The recurrent iterated function systems (RIFS) were first introduced by Barnsley and Demko and generalized the usual iterated function systems (IFS). This new method allowed the construction of more general sets, which do not have to exhibit the strict self similarity of the IFS case and, in particular, the construction of recurrent fractal interpolation functions (RFIF). Given a data set $ \{ (x_n, y_n) \in I\times \mathbb R, n = 0, 1, \ldots, N \} $ where $ I = [x_0, x_N] $, we ensured that attractors of RIFS constructed using Geraghty contractions were graphs of some continuous functions which interpolated the given data. Our approach goes beyond the classical framework and provided a wide variety of systems for different approximations problems and, thus, gives more flexibility and applicability of the fractal interpolation method. As an application, we studied the error rates of time series related to the vaccination of COVID-19 using RFIF, and we compared them with the obtained results on the FIF.
Citation: Najmeddine Attia, Hajer Jebali. On the construction of recurrent fractal interpolation functions using Geraghty contractions[J]. Electronic Research Archive, 2023, 31(11): 6866-6880. doi: 10.3934/era.2023347
The recurrent iterated function systems (RIFS) were first introduced by Barnsley and Demko and generalized the usual iterated function systems (IFS). This new method allowed the construction of more general sets, which do not have to exhibit the strict self similarity of the IFS case and, in particular, the construction of recurrent fractal interpolation functions (RFIF). Given a data set $ \{ (x_n, y_n) \in I\times \mathbb R, n = 0, 1, \ldots, N \} $ where $ I = [x_0, x_N] $, we ensured that attractors of RIFS constructed using Geraghty contractions were graphs of some continuous functions which interpolated the given data. Our approach goes beyond the classical framework and provided a wide variety of systems for different approximations problems and, thus, gives more flexibility and applicability of the fractal interpolation method. As an application, we studied the error rates of time series related to the vaccination of COVID-19 using RFIF, and we compared them with the obtained results on the FIF.
[1] | M. F. Barnsley, Fractal functions and interpolation, Constr. Approximation, 2 (1986), 303–329. https://doi.org/10.1007/BF01893434 doi: 10.1007/BF01893434 |
[2] | S. Dubuc, Interpolation through an iterative scheme, J. Math. Anal. appl., 114 (1986), 185–204. https://doi.org/10.1016/0022-247X(86)90077-6 doi: 10.1016/0022-247X(86)90077-6 |
[3] | S. Dubuc, Interpolation fractale, in Fractal Geometry and Analysis, (eds. J. Bélais and S. Dubuc), Kluwer Academic Publishers, Dordrecht, 1989. |
[4] | R. Massopust, Fractal functions, fractal surfaces and wavelets, Acad. Press, 1994. https://doi.org/10.1016/B978-0-08-092458-8.50003-4 |
[5] | A. K. B. Chand, G. P. Kapoor, Generalized cubic spline fractal interpolation functions, SIAM J. Numer. Anal., 44 (2006), 655–676. https://doi.org/10.1137/040611070 doi: 10.1137/040611070 |
[6] | P. Viswanathan, A. K. B. Chand, M. A. Navascués, Fractal perturbation preserving fundamental shapes: Bounds on the scale factors, J. Math. Anal. Appl., 419 (2014), 804–817. https://doi.org/10.1016/j.jmaa.2014.05.019 doi: 10.1016/j.jmaa.2014.05.019 |
[7] | N. Vijender, Bernstein fractal trigonometric approximation, Acta Appl. Math., 159 (2018), 11–27. https://doi.org/10.1007/s10440-018-0182-1 |
[8] | N. Attia, M. Balegh, R. Amami, R. Amami, On the Fractal interpolation functions associated with Matkowski contractions, Electr. Res. Arch., 31 (2023), 4652–4668. https://doi.org/10.3934/era.2023238 doi: 10.3934/era.2023238 |
[9] | S. Ri, A new nonlinear fractal interpolation function, Fractals, 25 (2017). https://doi.org/10.1142/S0218348X17500633 |
[10] | S. Ri, New types of fractal interpolation surfaces, Chaos Solitons Fractal, 119 (2019), 291–297. https://doi.org/10.1016/j.chaos.2019.01.010 doi: 10.1016/j.chaos.2019.01.010 |
[11] | M. A. Navascués, C. Pacurar, V. Drakopoulos, Scale-free fractal interpolation, Fractal Fract., 6 (2022), 602. https://doi.org/10.3390/fractalfract6100602 doi: 10.3390/fractalfract6100602 |
[12] | J. Kim, H. Kim, H. Mun, Nonlinear fractal interpolation curves with function vertical scaling factors, Indian J. Pure Appl. Math., 51 (2020), 483–499. https://doi.org/10.1007/s13226-020-0412-x doi: 10.1007/s13226-020-0412-x |
[13] | D. S. Mazel, M. H. Hayes, Using iterated function systems to model discrete sequences, IEEE Trans. Signal Process, 40 (1992) 1724–1734. https://doi.org/10.1109/78.143444 |
[14] | J. R. Price, Resampling and reconstruction with fractal interpolation functions, IEEE Signal Process. Lett., 5 (1998), 228–230. https://doi.org/10.1109/97.712106 doi: 10.1109/97.712106 |
[15] | R. F. Leonarduzzi, G. Schlotthauer, M. E. Torres, Wavelet leader based multifractal analysis of heart rate variability during myocardial ischaemia, in Annual International Conference of the IEEE Engineering in Medicine and Biology, (2010), 110–113. https://doi.org/10.1109/IEMBS.2010.5626091 |
[16] | M. F. Barnsley, Fractals Everywhere, Boston, MA: Academic Press, 1988. |
[17] | M. F. Barnsley, J. H. Elton, D. P. Hardin, Recurrent iterated function systems, Constr. Approx., 5 (1989), 3–31. https://doi.org/10.1007/BF01889596 doi: 10.1007/BF01889596 |
[18] | M. F. Barnsley, A. E. Jacquin, Application of recurrent iterated function systems to images, Visual Commun. Image Process., 1001 (1988). https://doi.org/10.1117/12.968945 |
[19] | C. Yun, W. Metzler, M. Barski, Image compression predicated on recurrent iterated function systems, in 2nd International Conference on Mathematics and Statistics, (2008). |
[20] | D. Luor, Fractal interpolation functions for random data sets, Chaos Solitons Fractals, 114 (2018), 256–263. https://doi.org/10.1016/j.chaos.2018.06.033 doi: 10.1016/j.chaos.2018.06.033 |
[21] | D. Luor, On the distributions of fractal functions that interpolate data points with Gaussian noise, Chaos Solitons Fractals, 135 (2020), 109743. https://doi.org/10.1016/j.chaos.2020.109743 doi: 10.1016/j.chaos.2020.109743 |
[22] | H. J. Ruan, J. C. Xiao, B. Yang, Existence and box dimension of general recurrent fractal fractal interpolation functions, Bull. Aust. Math. Soc., 103 (2021), 278–290. https://doi.org/10.1017/S0004972720001045 doi: 10.1017/S0004972720001045 |
[23] | N. Balasubramani, A. Gowrisankar, Affine recurrent fractal interpolation functions, Eur. Phys. J. Spec. Top, 230 (2021), 3765–3779. https://doi.org/10.1140/epjs/s11734-021-00306-7 doi: 10.1140/epjs/s11734-021-00306-7 |
[24] | M. F. Barnsley, S. Demko, Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London Ser. A, 399 (1985), 243–275. https://doi.org/10.1098/rspa.1985.0057 doi: 10.1098/rspa.1985.0057 |
[25] | P. Bouboulis, Fractal Interpolation Surfaces: Theory and Applications in Image Compression, 2006. |
[26] | M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604–608. https://doi.org/10.1090/S0002-9939-1973-0334176-5 |
[27] | J. Jachymski, I. Jóźwik, Nonlinear contractive conditions: A comparison and related problems, Fixed Point Theory Appl., 77 (2007), 123–146. https://doi.org/10.4064/bc77-0-10 doi: 10.4064/bc77-0-10 |
[28] | F. Strobin, Attractors of generalized IFSs that are not attractors of IFSs, J. Math. Anal. Appl., 422 (2015), 99–108. https://doi.org/10.1016/j.jmaa.2014.08.029 doi: 10.1016/j.jmaa.2014.08.029 |
[29] | Najmuddin Ahmad, Khan Farah Deeba, Study of numerical accuracy in different spline interpolation techniques, Global J. Pure Appl. Math., 16 (2020), 687–693. |
[30] | N. Vijender, V. Drakopoulos, On the Bernstein affine fractal interpolation curved lines and surfaces, Axioms, 9 (2020), 119. https://doi.org/10.3390/axioms9040119 doi: 10.3390/axioms9040119 |