣∑n
k=1 ankX′′k

∣∣∣ and the arbitrariness of ε, (4.6) holds. So far,
Theorem 3.2 has been proved.

5. Conclusions

Almost sure convergence of WNOD r.v. in Peng’s theory frame is built through this essay. It is
based on the corresponding definition of stochastic domination in the sub-linear expectation space, as
well as the properties of WNOD r.v. and the related proving methods. Compared with the previous
research of ND, END, and so on, the research in this paper is suitable for a wider range of r.v.. So,
broader conclusions are reached. In future research work, we will further consider investigating more
meaningful conclusions.
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