We construct 3-Hom-Lie superalgebras on a commutative Hom-superalgebra by means of involution and even degree derivation. We construct a representation of induced 3-Hom-Lie superalgebras by means of supertrace.
Citation: Baoling Guan, Xinxin Tian, Lijun Tian. Induced 3-Hom-Lie superalgebras[J]. Electronic Research Archive, 2023, 31(8): 4637-4651. doi: 10.3934/era.2023237
We construct 3-Hom-Lie superalgebras on a commutative Hom-superalgebra by means of involution and even degree derivation. We construct a representation of induced 3-Hom-Lie superalgebras by means of supertrace.
[1] | Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D, 7 (1973), 2405–2412. https://doi.org/10.1103/PhysRevD.7.2405 doi: 10.1103/PhysRevD.7.2405 |
[2] | V. T. Filippov, $n$-Lie algebras, Sib. Math. J., 26 (1985), 879–891. https://doi.org/10.1007/BF00969110 |
[3] | Y. Ma, L. Y. Chen, On the cohomology and extensions of first-class $n$-Lie superalgebras, Commun. Algebra, 42 (2014), 4578–4599. https://doi.org/10.1080/00927872.2013.822877 doi: 10.1080/00927872.2013.822877 |
[4] | J. Arnlind, A. Kitouni, A. Makhlouf, S. Silvestrov, Structure and cohomology of 3-Lie algebras induced by Lie algebras, Algebra Geom. Math. Phys., 85 (2014), 123–144. https://doi.org/10.1007/978-3-642-55361-5_9 doi: 10.1007/978-3-642-55361-5_9 |
[5] | V. Abramov, 3-Lie superalgebras induced by Lie superalgebras, Axioms, 8 (2019), 1–8. https://doi.org/10.3390/axioms8010021 doi: 10.3390/axioms8010021 |
[6] | H. Ataguema, A. Makhlouf, S. Silvestrov, Generalization of $n$-ary Nambu algebras and beyond, J. Math. Phys., 50 (2009), 083501. https://doi.org/10.1063/1.3167801 doi: 10.1063/1.3167801 |
[7] | J. Arnlind, A. Makhlouf, S. Silvestrov, Ternary Hom-Nambu-Lie algebras induced by Hom-Lie algebras, J. Math. Phys., 51 (2010), 11. https://doi.org/10.1063/1.3359004 doi: 10.1063/1.3359004 |
[8] | J. Arnlind, A. Makhlouf, S. Silvestrov, Construction of $n$-Lie algebras and $n$-ary Hom-Nambu-Lie algebras, J. Math. Phys., 52 (2011), 13. https://doi.org/10.1063/1.3653197 doi: 10.1063/1.3653197 |
[9] | A. Kitouni, A. Makhlouf, S. Silvestrov, On $(n + 1)$-Hom-Lie algebras induced by $n$-Hom-Lie algebras, Georgian Math. J., 23 (2016), 75–95. https://doi.org/10.1515/gmj-2015-0063 doi: 10.1515/gmj-2015-0063 |
[10] | H. Awata, M. Li, D. Minic, T. Yaneya, On the quantization of Nambu brackets, JHEP02, 013 (2001), 1–16. https://doi.org/10.1088/1126-6708/2001/02/013 doi: 10.1088/1126-6708/2001/02/013 |
[11] | V. Abramov, Super 3-Lie algebras induced by super Lie algebras, Adv. Appl. Clifford Algebras, 27 (2017), 9–16. https://doi.org/10.1007/s00006-015-0604-3 doi: 10.1007/s00006-015-0604-3 |
[12] | V. Abramov, Matrix 3-Lie superalgebras and BRST supersymmetry, Int. J. Geom. Methods Mod. Phys., 14 (2017), 1750160. https://doi.org/10.1142/S0219887817501602 doi: 10.1142/S0219887817501602 |
[13] | B. L. Guan, L. Y. Chen, B. Sun, 3-ary Hom-Lie superalgebras induced by Hom-Lie superalgebras, Adv. Appl. Clifford Algebras, 27 (2017), 3063–3082. https://doi.org/10.1007/s00006-017-0801-3 doi: 10.1007/s00006-017-0801-3 |
[14] | V. Abramov, P. Lätt, Induced 3-Lie algebras, superalgebras and induced representations, P. Est. Acda. Sci., 69 (2020), 116–133. https://doi.org/10.3176/proc.2020.2.05 doi: 10.3176/proc.2020.2.05 |
[15] | E. K. Abdaoui, F. Ammar, A. Makhlouf, Hom-Alternative, Hom-Malcev and Hom-Jordan superalgebras, Bull. Malays. Math. Sci. Soc., 40 (2017), 439–472. https://doi.org/10.1007/s40840-016-0323-5 doi: 10.1007/s40840-016-0323-5 |
[16] | B. L. Guan, Representations for Hom-$n$-Lie superalgebras and structures for generalized restricted Lie algebras, Ph.D thesis, Northeast Normal University, 2014. |