Research article Special Issues

Additivity of nonlinear higher anti-derivable mappings on generalized matrix algebras

  • Received: 26 December 2022 Revised: 07 September 2023 Accepted: 11 October 2023 Published: 26 October 2023
  • In this article, we proved that each nonlinear higher anti-derivable mapping on generalized matrix algebras is automatically additive. As for its applications, we find a similar conclusion on triangular algebras, full matrix algebras, unital prime rings with a nontrivial idempotent, unital standard operator algebras and factor von Neumann algebras respectively.

    Citation: Xiuhai Fei, Haifang Zhang. Additivity of nonlinear higher anti-derivable mappings on generalized matrix algebras[J]. Electronic Research Archive, 2023, 31(11): 6898-6912. doi: 10.3934/era.2023349

    Related Papers:

  • In this article, we proved that each nonlinear higher anti-derivable mapping on generalized matrix algebras is automatically additive. As for its applications, we find a similar conclusion on triangular algebras, full matrix algebras, unital prime rings with a nontrivial idempotent, unital standard operator algebras and factor von Neumann algebras respectively.



    加载中


    [1] D. Benkovič, Jordan derivations and anti-derivations on triangular matrices, Linear Algebra Appl., 397 (2005), 235–244. https://doi.org/10.1016/j.laa.2004.10.017 doi: 10.1016/j.laa.2004.10.017
    [2] J. H. Zhang, W. Y. Yu, Jordan derivations of triangular algebras, Linear Algebra Appl., 419 (2006), 251–255. https://doi.org/10.1016/j.laa.2006.04.015 doi: 10.1016/j.laa.2006.04.015
    [3] Z. K. Xiao, F. Wei, Jordan higher derivations on triangular algebras, Linear Algebra Appl., 432 (2010), 2615–2622. https://doi.org/10.1016/j.laa.2009.12.006 doi: 10.1016/j.laa.2009.12.006
    [4] W. L. Fu, Z. K. Xiao, X. K. Du, Nonlinear Jordan higher derivations on triangular algebras, Commun. Math. Res., 31 (2015), 119–130.
    [5] H. R. E. Vishki, M. Mirzavaziri, F. Moafian, Jordan higher derivations on trivial extension algebras, Commun. Korean Math. Soc., 31 (2016), 247–259. https://doi.org/10.4134/CKMS.2016.31.2.247 doi: 10.4134/CKMS.2016.31.2.247
    [6] C. E. Rickart, One-to-one mappings of rings and lattices, Bull. Amer. Math. Soc., 54 (1948), 758–764. https://doi.org/10.1090/S0002-9904-1948-09073-5 doi: 10.1090/S0002-9904-1948-09073-5
    [7] W. S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc., 21 (1969), 695–698. https://doi.org/10.1090/S0002-9939-1969-0240129-7 doi: 10.1090/S0002-9939-1969-0240129-7
    [8] Y. Wang, The additivity of multiplicative maps on rings, Commun. Algebra, 37 (2009), 2351–2356. https://doi.org/10.1080/00927870802623369 doi: 10.1080/00927870802623369
    [9] Y. Li, Z. Xiao, Additivity of maps on generalized matrix algebras, Electron. J. Linear Algebra, 22 (2011), 743–757. https://doi.org/10.13001/1081-3810.1471 doi: 10.13001/1081-3810.1471
    [10] J. M. Ferreira, B. L. M. Ferreira, Additivity of $n$-multiplicative maps on alternative rings, Commun. Algebra, 44 (2016), 1557–1568. https://doi.org/10.1080/00927872.2015.1027364 doi: 10.1080/00927872.2015.1027364
    [11] R. C. Shaheen, On additivity of Jordan higher mappings on generalized matrix algebras, Iraqi J. Sci., 62 (2021), 1334–1343. https://doi.org/10.24996/ijs.2021.62.4.29 doi: 10.24996/ijs.2021.62.4.29
    [12] M. N. Daif, When is a multiplicative derivation additive?, Int. J. Math. Math. Sci., 14 (1991), 615–618. https://doi.org/10.1155/S0161171291000844 doi: 10.1155/S0161171291000844
    [13] M. N. Daif, M. S. Tammam-El-Sayiad, Multiplicative generalized derivations which are additive, East-West J. Math., 9 (2007), 31–37.
    [14] F. Lu, Jordan derivable maps of prime rings, Comm. Algebra, 12 (2010), 4430–4440. https://doi.org/10.1080/00927870903366884 doi: 10.1080/00927870903366884
    [15] P. Ji, Y. Lai, E. Hou, Multiplicative Jordan derivations on Jordan algebras, Acta Math, Sinica (Chin. Ser.), 53 (2010), 571–578.
    [16] J. Wu, F. Lu, Additivity of Jordan (triple) derivations on rings, Commun. Algebra, 40 (2012), 2700–2719. https://doi.org/10.1080/00927872.2011.584927 doi: 10.1080/00927872.2011.584927
    [17] W. Fu, Z. Xiao, X. Du, Nonlinear Jordan higher derivations on triangular algebras, Commun. Math. Res., 31 (2015), 119–130.
    [18] M. Ashraf, A. Jabeen, Nonlinear Jordan triple higher derivable mappings of triangular algebras, Southeast Asian Bull. Math., 42 (2018), 503–520.
    [19] D. A. Abulhamil, F. B. Jamjoom, A. M. Peralta, Linear maps which are anti-derivable at zero, Bull. Malays. Math. Sci. Soc., 43 (2020), 4315–4334. https://doi.org/10.1007/s40840-020-00918-7 doi: 10.1007/s40840-020-00918-7
    [20] H. Ghahramani, M. N. Ghosseiri, T. Rezaei, Anti-derivations on triangular rings, Khayyam J. Math., 9 (2023), 30–37. https://doi.org/10.22034/KJM.2022.367135.2696 doi: 10.22034/KJM.2022.367135.2696
    [21] B. L. M. Ferreira, A. Jabeen, Multiplicative maps on generalized $n$-matrix rings, arXiv preprint, (2022), arXiv: 2205.15728. https://doi.org/10.48550/arXiv.2205.15728
    [22] K. Morita, Duality for modules and its applications to the theory of rings with minimum condition, Rep. Tokyo Kyoiku Diagaku Sect., 6 (1958), 83–142.
    [23] B. L. M. Ferreira, G. S. Sandhu, Multiplicative anti-derivations of generalized $n$-matrix rings, J. Algebra Appl., (2022), 2450079. https://doi.org/10.1142/S0219498824500798
    [24] W. S. Cheung, Mappings on triangular algebras, Ph.D Thesis, University of Victoria, 2000. Available from: http://dspace.library.uvic.ca/bitstream/handle/1828/9349/Cheung_Wai-Shun_PhD_2000.pdf?sequence = 1 & isAllowed = y
    [25] B. L. M. Ferreira, Multiplicative maps on triangular $n$-matrix rings, Int. J. Math. Game Theor. Algebra, 23 (2014), 1–14.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(856) PDF downloads(48) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog