Research article

On the Fractal interpolation functions associated with Matkowski contractions

  • Received: 04 April 2023 Revised: 01 June 2023 Accepted: 15 June 2023 Published: 29 June 2023
  • In this paper we investigate an iterated function system that defines a fractal interpolation function, where ordinate scaling, that is Lipschitz constant in Banach contraction principle is substituted by real-valued control function. In such a manner, fractal interpolation functions associated with Matkowski contractions are obtained and provide a new framework of approximating experimental data. Furthermore, given a data generating function $ f $, we study a new class of fractal interpolation functions which converge to $ f $.

    Citation: Najmeddine Attia, Mohamed balegh, Rim Amami, Rimah Amami. On the Fractal interpolation functions associated with Matkowski contractions[J]. Electronic Research Archive, 2023, 31(8): 4652-4668. doi: 10.3934/era.2023238

    Related Papers:

  • In this paper we investigate an iterated function system that defines a fractal interpolation function, where ordinate scaling, that is Lipschitz constant in Banach contraction principle is substituted by real-valued control function. In such a manner, fractal interpolation functions associated with Matkowski contractions are obtained and provide a new framework of approximating experimental data. Furthermore, given a data generating function $ f $, we study a new class of fractal interpolation functions which converge to $ f $.



    加载中


    [1] M. F. Barnsley, Fractals Everywhere, 2nd edition, Academic Press, 1988.
    [2] M. F. Barnsley, Fractal functions and interpolation, Constr. Approx, 2 (1986), 303–329. https://doi.org/10.1007/BF01893434 doi: 10.1007/BF01893434
    [3] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713–747.
    [4] M. F. Barnsley, A. N. Harrington The Calculus of fractal interpolation functions, J. Approx. Theory, 57 (1989), 14–34. https://doi.org/10.1016/0021-9045(89)90080-4 doi: 10.1016/0021-9045(89)90080-4
    [5] N. A. Secelean, Countable iterated function systems, Far East J. Dyn. Syst., 3 (2001), 149–167.
    [6] K. Leśniak, Infinite iterated function systems: A multivalued approach, Bull. Pol. Acad. Sci. Math., 52 (2004), 1–8.
    [7] A. Mihail, R. Miculescu, Generalized IFSs on non-compact spaces, Fixed Point Theory Appl., 2010 (2010), 584215. https://doi.org/10.1155/2010/584215 doi: 10.1155/2010/584215
    [8] F. Strobin, J. Swaczyna, On a certain generalization of the iterated function system, Bull. Aust. Math. Soc., 87 (2013), 37–54. https://doi.org/10.1017/S0004972712000500 doi: 10.1017/S0004972712000500
    [9] K. R. Wicks, Fractals and Hyperspaces, Springer-Verlag, Berlin, 2006.
    [10] A. K. B. Chand, G. P. Kapoor, Generalized cubic spline fractal interpolation functions, SIAM J. Numer. Anal., 44 (2006), 655–676. https://doi.org/10.1137/0406110 doi: 10.1137/0406110
    [11] Y. Chen, G. A. Kopp, D. Surry, Interpolation of wind-induced pressure time series with an artificial network, J. Wind Eng. Ind. Aerodyn, 90 (2002), 589–615. https://doi.org/10.1016/S0167-6105(02)00155-1 doi: 10.1016/S0167-6105(02)00155-1
    [12] N. Vijender, Bernstein fractal trigonometric approximation, Acta Appl. Math., 159 (2018), 11–27. https://doi.org/10.1007/s10440-018-0182-1 doi: 10.1007/s10440-018-0182-1
    [13] P. Viswanathan, A. K. B. Chand, M. A. Navascuès, Fractal perturbation preserving fundamental shapes: Bounds on the scale factors, J. Math. Anal. Appl., 419 (2014), 804–817. https://doi.org/10.1016/j.jmaa.2014.05.019 doi: 10.1016/j.jmaa.2014.05.019
    [14] S. Ri, A new nonlinear fractal interpolation function, Fractals, 25 (2017). https://doi.org/10.1142/S0218348X17500633 doi: 10.1142/S0218348X17500633
    [15] S. Ri, New types of fractal interpolation surfaces, Chaos Solitons Fractals, 119 (2019), 291–297.
    [16] M. A. Navascués, C. Pacurar, V. Drakopoulos, Scale-free fractal interpolation, Fractal Fract, 6 (2022), 602. https://doi.org/10.3390/fractalfract6100602 doi: 10.3390/fractalfract6100602
    [17] J. Kim, H. Kim, H. Mun, Nonlinear fractal interpolation curves with function vertical scaling factors, Indian J. Pure Appl. Math., 51 (2020), 483–499. https://doi.org/10.1007/s13226-020-0412-x doi: 10.1007/s13226-020-0412-x
    [18] N. Attia, H. Jebali, Fractal interpolation functions with contraction condition of integral type, Chaos Solitons Fractal.
    [19] J. Matkowski, Integrable Solutions of Functional Equations, Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1975.
    [20] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund. Math., 3 (1922), 133–181.
    [21] A. Mihail, R. Miculescu, Applications of fixed point theorems in the theory of generalized IFS, Fixed Point Theory Appl., (2008), 312876. https://doi.org/10.1155/2008/312876 doi: 10.1155/2008/312876
    [22] N. Secelean, Generalized iterated function systems on the space $l^\infty(X)$, J. Math. Anal. Appl., 410 (2014), 847–858. https://doi.org/10.1016/j.jmaa.2013.09.007 doi: 10.1016/j.jmaa.2013.09.007
    [23] F. Strobin, J. Swaczyna, A code space for a generalized IFS, Fixed Point Theory, preprint, arXiv: 1310.3097v2. https://doi.org/10.48550/arXiv.1310.3097
    [24] F. Strobin, Attractors of generalized IFSs that are not attractors of IFSs, J. Math. Anal. Appl., 422 (2015), 99–108. https://doi.org/10.1016/j.jmaa.2014.08.029 doi: 10.1016/j.jmaa.2014.08.029
    [25] R. Pasupathi, A. K. B. Chand, M. A. Navascuès, M. V. Sebastian, Cyclic generalized iterated function systems, Comput. Math. Methods, 3 (2021). https://doi.org/10.1002/cmm4.1202 doi: 10.1002/cmm4.1202
    [26] J. Jachymski, I. Jóź wik, Nonlinear contractive conditions: A comparison and related problems, Banach Center Publ. Polish Acad. Sci., 77 (2007), 123–146. https://doi.org/10.4064/bc77-0-10 doi: 10.4064/bc77-0-10
    [27] P. Viswanathan, A. K. B. Chand, M. A. Navascués, Fractal perturbation preserving fundamental shapes: Bounds on the scale factors, J. Math. Anal. Appl., 419 (2014), 804–817. https://doi.org/10.1016/j.jmaa.2014.05.019 doi: 10.1016/j.jmaa.2014.05.019
    [28] M. A. Navascués, Non-smooth polynomials, Int. J. Math. Anal., 1 (2007), 159–174.
    [29] E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc., 13 (1962), 459–465. http://dx.doi.org/10.1090/S0002-9939-1962-0148046-1 doi: 10.1090/S0002-9939-1962-0148046-1
    [30] F. E. Browder, On the convergence of successive approximations for nonlinear functional equations, Nederl. Akad. Wetensch. Proc. Ser. Indag. Math., 71 (1968), 27–35. https://doi.org/10.1016/S1385-7258(68)50004-0 doi: 10.1016/S1385-7258(68)50004-0
    [31] M. F. Barnsley, J. Elton, D. P. Hardin, P. R. Massopust, Hidden variable fractal interpolation functions, SIAM J. Math. Anal., 20 (1989), 1218–1242. https://doi.org/10.1137/0520080 doi: 10.1137/0520080
    [32] S. G. Gal, Shape Preserving Approximation by Real and Complex Polynomials, Springer Science Business Media, 2010.
    [33] M. A. Navascuès, Fractal polynomial interpolation, Z. Anal. Anwend., 24 (2005), 401–418. https://doi.org/10.4171/ZAA/1248 doi: 10.4171/ZAA/1248
    [34] P. R. Massopust, Fractal surfaces, J. Math. Anal. Appl., 151 (1990), 275–290. https://doi.org/10.1016/0022-247X(90)90257-G doi: 10.1016/0022-247X(90)90257-G
    [35] P. Wong, J. Howard, J. Lin, Surfaces roughening and the fractal nature of rocks, Phys. Rev. Lett., 57 (1986), 637–640. https://doi.org/10.1103/PhysRevLett.57.637 doi: 10.1103/PhysRevLett.57.637
    [36] B. B. Nakos, C. Mitsakaki, On the fractal character of rock surfaces, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 28 (1991), 527–533. https://doi.org/10.1016/0148-9062(91)91129-F doi: 10.1016/0148-9062(91)91129-F
    [37] C. S. Pande, L. R. Richards, S. Smith, Fractal charcteristics of fractured surfaces, J. Met. Sci. Lett., 6 (1987), 295–297. https://doi.org/10.1007/BF01729330 doi: 10.1007/BF01729330
    [38] H. Xie, J. Wang, E. Stein, Direct fractal measurement and multifractal properties of fracture surfaces, Phys. Lett. A, 242 (1998), 41–50. https://doi.org/10.1016/S0375-9601(98)00098-X doi: 10.1016/S0375-9601(98)00098-X
    [39] X. C. Jin, S. H. Ong, Jayasooriah, Fractal characterization of Kidney tissue sections, IEEE Int. Conf. Eng. Med. Biol. Baltimore, 2 (1994), 1136–1137. https://doi.org/10.1109/IEMBS.1994.415361 doi: 10.1109/IEMBS.1994.415361
    [40] M. Samreen, T. Kamran, M. Postolache, Extended $b$- Metric space, extended b-comparison function and nonlinear contractions, U.P.B. Sci. Bull., Series A, 80 (2018).
    [41] C. Wolf, A mathematical model for the propagation of a hantavirus in structured populations, Discrete Contin. Dyn. Syst. B, 4 (2004), 1065–1089. https://doi.org/10.3934/dcdsb.2004.4.1065 doi: 10.3934/dcdsb.2004.4.1065
    [42] S. S. Al-Bundi, Iterated function system in $\emptyset$-Metric spaces, Bol. Soc. Paran. Mat., 40 (2022), 1–10. https://doi.org/10.5269/bspm.52556 doi: 10.5269/bspm.52556
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(871) PDF downloads(93) Cited by(0)

Article outline

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog