We study the Benjamin-Bona-Mahony model with finite distributed delay in 3D, which depicts the dispersive impact of long waves. Based on the well-posedness of model, the family of pullback attractors for the evolutionary processes generated by a global weak solution has been obtained, which is unique and minimal, via verifying asymptotic compactness in functional space with delay $ C_V $ and topological space $ V\times C_V $, where the energy equation method and a retarded Gronwall inequality are utilized.
Citation: Lingrui Zhang, Xue-zhi Li, Keqin Su. Dynamical behavior of Benjamin-Bona-Mahony system with finite distributed delay in 3D[J]. Electronic Research Archive, 2023, 31(11): 6881-6897. doi: 10.3934/era.2023348
We study the Benjamin-Bona-Mahony model with finite distributed delay in 3D, which depicts the dispersive impact of long waves. Based on the well-posedness of model, the family of pullback attractors for the evolutionary processes generated by a global weak solution has been obtained, which is unique and minimal, via verifying asymptotic compactness in functional space with delay $ C_V $ and topological space $ V\times C_V $, where the energy equation method and a retarded Gronwall inequality are utilized.
[1] | T. B. Benjamin, J. L. Bona, J. J. Mahony, Model Equations for Long Waves in Nonlinear Dispersive Systems, Philos. Trans. R. Soc. London, Ser. A, 272 (1972), 47–78. https://doi.org/10.1098/rsta.1972.0032 doi: 10.1098/rsta.1972.0032 |
[2] | J. Avrin, J. A. Goldtaein, Global existence for the Benjamin-Bona-Mahony equation in arbitrary dimensions, Nonlinear Anal. Theory Methods Appl., 9 (1985), 861–865. https://doi.org/10.1016/0362-546X(85)90023-9 doi: 10.1016/0362-546X(85)90023-9 |
[3] | P. Biler, Long time behaviour of solutions of the generalized Benjamin-Bona-Mahony equation in two space dimensions, Differ. Integr. Equations, 5 (1992), 891–901. https://doi.org/10.57262/die/1370955426 doi: 10.57262/die/1370955426 |
[4] | C. S. Q. Caldas, J. Limaco, R. K. Barreto, About the Benjamin-Bona-Mahony equation in domains with moving boundary, Trends Comput. Appl. Math., 8 (2007), 329–339. https://doi.org/10.5540/tema.2007.08.03.0329 doi: 10.5540/tema.2007.08.03.0329 |
[5] | J. P. Cheha, P. Garnier, Y. Mammeri, Long-time behavior of solutions of a BBM equation with generalized damping, preprint, arXiv: 1402.5009. https://doi.org/10.48550/arXiv.1402.5009 |
[6] | A. O. Celebi, V. K. Kalantarov, M. Polat, Attractors for the generalized Benjamin-Bona-Mahony equation, J. Differ. Equations, 157 (1999), 439–451. https://doi.org/10.1006/jdeq.1999.3634 doi: 10.1006/jdeq.1999.3634 |
[7] | I. Chueshov, M. Polat, S. Siegmund, Gevrey Regularity of global attractor for generalized Benjamin-Bona-Mahony equation, Mat. Fiz. Anal. Geom., 22 (2002), 226–242. |
[8] | B. Wang, Regularity of attractors for the Benjamin-Bona-Mahony equation, J. Phys. A: Math. Gen., 31 (1998), 7635–7645. https://doi.org/10.1088/0305-4470/31/37/021 doi: 10.1088/0305-4470/31/37/021 |
[9] | B. Wang, W. Yang, Finite dimensional behavior for the Benjamin-Bona-Mahony equation, J. Phys. A: Math. Theor., 30 (1997), 4877–4885. https://doi.org/10.1088/0305-4470/30/13/035 doi: 10.1088/0305-4470/30/13/035 |
[10] | B. Wang, Strong attractors for the Benjamin-Bona-Mahony equation, Appl. Math. Lett., 10 (1997), 23–28. https://doi.org/10.1016/S0893-9659(97)00005-0 doi: 10.1016/S0893-9659(97)00005-0 |
[11] | B. Wang, D. W. Fussner, C. Bi, Existence of global attractors for the Benjamin-Bona-Mathony equations in unbounded domains, J. Phys. A: Math. Theor., 40 (2007), 10491–10504. https://doi.org/10.1088/1751-8113/40/34/007 doi: 10.1088/1751-8113/40/34/007 |
[12] | M. Stanislavova, A. Stefanov, B. Wang, Asymptotic smoothing and attractors for the generalized Benjamin-Bona-Mahony equation on $\mathbb{R}^3$, J. Differ. Equations, 219 (2005), 451–483. https://doi.org/10.1016/j.jde.2005.08.004 doi: 10.1016/j.jde.2005.08.004 |
[13] | C. Zhu, Global attractor for the damped Benjamin-Bona-Mahony equations on $\mathbb{R}^1$, Appl. Anal., 86 (2007), 59–65. http://dx.doi.org/10.1080/00036810601109135 doi: 10.1080/00036810601109135 |
[14] | B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains, J. Differ. Equations, 246 (2009), 2506–2537. https://doi.org/10.48550/arXiv.0805.1781 doi: 10.48550/arXiv.0805.1781 |
[15] | Y. Xie, L. Li, Multiple-order breathers for a generalized (3+1)-dimensional Kadomtsev-Petviashvili Benjamin-Bona-Mahony equation near the offshore structure, Math. Comput. Simulat., 193 (2022), 19–31. {https://doi.org/10.1016/j.matcom.2021.08.021} doi: 10.1016/j.matcom.2021.08.021} |
[16] | T. Caraballo, X. Han, A survey on Navier-Stokes models with delays: existence, uniqueness and asymptotic behavior of solutions, Discrete Contin. Dyn. Syst. - Ser. S, 8 (2015), 1079–1101. https://doi.org/10.3934/dcdss.2015.8.1079 doi: 10.3934/dcdss.2015.8.1079 |
[17] | T. Caraballo, J. Real, Navier-Stokes equations with delays, Proc. R. Soc. Lond. A., 457 (2001), 2441–2453. https://doi.org/10.1098/rspa.2001.0807 doi: 10.1098/rspa.2001.0807 |
[18] | T. Caraballo, J. Real, Attractors for 2D Navier-Stokes models with delays, J. Differ. Equations, 205 (2004), 271–297. https://doi.org/10.1016/j.jde.2004.04.012 doi: 10.1016/j.jde.2004.04.012 |
[19] | L. Liu, T. Caraballo, P. Marín-Rubio, Stability results for 2D Navier-Stokes equations with unbounded delay, J. Differ. Equations, 265 (2018), 5685–5708. https://doi.org/10.1016/j.jde.2018.07.008 doi: 10.1016/j.jde.2018.07.008 |
[20] | P. Marín-Rubio, J. Real, Pullback attractors for 2D Navier-Stokes equations with delay in continuous and sub-linear operators, Discrete Contin. Dyn. Syst., 26 (2010), 989–1006. http://doi.org/10.3934/dcds.2010.26.989 doi: 10.3934/dcds.2010.26.989 |
[21] | Y. Wang, X. Yang, X. Yan, Dynamics of 2D Navier-Stokes equations with Rayleigh's friction and distributed delay, Electron. J. Differ. Equations, 2019 (2019), 1–18. |
[22] | F. Dell'Oro, Y. Mammeri, Benjamin–Bona–Mahony equations with memory and Rayleigh friction, Appl. Math. Optim., 83 (2021), 813–831. https://doi.org/10.1007/s00245-019-09568-z doi: 10.1007/s00245-019-09568-z |
[23] | C. Zhu, C. Mu, Exponential decay estimates for time-delayed Benjamin-Bona-Mahony equations, Appl. Anal., 87 (2008), 401–407. {https://doi.org/10.1080/00036810701799298} doi: 10.1080/00036810701799298} |
[24] | L. Li, X. Yang, X. Li, X. Yan, Y. Lu, Dynamics and stability of the 3D Brinkman-Forchheimer equation with variable delay (I), Asymptotic Anal., 113 (2019), 167–194. http://dx.doi.org/10.3233/ASY-181512 doi: 10.3233/ASY-181512 |
[25] | X. Yang, J. Zhang, S. Wang, Stability and dynamics of a weak viscoelastic system with memory and nonlinear time-varying delay, Discrete Contin. Dyn. Syst., 40 (2020), 1493–1515. https://doi.org/10.3934/dcds.2020084 doi: 10.3934/dcds.2020084 |
[26] | D. Li, Q. Liu, X. Ju, Uniform decay estimates for solutions of a class of retarded integral inequalities, J. Differ. Equations, 271 (2021), 1–38. https://doi.org/10.1016/j.jde.2020.08.017 doi: 10.1016/j.jde.2020.08.017 |
[27] | K. Yosida, Functional Analysis, Springer-Verlag, Heidelberg, 1980. |
[28] | X. Yang, L. Li, Y. Lu, Regularity of uniform attractor for 3D non-autonomous Navier-Stokes-Voigt equation, Appl. Math. Comput., 334 (2018), 11–29. https://doi.org/10.1016/j.amc.2018.03.096 doi: 10.1016/j.amc.2018.03.096 |
[29] | X. G. Yang, L. Li, X. Yan, L. Ding, The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay, Electron. Res. Arch., 28 (2020), 1395–1418. https://doi.org/10.3934/era.2020074 doi: 10.3934/era.2020074 |