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Abstract: In this paper we investigate an iterated function system that defines a fractal interpolation
function, where ordinate scaling, that is Lipschitz constant in Banach contraction principle is substi-
tuted by real-valued control function. In such a manner, fractal interpolation functions associated with
Matkowski contractions are obtained and provide a new framework of approximating experimental
data. Furthermore, given a data generating function f , we study a new class of fractal interpolation
functions which converge to f .
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1. Introduction

Fractal methodology provides a general frame for the understanding of real-world phenomena. In
particular, fractal interpolation techniques, defined as fixed points of maps between spaces of functions
using iterated function system prove to be more general than classical interpolants and provide good
deterministic representations of complex phenomena. Indeed, the fractal interpolation function is not
necessarily differentiable at any point, thus, it is closer to natural world phenomena and provides a
more powerful tool in fitting real-world data compared to other types of interpolation techniques. In
the following, we will recall the iterated function system model which is based upon the property
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of self-similarity which stipulates that the shape resembles the whole irrespective to the degree of
magnification.

Let (X, d) be a complete metric space and let H(X) be the set of nonempty compact subsets of X.
We define the Hausdorff metric dH by

dH(A, B) = max
{
D(A, B),D(B, A)

}
, A, B ∈ H(X) ,

with
D(A, B) = sup

x∈A
inf
y∈B

d(x, y) and D(B, A) = sup
x∈B

inf
y∈A

d(x, y) .

The space (H(X), dH) is complete, and compact whenever X is compact [1]. Let N ∈ N∗, the set of
positive integers, and wn : X −→ X be a continuous map, n = 1, . . . ,N. Then

I =
{
X ,w1,w2, . . . ,wN

}
is called an iterated function system (IFS in short). Now, we define the Hutchinson operator W :
H(X) −→ H(X) by

W(B) =
N⋃

n=1

wn(B) , ∀ B ∈ H(X), (1.1)

where wn(B) =
{
wn(x) , x ∈ B

}
. For k ∈ N∗, let Wk denote the k-fold auto composition of W. Any

set G ∈ H(X) such that W(G) = G is called an attractor for the IFS and the IFS admits always at
least one attractor [2]. Moreover, if each wn is a contraction, i.e., if there exists c ∈ [0, 1) such that
d(w(x),w(y)) ≤ c d(x, y), for all x, y ∈ X then I is called hyperbolic. In this case the Hutchinson
operator W is a contraction mapping, that is,

dH(W(A),W(B)) ≤ c dH(A, B) ∀A, B ∈ H(X)

and then admits a unique attractor G = lim
k→∞

Wk(B), for an arbitrary B ∈ H(X) [2]. The classical
framework of IFS was studied in [1, 3, 4] as a finite set of contraction maps defined on a compact set
of a Euclidean space Rn. Since then, many researchers have been working on extending these results
to more general spaces, generalized contractions and infinite IFSs ( [5–9]).

The fixed point theory plays an important role for the existence of invariant sets in different types of
IFSs and this is done by considering a suitable map. In particular, fractal interpolation functions, as an
alternative to classical interpolation such as polynomial interpolation, arise as fixed points of the Read-
Bajraktarević operator defined on suitable function spaces. This concept was first introduced in 1986 by
Barnsley [2] to interpolate a given set of data points. Since then, the theory of fractal interpolation has
become a powerful and useful tool in applied sciences and engineering. In addition, various types of
fractal interpolation functions have been constructed and some of their significant properties including
calculus, dimension, smoothness, stability, perturbation error, etc, have been widely studied ( [10–13]).
The problem of the existence of the fractal interpolation function (FIF) returns to the study of the
existence (and uniqueness) of some fixed points on the fractal space. The most widely studied FIFs
are based on the Banach fixed point theorem. This classical result has been extended in several ways,
and recently, many researchers have studied the existence of FIFs by using different well-known fixed
point results obtained in the fixed point theory [14–16]. In particular in [17] the authors ensure that
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the attractor of a nonlinear IFS constructed by Geraghty contractions are graphs of some continuous
functions which interpolate the given data and in [18] the authors investigate Branciari contraction. In
this paper, we investigate Matkowski contractions, introduced in [19].

Definition 1. Let φ : [0,∞) −→ [0,∞) and f : X −→ X be a map. We say that

1) f is φ-contraction if
d( f (x), f (y)) ≤ φ

(
d(x, y)

)
for all x, y ∈ X.

2) f is Matkowski contraction if it is a φ-contraction where the function φ is non-decreasing and the
lim
n→∞

φn(t) = 0 for all t > 0.

In particular, each Banach contraction is a Matkowski contraction with φ(t) = Ct. In addition, we
have the following result.

Theorem 1. [19] Let (X, d) be a complete metric space. If the function f : X −→ X is a Matkowski
contraction, then f has a unique fixed point x0 ∈ X. Moreover, for every x ∈ X, we have lim

n→∞
f n(x) = x0.

This result may be seen as a generalization of the Banach theorem [20]. Take, for example, X =
[0, 1] endowed with the Euclidean metric and consider the function f (x) = 2x

2+x . Then, it is easy to see
that the mapping f is not a Banach contraction, indeed,

sup
x,y

| f (x) − f (y)|
|x − y|

= sup
x,y

4
(2 + x)(2 + y)

= 1.

Moreover, for all x, y ≥ 0, we have

d
(
f (x), f (y)

)
≤

4|x − y)
(2 + x)(2 + y)

≤
|x − y|

1 + |x − y|

It follows that f is a Matkowski contraction with comparison function φ(t) = t
1+t .

In the present work, we will first construct a generalized iterated function systems (GIFS in short).
The framework of GIFS was introduced by Mihail and Miculescu [7,21] as a natural generalization of
a classical IFS. More precisely, GIFS consists of mappings f : Xm −→ X, for m > 1, instead of self-
mappings of a metric space X, where Xm is the Cartesian product of m copies of X. Since then, it has
been the subject of study of several papers [8, 22–25]. Let J = {1, . . . ,N} and, for each n ∈ J, let fn be
a Matkowski contraction. In Section 2, we give a quick proof of the fact that the GIFS {Xm , fn , n ∈ J}
admits a unique attractor. Moreover, for m = 1, we ensure that attractors of IFSs constructed by using a
Matkowski contraction are graphs of some continuous functions which interpolate the given data. This
result is a generalization of the result given in [17] since each Geraghty contraction is a Matkowski
contraction (see [26] for comparison on these two contractions).

Let C(I) be the set of continuous functions over the interval I. Using a fractal interpolation function
through a suitable IFS, we can define a method to perturb a function f ∈ C(I). We obtain, for free
parameter α, usually called scale vector, a class of functions f α ∈ C(I) which interpolate and approxi-
mate simultaneously the function f . Moreover, we can select a suitable IFS so that the corresponding
fractal function f α shares the quality of smoothness or non-smoothness of f or preserves fundamental
shape properties, namely positivity, monotonicity, and convexity [27,28]. In Section 3, we study a new
class of fractal interpolation functions which converges to f .
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2. Fractal interpolation function defined by Matkowski contraction

2.1. Generalized iterated function system

Let m ∈ N∗ and f : Xm −→ X be a mapping, where the product space is endowed with the metric
denoted also by d and defined by

d
(
(x1, . . . , xm), (y1, . . . , ym)

)
= max

{
d(x1, y1), . . . , d(xm, ym)

}
, (2.1)

for all (x1, . . . , xm), (y1, . . . , ym) ∈ Xm. The mapping f is said to be a Matkowski contraction if, for all
j ∈ {1, . . . ,m}, f is φ-contraction, that is,

d( f (u), f (v)) ≤ φ
(
d(x j, y j)

)
(2.2)

for all u = (x1, . . . , xm), v = (y1, . . . , ym) ∈ Xm, where the function φ is non-decreasing and the
lim
n→∞

φn(t) = 0 for all t > 0. Many types of φ-contractions in the literature are considered, see for
example, Rakotch contraction [29] and Browder contraction [30]. In addition, it is worth mentioning
that the earlier observation shows that, among compact spaces, the notions of Matkowski, Browder and
Rakotch contractions coincide [26].

We say that f has a unique fixed point if there exists a unique x ∈ X such that f (x, x, . . . , x) = x.
Any mapping f from (X, d) to itself, that is m = 1, satisfying (2.2) has a unique fixed point (Theorem
1). In this section we will prove that, if f is a Matkowski contraction, then f has a unique fixed point.
Therefore, we may define a GIFS which admits a unique attractor. Our first result in this section is the
following.

Proposition 1. Let (X, d) be a complete metric space and m ∈ N∗. Assume that the mapping f :
Xm −→ X is a Matkowski contraction, satisfying (2.2), then f has a unique fixed point.

Proof. Assume that m > 1 and let g : X −→ X be a mapping such that g(x) = f (x, . . . , x), for all x ∈ X.
Using (2.2), we get

d(g(x), g(y)) ≤ φ
(
d(x, y)

)
,

for all x, y ∈ X. It follows, that g is a Matkowski contraction and then, by Theorem 1, the mapping g
has a unique fixed point a ∈ X. Whence (a, . . . , a) is the unique fixed point of f . □

Example 1. Let m = 2 and X = [0, 1] ∪ {4} be a metric space endowed with the Euclidean metric. We
define the functions

f (x, y) =


x/2, x, y ∈ [0, 1]
1
2

y
1+y , x = 4, y , 4

0, y = 4

φ(t) =


t
2 , t ∈ [0, 1]

t2
1+t , t > 1

In the following we will verify the inequality (2.2). For this, we will consider five possible cases. Let
u = (x, y) ∈ X and v = (x′, y′) ∈ X. First remark that the case y = y′ = 4 is trivial so we will assume
that (y, y′) , (4, 4).
Case 1: f (u) = x/2 and f (v) = x′/2. This is the case when u, v ∈ [0, 1]2 and then

d( f (u), f (v)) =
1
2
|x − x′| ≤ φ(d(u, v))

Electronic Research Archive Volume 31, Issue 8, 4652–4668.



4656

Case 2: f (u) = 1
2

y
1+y and f (v) = 0. This is the case when x = y′ = 4 and y , 4 (the case when

f (v) = 1
2

y′

1+y′ and f (u) = 0 is similar). In this case, we have

d( f (u), f (v)) ≤
1
2

y
1 + y

≤
1
2
.

Note that the function ϕ is strictly increasing on (1,+∞) and

φ(x) >
1
2
, ∀x > 1. (2.3)

Therefore, since |y − y′| > 2, we obtain d( f (u), f (v)) ≤ φ(d(u, v)).
Case 3: f (u) = 1

2
y

1+y and f (v) = 1
2

y′

1+y′ . This is the case when x = x′ = 4, y , 4 and y′ , 4. Then,

d( f (u), f (v)) ≤
1
2
|y − y′| = φ(d(u, v))

Case 4: f (u) = x/2 and f (v) = 0. This is the case when x , 4, y , 4 and y′ = 4 (the case f (v) = x′/2
and f (u) = 0 is similar). It follows, using (2.3), then

d( f (u), f (v)) ≤
1
2
≤ φ(d(u, v))

Case 5: f (u) = x/2 and f (v) = 1
2

y′

1+y′ . This is the case when x, y , 4, x′ = 4 and y′ , 4 (the case
f (v) = x′/2 and f (u) = 1

2
y

1+y is similar). Then,

d( f (u), f (v)) =
∣∣∣ x
2
−

1
2

y′

1 + y′
∣∣∣ ≤ 1

2
≤ φ(d(u, v))

Let, for n = 1, . . . ,N, fn : Xm −→ X be a Matkowski contraction mapping. Then

I =
{
Xm , f1, f2, . . . , fN

}
is called a GIFS. Now, we define the fractal operator F : H(X)m −→ H(X), associated with the GIFS,
by

F(B1, B2, . . . , Bm) =
N⋃

n=1

fn(B1, B2, . . . , Bm). (2.4)

Any fixed point of the operator F, that is, a set G ∈ H(X) such that F(G,G, . . . ,G) = G is called an
attractor for the GIFS. In the next section, we prove that any GIFS satisfying the Matkowski contraction
admits a unique attractor G [24, Theorem 4].

Theorem 2. Let (X, d) be a complete metric space and we define, for n ∈ J, the mappings fn : Xm −→

X satisfying the Matkowski contraction (2.2) with the same function φ. Then the GIFS {Xm , fn , n ∈ J}
admits a unique attractor G.
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Proof. Let A = (A1, . . . , Am) and B = (B1, . . . , Bm) ∈ H(X)m. Choose j ∈ {1, . . . ,m} and let φ such that
(2.2) is satisfied for the mappings fn, n ∈ J. We only have to prove that

dH
(
F(A), F(B)

)
≤ φ
(
dH(A j, B j)

)
(2.5)

from which we deduce that the fractal operator F is a Matkowski contraction on (H(Xm), dH). Using
Proposition 1, F has a unique fixed point G as required.

Let z ∈ F(A1, . . . , Am), then there exists n ∈ J such that z = fn(x1, . . . , xm) with xi ∈ Ai, for all i ∈ J.
Now, since B j is compact, then there exists y∗j ∈ B j such that

d(x j, y∗j) = inf
y∈B j

d(x j, y).

Therefore d(x j, y∗j) ≤ D(A j, B j) ≤ dH(A j, B j). It follows that

d
(
z, F(B1, . . . , Bm) ≤ d

(
z, fn(B1, . . . , Bm)

)
≤ d
(
fn(x1, . . . , xm), fn(y∗1, . . . , y

∗
m)
)

≤ φ
(
dH(A j, B j)

)
.

Remark that F(A) is a compact set ofH(X)m and z 7−→ d(z, F(B)) is continuous. Therefore

D
(
F(A), F(B)

))
≤ φ

(
dH(A j, B j)

)
.

Similarly, we may prove that D
(
F(B), F(A)

)
≤ φ
(
dH(A j, B j)

)
and then (2.5). □

2.2. Fractal interpolation function

Let ∆ : x0 < x1 < . . . < xN be a partition of the real compact interval I = [x0, xN] and consider
the data set

{
(xi, yi) ∈ I × R ; i = 0, 1, . . . ,N

}
. Let K be a suitable compact subset of R containing yi,

i ∈ J0 = {0, . . . ,N}. We assume that the compact metric space I × K is endowed with uniform metric d
defined as

d
(
(x1, y1), (x2, y2)

)
= max

{
|x1 − x2|, |y1 − y2|

}
,

for all (x1, x2) ∈ I2 and (y1, y2) ∈ K2. Recall the set J = {1, . . . ,N} introduced in the Section 1. For
i ∈ J, we set Ii = [xi−1, xi] and let Li : I −→ Ii be a contractive homeomorphism such that

Li(x0) = xi−1, Li(xN) = xi

|Li(x) − Li(x′)| ≤ l|x − x′| ∀ x, x′ ∈ I,
(2.6)

for some 0 ≤ l < 1. We consider N continuous mappings Fi : I × K −→ K satisfying

Fi(x0, y0) = yi−1, Fi(xN , yN) = yi (2.7)

We assume also that Fi is a Matkowski contraction with respect to the second variable, i.e., there exists
function φi : [0,+∞)→ [0,+∞) satisfying the condition of item (2) of Definition 1 such that

|Fi(x, y) − Fi(x, y′)| ≤ φi
(
|y − y′|

)
, x ∈ I, y, y′ ∈ K. (2.8)
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In particular, we may consider the following system,Li(x) = aix + ki

Fi(x, y) = g(y) + qi(x),

where the real constants ai and ki and the function Fi are determined by conditions (2.6) and (2.7). It
is clear that if g(y) = y

1+y then Fi is not a Banach contraction but it is a Matkowski contraction with
respect to the second variable.

We define also the function wi : I × K → Ii × K by

wi(x, y) =
(
Li(x), Fi(x, y)

)
, (2.9)

for all i ∈ J. Assume that limm→+∞ φ
m(t) = 0, where φ = supi∈J φi. Using (2.8) and (2.9) we get a wide

variety of systems for different approximations problems, giving more flexibility and applicability of
the fractal interpolation method. In the following result we will prove the existence of the fractal
interpolation function (FIF) corresponding to the IFS {I × [a, b] , wi , i = 1, 2, . . . ,N}. This result
generalizes, in particular [2, Theorem 1] and the result in [14] since we only assume that the function
Fi are Matkowski contractions with respect to the second variable.

Theorem 3. The IFS {I× [a, b] , wi , i = 1, 2, . . . ,N} defined above admits a unique attractor G, which
is the graph of a continuous function f : I → [a, b] satisfying f (xi) = yi, for i = 0, 1, . . . ,N.

Proof. Let G be any attractor of the IFS {I × [a, b],wi, i ∈ J} and then we have

G =
N⋃

i=1

wi(G) . (2.10)

In fact, for each i ∈ J, the mapping wi may not satisfy the Matkowski contraction. But, if so, we may
prove the existence and the uniqueness of the attractor G using the Hutchinson operator W defined
in (1.1) (Theorem 2). In the following we will give the proof of Theorem 3. First, remark that the
set Ĩ = {x ∈ I, ∃y ∈ [a, b] with (x, y) ∈ G}, the projection of G into I, is equal to I. Indeed, since
G =

⋃N
i=1 wi(G), we can deduce that Ĩ =

⋃N
i=1 Li(Ĩ) and on the other hand the IFS

{
I, Li i ∈ J

}
is

hyperbolic having unique attractor I. Now, we present the proof of our result in two steps. We will
prove that G is the graph of a function f defined on I and as a consequence we obtain the uniqueness
of the attractor G since the union of two attractors is an attractor. In the second step we prove that f is
continuous by studying the fixed point of Read-Bajraktarevı́c operator.

Step 1 :

Let’s prove that G is the graph of a function f : I → [a, b] by proving that only one y-value
corresponds to each x-value. First, remark that the IFS

{
I, Li i ∈ J

}
is hyperbolic having unique

attractor I = [x0, xN]. Therefore, using Eq (2.10), we obtain that for every x ∈ I there exists y ∈ [a, b]
such that (x, y) ∈ G. In the following, we will prove that y is unique. For this, we consider, for
i = 0, . . . ,N, the set

Xi =
{
(x, y) ∈ G | x = xi

}
.
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• case x = x0. Since for all i , 1, we have wi(X0) ∩ X0 = ∅, w1(X0) = X0. Moreover,

d(w1(x0, y),w1(x0, y′)) = |F1(x0, y) − F1(x0, y′)|
≤ φ

(
d((x0, y), (x0, y′))

)
.

Whence w1 has a unique fixed point on the compact metric space X0. In addition, using Theorem
2, the IFS {X0,w1} has a unique attractor X0 and then X0 = {(x0, y0)} as required.

• case x ∈ {x1, . . . , xN}. Similarly, we have XN = {(xN , yN)} and, for i = 1, 2, . . . ,N − 1, remark that
Xi = wi+1(X0) ∪ wi(XN) = {(xi, yi)}.

• case x < {x0, . . . , xN}. We will prove that, if there exist yx, y′x ∈ [a, b] such that (x, yx), (x, y′x) ∈ G
then |yx − y′x| = 0. Since G is compact, there exist i ∈ {1, 2, . . . ,N} and ξ ∈ Ii such that

sup
x∈I
|yx − y′x| = |yξ − y′ξ | .

Moreover, by the last two steps, we may assume that ξ ∈ (xi−1, xi). Now, we may take t, t′ ∈ [a, b]
such that wi(u) = (ξ, yξ) and wi(v) = (ξ, y′ξ) where u = (L−1

i (ξ), t) ∈ G and v = (L−1
i (ξ), t′) ∈ G. It

follows that
yξ = Fi(L−1

i (ξ), t) and y′ξ = Fi(L−1
i (ξ), t′).

Therefore

|yξ − y′ξ | = |Fi(L−1
i (ξ), t) − Fi(L−1

i (ξ), t′|

≤ φ
(
|t − t′|

)
≤ φ
(
|yξ − y′ξ |

)
.

It follows, since φn(t)→ 0 and then φ(t) ≤ t for t > 0, that yξ = y′ξ.

Step 2:

We will prove that f is continuous. We consider the complete metric space (G, ρ) such that

G =
{
g : I −→ [a, b) continuous such that g(x0) = y0 and g(xN) = yN

}
and the metric ρ is defined by

ρ(g, h) = ∥g − h∥∞ = max
{
|g(x) − h(x)|, x ∈ I

}
.

Now, we define the Read-Bajraktarevı́c operator T on G by

(T(g))(x) = Fi(L−1
i (x), g ◦ L−1

i (x)), ∀ x ∈ Ii, i ∈ J.

Assume that we have shown that, f , g ∈ G, we have

ρ
(
T( f ),T(g)

)
≤ φ
(
ρ( f , g)

)
(2.11)

then T has a unique fixed point g̃ ∈ G. Therefore the graph of g̃ is an attractor of the IFS {I×[a, b],wi, i =
1, 2, . . . ,N} which implies that g̃ = f and then f is continuous.
Now, we will prove (2.11). Let f , g ∈ G and i ∈ J. For any x ∈ Ii, we have

|Fi
(
L−1

i (x), f (L−1
i (x))

)
− Fi
(
L−1

i (x), g(L−1
i (x))

)
| ≤ φ
(
| f (L−1

i (x)) − g(L−1
i (x))|) ≤ φ

(
ρ( f , g))

)
.
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Now, observe that

ρ
(
T( f ),T(g)

)
= sup

x∈Ii
i∈J

∣∣∣Fi
(
L−1

i (x), f (L−1
i (x))

)
− Fi
(
L−1

i (x), g(L−1
i (x))

)∣∣∣∣.
Then, since I is compact, we get (2.11) and then T has a unique fixed point as required. □

In the following example we study the affect of box dimension when we consider a nonlinear IFS.

Example 2. The box dimension is widely used to describe the complexity of certain figures and proved
to be appropriate and effective method for fractal dimension estimate. The theoretical box dimension
D is given by

D = lim
ϵ→0

log Nϵ

log(1/ϵ)
,

where Nϵ is the minimum number of ϵ × ϵ squares needed to cover the graph of f . In this example, we
consider, the data set ∆ :=

{
(0, 0), (1/3, 1), (2/3,−1), (1, 0)

}
and we define


L1(x) = 1

3 x

L2(x) = 1
3 +

1
3 x

L3(x) = 2
3 +

1
3 x


F1(x, y) = g1(y) + x

F2(x, y) = g2(y) − 2x + 1
F3(x, y) = g3(y) − 1 + x.

(2.12)

In Figure 1, we consider the case when the function gn are defined by gn(y) = αny with free parameters
αn obeying αn ∈ (−1, 1), n = 1, 2, 3. It is obvious that the system (2.12) satisfies (2.6), (2.7) and (2.8).
The parameters αn are called vertical scaling factors and have important consequences on the box
dimension D of the graph of the FIF, which will be denoted by f α, with α ∈ (0, 1)3. Indeed, since we
consider equally spaced interpolation points that do not all lie on the same line, we have [31]

D := 1 +
log
(∑3

n=1 |αn|
)

log(3)
(2.13)

when
∑3

n=1 |αn| > 1. For different values of αn, we determine the box dimension of the corresponding
FIF in Figure 1. In particular, we obtain smooth or non-smooth fractal interpolation function depend-
ing on the choice of scaling factors. Moreover, since for each n the function Fn is a Banach contraction
with respect to the second variable, we assert that is a special case of FIF introduced in [2].
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Figure 1. The graphs of f α’s obtained from (2.12) with different αn and their corresponding
box dimension D.

In Figure 2, we consider again the system (2.12) but with different function g. From empirical
evidence, we obtain that the function g has a great impact on the box dimension. It is natural to ask
whether the box dimension of FIF depends on ∥g∥∞ in general. This seems to be wrong as we can see
in Figure 2. Indeed, we obtain different values of the box dimension D that behaves non monotonically
regardless of the fact that the norms of the functions used in the system are proportional.

Figure 2. The graphs of the FIF obtained from (2.12) with g(y) =
3
4 y

1+ 3
4 y2 , g(y) = 1

3

3
4 y

1+ 3
4 y2 and

g(y) = 1
5

3
4 y

1+ 3
4 y2 respectively.
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3. Fractal interpolation Function, sequential approach

Let ∆ : x0 < x1 < . . . < xN be a partition of the real compact interval I = [x0, xN] and consider
the data set

{
(xi, yi) ∈ I × R ; i = 0, 1, . . . ,N

}
. Let K be a suitable compact subset of R containing yi,

i ∈ J0 = {0, . . . ,N}. Let f ∈ C(I,K), the normed space of real-valued continuous functions on I with
values belonging to K. Assuming that C(I,K) is endowed with the uniform norm, we study, in this
section, a new class of fractal interpolation functions which converge to f . Therefore, let, for n ∈ N,
bn : C(I,K) −→ C(I,K) be bounded and nonidentity linear operator such that, for every h ∈ C(I,K),
we have

bn(h)(x0) = h(x0), bn(h)(xN) = h(xN) and ∥bn(h) − h∥∞ → 0 as n→ ∞. (3.1)

Let gi, i ∈ J, be a differentiable function with domain D. We assume that K ⊂ D and supK |g
′
i | < 1

for all i ∈ J. Now, let f ∈ C(I,K) that interpolates the data {(xi, yi), i ∈ J0} and consider, for each
n ∈ N, the IFS defined through the mapsLi(x) = aix + ki,

Fn,i(x, y) = gi(y) + f (Li(x)) − g ◦ bn( f )(x),
i ∈ J (3.2)

where the real constants ai and ki are determined by condition (2.6) and assume that (2.7) is satisfied.
We may consider the case where gi(y) := gβ(y) = y

1+βy , for β > 0 and y > 0. In this case, we have
|Fn,i(x, y)−Fn,i(x, y′)|/|y−y′| = 1/

(
(1+βy)(1+βy′)

)
for y , y′, and then the ratio |Fn,i(x, y)−Fn,i(x, y′)|/|y−

y′| for y , y′ can be made arbitrarily close to 1 by taking y and y′ sufficiently close to 0 and then Fn,i is
not a Banach contraction with respect to the second variable. Nevertheless, we can prove that Fn,i is a
Matkowski contraction. Therefore, for each β > 0 and n ∈ N the IFS defined by (3.2) admits a unique
attractor Gβ,n which is the graph of a continuous function f βn satisfying f βn (xi) = yi, for each i ∈ J0. The
FIF f βn is referred to as β-fractal function for f .

The most widely studied bn( f ) in the literature is the Bernstein polynomial of f defined by

Bn( f , x) =
1

(xN − x0)n

n∑
k=0

( n

k

)
(x − x0)k(xN − x)n−k f

(
x0 +

k(xN − x0)
n

)
for all x ∈ I and n ∈ N. One can verify that Bn( f , x0) = h(x0) and Bn( f , xN) = f (xN). In addition, from
classical approximation theory [32] we have that

∥ f − Bn( f , ·)∥∞ ≤
3
2
ω f (n−1/2). (3.3)

where ω f is the modulo of continuity of f defined as

ω f (δ) = sup
|x−x′ |<δ

∣∣∣ f (x) − f (x′)
∣∣∣.

Since f is uniformly continuous on I, we obtain that ω f (n−1/2) → 0 as n → ∞. When the IFS is
defined using the Bernstein polynomial Bn( f , ·) and the function gβ, the fractal interpolation function
f βn is called Bersntein β-fractal function of order n of f .

Example 3. Let interpolation points
{
(0, 1/5), (1/3, 1/2), (1/2, 1/3), (4/5, 4/5), (1, 3/5)

}
be given. We

consider the functions gi(y) = y
1+βiy

and bn( f ) is the Bernstein polynomial Bn( f , ·), where f is the
piecewise linear function passing through the interpolation points given above.
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1) Let us consider a constant scaling vector β = (0.6, . . . , 0.6). Then the graph of the β-FIF for f
generated by IFS (3.2), is plotted in Figure 3(a).

2) Take a non constant scaling vector β = {β1, β2, β3, β4} then the graph of the β-FIF with the above
variable parameters is displayed in Figure 3(b),(c).

(a) β = (0.6, . . . , 0.6) (b) β = (0.6, 1.7, 2.8, 0.4) (c) β = (1.7, 0.6, 2.8, 0.4)

Figure 3. Graphs of the FIFs constructed from different vectors β.

From Figure 3, we can notice that the self-similarity of the fractal interpolation curve shown in
Figure 3(b),(c) is weaker than that of FIF in Figure 3(a). Hence, we can say that the FIFs with non
constant scaling vector may have more flexibility and applicability. In fact, the FIFs generated by those
IFSs with constant parameters usually have obvious self-similarity character, which could lead to the
loss of flexibility, and might cause obvious errors in fitting and approximation of some complicated
curves and non-stationary data that show less self-similarity.

Our first main result in this section is the following.

Theorem 4. Let ψ ∈ C(I,K) be a function providing the data {(xi, yi), i ∈ J0} and let f ∈ C(I,K)
interpolate ψ with respect to these data. Let h := maxi(xi+1 − xi) and assume, for some r > 0, that

∥ψ − f ∥∞ = O(hr).

Then, the sequence { f̂n}n of fractal interpolation functions, defined through the system (3.2), converges
to ψ as h→ 0 and n→ ∞.

Proof. We consider the complete metric space (G, ρ) where

G =
{
h : I −→ K continuous such that h(x0) = y0 and h(xN) = yN

}
and ρ is the uniform metric on G. Now, for each n ∈ N, we define the Read-Bajraktarevı́c operator
Tn : G −→ G by

Tn(h)(x) = Fn,i
(
L−1

i (x), h ◦ L−1
i (x)
)
, x ∈ Ii, i ∈ J.

In addition, for all i ∈ J, x ∈ Ii and h1, h2 ∈ G, we have∣∣∣Fn,i
(
L−1

i (x), h1(L−1
i (x))

)
− Fn,i

(
L−1

i (x), h2(L−1
i (x))

)∣∣∣ ≤ φi

(
|h1(L−1

i (x)) − h2(L−1
i (x))|

)
≤ φi

(
∥h1 − h2∥∞

)
.
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Now observe that

∥Tn(h1) − Tn(h2)∥∞ = sup
x∈Ii
i∈J

∣∣∣∣Fn,i
(
L−1

i (x), h1(L−1
i (x))

)
− Fn,i

(
L−1

i (x), h2(L−1
i (x))

)∣∣∣∣
which implies that

∥Tn(h1) − Tn(h2)∥∞ ≤ φi

(
∥h1 − h2∥∞

)
,

where φ = supi φi. Therefore, for n ∈ N, Tn is also a Matkowski contraction on the complete metric
space (G, ρ) and therefore Tn possesses a unique fixed point f̂n on G. It follows that f̂n satisfies the
following functional equation

f̂n(x) = gi
(
f̂n ◦ L−1

i
)
(x) + f (x) − gi ◦ bn( f )

(
L−1

i (x)
)

(3.4)

and then,

∥ f̂n − f ∥∞ ≤ ∥gi ◦ f̂n − gi ◦ f ∥∞ + ∥gi ◦ bn( f ) − gi ◦ f ∥∞
≤ γ

[
∥ f̂n − f ∥∞ + ∥bn( f ) − f ∥∞

]
,

where γ = supK |g
′
i | < 1. As a consequence, we obtain

∥ f̂n − f ∥∞ ≤
γ

1 − γ
∥bn( f ) − f ∥∞. (3.5)

□

Example 4. In this example, we consider the operator bn( f ) to be the Bernstein polynomial of f . First
notice that, from (3.3) and (3.5), the Bersntein β-fractal function of order n of f satisfies

∥ f βn − f ∥∞ ≤
3γβ

2(1 − γβ)
ω f (n−1/2).

The most widely studied of fractal interpolation function has been obtained using the IFS

Li(x) = aix + ki and Fi(x, y) = αiy + qi(x),

where the real constants ai and ki are determined by the condition (2.6), the functions qi are continuous
satisfying conditions (2.7) and (2.8) and αi are free parameters such that αi ∈ (−1, 1). Therefore, the
corresponding FIF will be indexed by α ∈ (−1, 1)N and will be denoted by f α named α-fractal inter-
polation function ( [2, 33]). As an application of Therorem 4, we can construct a fractal interpolation
function f̂ , where (2.8) may be violated, and f̂ is as close as we want to f α. In addition, we have the
following consequence.

Corollary 1. Let α ∈ (0, 1)N be a scaling vector and f α be a α-FIF interpolating data {(xi, yi), i ∈ J0}.
For every ϵ > 0, there exist two approximating sequences {ln}n and {hn}n of fractal functions such that

hn(x) ≤ f α(x) ≤ ln(x) and ∥ln − hn∥∞ ≤ ϵ.

for all x ∈ I and n ≥ N0 ∈ N.
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Proof. Theorem 4 ensures the existence of a sequence { f̂n}n of fractal interpolation functions such that

∥ f̂n − f α∥ <
ϵ

2
, ∀n ≥ N1 ∈ N.

Now define the fractal functions

ln(x) = f̂n(x) +
ϵ

2
and hn(x) = f̂n(x) −

ϵ

2

for all x ∈ I. It follows that

ln(x) ≥ f αn +
ϵ

2
− ∥ f̂n − f αn ∥∞ ≥ f αn (x).

Similarly, we have

hn(x) ≤ f αn −
ϵ

2
+ ∥ f̂n − f αn ∥∞ ≤ f αn (x).

□

4. Perspective and open problem

1) Let
{
(xi, y j, zi, j), i = 0, 1, . . . ,N, j = 0, 1, . . . ,M

}
⊂ I × J × K ⊂ R3 be a given data set. We denote

Ii, J j,Di, j and D by [xi−1, xi], [y j−1, y j], Ii × J j and I × J respectively. We define mappings wi, j :
D × K → Di, j × K by

wi, j(x, y, z) = (Li, j(x, y), Fi, j(x, y, z))

where Li, j : D → Di, j are contractive homeomorphisms and Fi, j : D × K → K are Matkowski
contractions. We strongly believe that the framework established in Section 3 remains true if we
consider the GIFS {

I × J × K,wi, j, i = 1, . . . ,N, j = 1, . . . ,M
}
.

We find in this case that it is possible to construct a function f : I × J → R whose graph is
the attractor of a GIFS and interpolates the given data set. Such a result would be analogous
to Theorem 2 of [34]. The pursuit of this question is encouraged by the application of fractal
surfaces in many areas such as earth sciences, surface physics, and medical sciences [35–39].

2) Let (Y, d) be a complete metric space and considerX = Y×Y. Recall the IFS {X, fn, n = 1, . . . ,N}
defined in Section 2 which admits a unique attractor G ∈ H(X). It is interesting to ask if the
projection G onto Y itself is an attractor of an IFS. We conject that the projection is the graph of
a continuous function which is not self-similar in general.

3) Let Ω be a nonempty set and let ζ : Ω × Ω −→ [1,+∞[ be a function. We define dζ : Ω × Ω −→
[0,+∞[ such that, for all x, y, z ∈ Ω, we have

(a) dζ(x, y) = 0 ⇐⇒ x = y;

(b) dζ(x, y) = dζ(y, x);

(c) dζ(x, y) ≤ ζ(x, y)
[
dζ(x, z) + dζ(z, y)

]
.
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Then, (Ω, dζ) is called a ζ-metric space [40] which extends the b-metric space (ζ(x, y) = b) and
the metric space (ζ(x, y) = 1). We conject that the results in Section 2 remain true when we
consider X to be a ζ-metric space and extends in particular [42, Theorem 3.7]. This requires,
the introduction of new contractive conditions of general integral type in the setting of ζ-metric
spaces and the definition of a generalization of the Hausdorff distance dζ onH(X).
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