In this paper, we introduce the concept of an S-asymptotically $ \omega $-periodic process in distribution for the first time, and by means of the successive approximation and the Banach contraction mapping principle, respectively, we obtain sufficient conditions for the existence and uniqueness of the S-asymptotically $ \omega $-periodic solutions in distribution for a class of stochastic fractional functional differential equations.
Citation: Shufen Zhao, Xiaoqian Li, Jianzhong Zhang. S-asymptotically $ \omega $-periodic solutions in distribution for a class of stochastic fractional functional differential equations[J]. Electronic Research Archive, 2023, 31(2): 599-614. doi: 10.3934/era.2023029
In this paper, we introduce the concept of an S-asymptotically $ \omega $-periodic process in distribution for the first time, and by means of the successive approximation and the Banach contraction mapping principle, respectively, we obtain sufficient conditions for the existence and uniqueness of the S-asymptotically $ \omega $-periodic solutions in distribution for a class of stochastic fractional functional differential equations.
[1] | J. He, F. Kong, J. J. Nieto, H. Qiu, Globally exponential stability of piecewise pseudo almost periodic solutions for neutral differential equations with impulses and delays, Qual. Theor. Dyn. Syst., 21 (2022). https://doi.org/10.1007/s12346-022-00578-x doi: 10.1007/s12346-022-00578-x |
[2] | T. Zhang, Y. Li, S-asymptotically periodic fractional functional differential equations with off-diagonal matrix Mittag-Leffler function kernels, Math. Comput. Simulat., 193 (2022), 331–347. https://doi.org/10.1016/j.matcom.2021.10.006 doi: 10.1016/j.matcom.2021.10.006 |
[3] | H. R. Henríquez, M. Pierri, P. Táboas, On S-asymptotically $\omega$-periodic functions on Banach spaces and applications, J. Math. Anal. Appl., 343 (2008), 1119–1130. https://doi.org/10.1016/j.jmaa.2008.02.023 doi: 10.1016/j.jmaa.2008.02.023 |
[4] | T. Zhang, J. Zhou, Y. Liao, Exponentially stable periodic oscillation and Mittag-Leffler stabilization for fractional-order impulsive control neural networks with piecewise caputo derivatives, IEEE Trans. Cybern., 52 (2022), 9670–9683. https://doi.org/10.1109/TCYB.2021.3054946 doi: 10.1109/TCYB.2021.3054946 |
[5] | T. Zhang, Y. Li, Global exponential stability of discrete-time almost automorphic Caputo-Fabrizio BAM fuzzy neural networks via exponential Euler technique, Knowl-based Syst., 246 (2022), 108675. https://doi.org/10.1016/j.knosys.2022.108675 doi: 10.1016/j.knosys.2022.108675 |
[6] | T. Zhang, Y. Li, Exponential Euler scheme of multi-delay Caputo-Fabrizio fractional-order differential equations, Appl. Math. Lett., 124 (2022), 107709. https://doi.org/10.1016/j.aml.2021.107709 doi: 10.1016/j.aml.2021.107709 |
[7] | Y. Zhou, Infinite interval problems for fractional evolution equations, Mathematics, 10 (2022), 900. https://doi.org/10.3390/math10060900 doi: 10.3390/math10060900 |
[8] | Y. Zhou, J. W. He, A Cauchy problem for fractional evolution equations with Hilfer's fractional derivative on semi-infinite interval, Fract. Calc. Appl. Anal., 25 (2022), 924–961. https://doi.org/10.1007/s13540-022-00057-9 doi: 10.1007/s13540-022-00057-9 |
[9] | C. Cuevas, J. C. de Souza, S-asymptotically $\omega$-periodic solutions of semilinear fractional integro-differential equations, Appl. Math. Lett., 22 (2009), 865–870. https://doi.org/10.1016/j.aml.2008.07.013 doi: 10.1016/j.aml.2008.07.013 |
[10] | C. Cuevas, J. C. de Souza, Existence of S-asymptotically $\omega$-periodic solutions for fractional order functional integro-differential equations with infinite delay, Nonlinear Anal., 72 (2010), 1683–1689. https://doi.org/10.1016/j.na.2009.09.007 doi: 10.1016/j.na.2009.09.007 |
[11] | X. Shu, F. Xu, Y. Shi, S-asymptotically $\omega$-positive periodic solutions for a class of neutral fractional order differential equations, Appl. Math. Comput., 270 (2015), 768–776. https://doi.org/10.1016/j.amc.2015.08.080 doi: 10.1016/j.amc.2015.08.080 |
[12] | A. Anguraj, K. Ravikumar, J. J. Nieto, On stability of stochastic differential equations with random impulses driven by Poisson jumps, Stochastics, 93 (2021), 682–696. https://doi.org/10.1080/17442508.2020.1783264 doi: 10.1080/17442508.2020.1783264 |
[13] | Z. Liu, K. Sun, Almost automorphic solutions for stochastic differential equations driven by Lévy noise, J. Funct. Anal., 266 (2014), 1115–1149. http://dx.doi.org/10.1016/j.jfa.2013.11.011 doi: 10.1016/j.jfa.2013.11.011 |
[14] | K. Li, Weighted pseudo almost automorphic solutions for nonautonomous SPDEs driven by Lévy noise, J. Math. Anal. Appl., 427 (2015), 686–721. https://doi.org/10.1016/j.jmaa.2015.02.071 doi: 10.1016/j.jmaa.2015.02.071 |
[15] | X. Ma, X. Shu, J.Mao, Existence of almost periodic solutions for fractional impulsive neutral stochastic differential equations with infinite delay, Stoch. Dynam., 20 (2020), 2050003. http://dx.doi.org/10.1142/S0219493720500033 doi: 10.1142/S0219493720500033 |
[16] | E. Cuesta, C. Palencia, A numerical method for an integro-differential equation with memory in Banach spaces: Qualitative properties, SIAM J. Numer. Anal., 41 (2003), 1232–1241. https://doi.org/10.1137/S0036142902402481 doi: 10.1137/S0036142902402481 |
[17] | D. Applebaum, Lévy processes and stochastic calculus, Cambridge university press, Cambridge, 2009. |
[18] | H. Holden, B. Øksendal, J. Ubøe, T. Zhang, Stochastic partial differential equations, Springer, Berlin, 1996. |
[19] | S. Albeverio, B. Rüdiger, Stochastic integrals and Lévy-Ito decomposition on separable Banach spaces, Stoch. Anal. Appl., 23 (2005), 217–253. https://doi.org/10.1081/SAP-200026429 doi: 10.1081/SAP-200026429 |
[20] | G. D. Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge university press, Cambridge, 2014. |
[21] | M. Haase, The functional calculus for sectorial operators, Springer, Berlin, 2006. |
[22] | A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Springer, Berlin, 1995. |
[23] | J. P. C. dos Santos, C. Cuevas, Asymptotically almost automorphic solutions of abstract fractional integro-differential neutral equations, Appl. Math. Lett., 23 (2010), 960–965. https://doi.org/10.1016/j.aml.2010.04.016 doi: 10.1016/j.aml.2010.04.016 |
[24] | E. Cuesta, F. Mendizabal, Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations, Discrete Contin. Dyn. Syst., (2007), 277–285. |
[25] | W. Dimbour, G. M. N'Guérékata, S-asymptotically $\omega$-periodic solutions to some classes of partial evolution equations, Appl. Math. Comput., 218 (2012), 7622–7628. https://doi.org/10.1016/j.amc.2012.01.029 doi: 10.1016/j.amc.2012.01.029 |
[26] | A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer, Berlin, 1983. |
[27] | X. Shu, Q. Wang, The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order $1<\alpha<2$, Comput. Math. Appl., 64 (2012), 2100–2110. https://doi.org/10.1016/j.camwa.2012.04.006 doi: 10.1016/j.camwa.2012.04.006 |