Research article Special Issues

Barycentric rational interpolation method for solving time-dependent fractional convection-diffusion equation

  • Received: 26 March 2023 Revised: 07 May 2023 Accepted: 14 May 2023 Published: 24 May 2023
  • The time-dependent fractional convection-diffusion (TFCD) equation is solved by the barycentric rational interpolation method (BRIM). Since the fractional derivative is the nonlocal operator, we develop a spectral method to solve the TFCD equation to get the coefficient matrix as a full matrix. First, the fractional derivative of the TFCD equation is changed to a nonsingular integral from the singular kernel to a density function. Second, efficient quadrature of the new Gauss formula are constructed to simply compute it. Third, matrix equation of discrete the TFCD equation is obtained by the unknown function replaced by a barycentric rational interpolation basis function. Then, the convergence rate of BRIM is proved. Finally, a numerical example is given to illustrate our result.

    Citation: Jin Li, Yongling Cheng. Barycentric rational interpolation method for solving time-dependent fractional convection-diffusion equation[J]. Electronic Research Archive, 2023, 31(7): 4034-4056. doi: 10.3934/era.2023205

    Related Papers:

  • The time-dependent fractional convection-diffusion (TFCD) equation is solved by the barycentric rational interpolation method (BRIM). Since the fractional derivative is the nonlocal operator, we develop a spectral method to solve the TFCD equation to get the coefficient matrix as a full matrix. First, the fractional derivative of the TFCD equation is changed to a nonsingular integral from the singular kernel to a density function. Second, efficient quadrature of the new Gauss formula are constructed to simply compute it. Third, matrix equation of discrete the TFCD equation is obtained by the unknown function replaced by a barycentric rational interpolation basis function. Then, the convergence rate of BRIM is proved. Finally, a numerical example is given to illustrate our result.



    加载中


    [1] Y. M. Wang, A high-order compact difference method on fitted meshes for Neumann problems of time-fractional reaction-diffusion equations with variable coefficients, Math. Comput. Simul., 181 (2021), 598–623. https://doi.org/10.1016/j.matcom.2020.10.014 doi: 10.1016/j.matcom.2020.10.014
    [2] H. Y. Liu, S. J. Lu, A high-order numerical scheme for solving nonlinear time fractional reaction-diffusion equations with initial singularity, Appl. Numer. Math., 169 (2021), 32–43. https://doi.org/10.1016/j.apnum.2021.06.013 doi: 10.1016/j.apnum.2021.06.013
    [3] H. F. Yuan, An efficient spectral-Galerkin method for fractional reaction-diffusion equations in unbounded domains, J. Comput. Phys., 428 (2021), 110083. https://doi.org/10.1016/j.jcp.2020.110083 doi: 10.1016/j.jcp.2020.110083
    [4] Y. P. Chen, Q. F. Li, H. M. Yi, Y. Q. Huang, Immersed finite element method for time fractional diffusion problems with discontinuous coefficients, Comput. Math. Appl., 128 (2022), 121–129. https://doi.org/10.1016/j.camwa.2022.09.023 doi: 10.1016/j.camwa.2022.09.023
    [5] L. Zhu, N. B. Liu, Q. Sheng, A simulation expressivity of the quenching phenomenon in a two-sided space-fractional diffusion equation, Appl. Math. Comput., 437 (2023), 127523. https://doi.org/10.1016/j.amc.2022.127523 doi: 10.1016/j.amc.2022.127523
    [6] L. L. Wei, H. H. Wang, Local discontinuous Galerkin method for multi-term variable-order time fractional diffusion equation, Math. Comput. Simul., 203 (2023), 685–698. https://doi.org/10.1016/j.matcom.2022.07.017 doi: 10.1016/j.matcom.2022.07.017
    [7] N. Srivastava, V. K. Singh, L3 approximation of Caputo derivative and its application to time-fractional wave equation-(Ⅰ), Math. Comput. Simul., 205 (2023), 532–557. https://doi.org/10.1016/j.matcom.2022.10.003 doi: 10.1016/j.matcom.2022.10.003
    [8] Y. P. Chen, L. N. Wang, L. J. Yi, Exponential convergence of hp-discontinuous Galerkin method for nonlinear Caputo fractional differential equations, J. Sci. Comput., 92 (2022). https://doi.org/10.1007/s10915-022-01947-z doi: 10.1007/s10915-022-01947-z
    [9] L. B. Liu, L. Xu, Y. Zhang, Error analysis of a finite difference scheme on a modified graded mesh for a time-fractional diffusion equation, Math. Comput. Simul., 209 (2023), 87–101. https://doi.org/10.1016/j.matcom.2023.02.007 doi: 10.1016/j.matcom.2023.02.007
    [10] T. Yang, L. B. Liu, X. B. Bao, Y. Zhang, An optimal adaptive grid method based on L1 scheme for a nonlinear Caputo fractional differential equation, Fractal Fract., 11 (2023), 647. https://doi.org/10.3390/fractalfract6110647 doi: 10.3390/fractalfract6110647
    [11] P. Berrut, G. Klein, Recent advances in linear barycentric rational interpolation, J. Comput. Appl. Math., 259 (2014), 95–107. https://doi.org/10.1016/j.cam.2013.03.044 doi: 10.1016/j.cam.2013.03.044
    [12] E. Cirillo, K. Hormann, On the Lebesgue constant of barycentric rational Hermite interpolants at uniform partition, J. Comput. Appl. Math., 349 (2019), 292–301. https://doi.org/10.1016/j.cam.2018.06.011 doi: 10.1016/j.cam.2018.06.011
    [13] J. P. Berrut, S. A. Hosseini, G. Klein, The linear barycentric rational quadrature method for Volterra integral equations, SIAM J. Sci. Comput., 36, (2014), 105–123. https://doi.org/10.1137/120904020 doi: 10.1137/120904020
    [14] M. S. Floater, K. Hormann, Barycentric rational interpolation with no poles and high rates of approximation, Numer. Math., 107 (2007), 315–331. https://doi.org/10.1007/s00211-007-0093-y doi: 10.1007/s00211-007-0093-y
    [15] G. Klein, J. Berrut, Linear rational finite differences from derivatives of barycentric rational interpolants, SIAM J. Numer. Anal., 50 (2012), 643–656. https://doi.org/10.1137/110827156 doi: 10.1137/110827156
    [16] G. Klein, J. Berrut, Linear barycentric rational quadrature, BIT Numer. Math., 52 (2012), 407–424. https://doi.org/10.1007/s10543-011-0357-x doi: 10.1007/s10543-011-0357-x
    [17] Z. Q. Wang, S. P. Li, Barycentric interpolation collocation method for nonlinear problems, National Defense Industry Press, Beijing, 2015.
    [18] Z. Q. Wang, Z. K. Xu, J. Li, Mixed barycentric interpolation collocation method of displacement-pressure for incompressible plane elastic problems, Chin. J. Appl. Mech., 35 (2018), 195–201.
    [19] Z. Wang, L. Zhang, Z. Xu, J. Li, Barycentric interpolation collocation method based on mixed displacement-stress formulation for solving plane elastic problems, Chin. J. Appl. Mech., 35 (2018), 304–309. https://doi.org/10.11776/cjam.35.02.D002 doi: 10.11776/cjam.35.02.D002
    [20] J. Li, Y. Cheng, Linear barycentric rational collocation method for solving second-order Volterra integro-differential equation, Comput. Appl. Math., 39 (2020), 92. https://doi.org/10.1007/s40314-020-1114-z doi: 10.1007/s40314-020-1114-z
    [21] J. Li, Y. Cheng, Linear barycentric rational collocation method for solving heat conduction equation, Numer. Methods Partial Differ. Equations, 37 (2021), 533–545. https://doi.org/10.1002/num.22539 doi: 10.1002/num.22539
    [22] J. Li, Y. Cheng, Barycentric rational method for solving biharmonic equation by depression of order, Numer. Methods Partial Differ. Equations, 37 (2021), 1993–2007. https://doi.org/10.1002/num.22638 doi: 10.1002/num.22638
    [23] J. Li, Linear barycentric rational collocation method for solving biharmonic equation, Demonstr. Math., 55 (2022), 587–603. https://doi.org/10.1515/dema-2022-0151 doi: 10.1515/dema-2022-0151
    [24] J. Li, X. Su, J. Qu, Linear barycentric rational collocation method for solving telegraph equation, Math. Methods Appl. Sci., 44 (2021), 11720–11737.
    [25] J. Li, X. Su, K. Zhao, Barycentric interpolation collocation algorithm to solve fractional differential equations, Math. Comput. Simul., 205 (2023), 340–367. https://doi.org/10.1016/j.matcom.2022.10.005 doi: 10.1016/j.matcom.2022.10.005
    [26] J. Li, Y. Cheng, Z. Li, Z. Tian, Linear barycentric rational collocation method for solving generalized Poisson equations, Math. Biosci. Eng., 20 (2023), 4782–4797. https://doi.org/10.3934/mbe.2023221 doi: 10.3934/mbe.2023221
    [27] J. Li, Barycentric rational collocation method for semi-infinite domain problems, AIMS Math., 8 (2023), 8756–8771. https://doi.org/10.3934/math.2023439 doi: 10.3934/math.2023439
    [28] J. Li, Barycentric rational collocation method for fractional reaction-diffusion equation, AIMS Math., 8 (2023), 9009–9026. https://doi.org/10.3934/math.2023451 doi: 10.3934/math.2023451
    [29] J. Li, Y. Cheng, Barycentric rational interpolation method for solving KPP equation, Electron. Res. Arch., 31 (2023), 3014–3029. https://doi.org/10.3934/era.2023152 doi: 10.3934/era.2023152
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1171) PDF downloads(63) Cited by(4)

Article outline

Figures and Tables

Figures(8)  /  Tables(19)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog