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1. Introduction

Ternary Lie algebras appeared first in Nambu’s generalization of Hamiltonian mechanics [1] which
use a generalization of Poisson algebras with a ternary bracket. The structure of n-Lie algebra was
studied by Filippov [2]. The theory of cohomology for first-class n-Lie superalgebras can be found
in [3]. In [4], the structure and cohomology of 3-Lie algebras induced by Lie algebras have been
investigated. The reference [5] constructed super 3-Lie algebras by super Lie algebras. In [6], general-
izations of n-ary algebras of Lie type and associative type by twisting the identities using linear maps
have been introduced. These generalizations include n-ary Hom-algebra structures generalizing the
n-ary algebras of Lie type including n-ary Nambu algebras, n-ary Nambu-Lie algebras and n-ary Lie
algebras, and n-ary algebras of associative type including n-ary totally associative and n-ary partially
associative algebras. In [7], a method was demonstrated of how to construct ternary multiplications
from the binary multiplication of a Hom-Lie algebra, a linear twisting map, and a trace function sat-
isfying certain compatibility conditions; and it was shown that this method can be used to construct
ternary Hom-Nambu-Lie algebras from Hom-Lie algebras. This construction was generalized to n-Lie
algebras and n-Hom-Nambu-Lie algebras in [8]. The reference [9] constructed (n + 1)-Hom-Lie alge-
bras by n-Hom-Lie algebras. A method of constructing induced ternary Lie brackets were proposed
in [10]. This method in a more general form can be described as follows: Given a Lie algebra g and a
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generalized trace τ : g→ C on it, one can define the induced ternary Lie bracket by the formula

[x, y, z] = τ(x)[y, z] + τ(y)[z, x] + τ(z)[x, y], (1.1)

where x, y ∈ g and [·, ·, ·] is a Lie bracket of g. The structure of induced n-Lie algebras with n-Lie
brackets constructed by means of a generalized trace, their cohomologies and Hom-generalizations
were studied in the papers [4,8,9]. An extension of the method of constructing induced 3-Lie-algebras
to 3-Lie-superalgebras by means of a generalized supertrace and possible application of this method
in BRST-formalism of quantum field theory was proposed in the papers [11, 12]. Later the method of
constructing 3-Lie-superalgebras by means of supertrace proposed in [11, 12] was extended to ternary
Hom-Lie superalgebras by By me and my advisor in [13].

The reference [14] constructed 3-Lie superalgebras induced by means of derivation and involution,
and it also constructed induced representation of induced 3-Lie superalgebras by means of supertrace.
The paper generalizes the reference [14] to the case of 3-Hom-Lie superalgebras.

In Section 2, we construct induced 3-Hom-Lie superalgebras, whose ternary graded Hom-Lie
brackets have the structure similar to (1.1). First of all, we propose two identities, which give suf-
ficient and necessary conditions for graded skew-symmetric Hom-ternary bracket to satisfy the graded
Filippov-Jacobi identity, in other words, to determine a 3-Hom-Lie superalgebra. Next we construct
binary graded Hom-Lie brackets and then ternary graded Hom-Lie brackets on a commutative Hom-
superalgebra with involution, where the structure of a ternary graded Hom-Lie bracket is similar to
(1.1) and it is constructed by means of even degree derivation and involution. In Section 3, we con-
struct induced representation of induced 3-Hom-Lie superalgebras by means of supertrace and prove
that this is a representation of induced 3-Hom-Lie superalgebra.

2. 3-Hom-Lie superalgebras induced by means of derivation and involution

Definition 2.1. [15] A Hom-superalgebra is a triple (g, µ, α) in which g = g0̄⊕g1̄ is a Z2-graded vector
space, µ : g × g→ g is an even linear map, α : g→ g is an even linear map such that α ◦ µ = µ ◦ α⊗2.

Definition 2.2. [16] A 3-Hom-Lie superalgebra is a triple (g, [·, ·, ·], α1, α2) consisting of a Z2-graded
vector space g = g0̄ ⊕ g1̄, an even trilinear map (bracket) [·, ·, ·] : g × g × g → g and an algebra
endomorphism αi : g→ g(i = 1, 2) is an even linear map. If it satisfies the following conditions:

|[x1, x2, x3]| = |x1| + |x2| + |x3|;
[x1, x2, x3] = −(−1)|x1 ||x2 |[x2, x1, x3], [x1, x2, x3] = −(−1)|x2 ||x3 |[x1, x3, x2];
[α1(x), α2(y), [z, u, v]] = [[x, y, z], α1(u), α2(v)]
+ (−1)|z|(|x|+|y|)[α1(z), [x, y, u], α2(v)] + (−1)(|z|+|u|)(|x|+|y|)[α1(z), α2(u), [x, y, v]].

where |x| is the Z2-degree of the homogeneous element x in g.

Suppose that (g, [·, ·, ·], α1, α2) is a 3-Hom-Lie superalgebra, if α1 = α2 = α, it is satisfied

α[x1, x2, x3] = [α(x1), α(x2), α(x3)],∀x1, x2, x3 ∈ g.

Then (g, [·, ·, ·]ρ, α1, α2) is called as multiplicative.
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In this section we consider a commutative Hom-superalgebra (g, µ, α) in which g = g0̄⊕g1̄ endowed
with an involution x ∈ g 7→ x⋆ ∈ g and an even degree derivation δ : g→ g. By involution we mean an
even degree linear mapping (even degree means that it preserves grading of any homogeneous element),
which satisfies (x⋆)⋆ = x, x ∈ g. By derivation of degree m,where m is an integer either 0̄ or 1̄,we mean
linear mapping δ : g → g, which satisfies the graded Leibniz rule δ(uv) = δ(u)α(v) + (−1)mû̂vα(u)δ(v),
where x̂, ŷ are gradings of homogeneous elements x, y, respectively. Using an involution and derivation
we construct three graded Hom-Lie brackets on Hom-superalgebra g. Furthermore, by considering a
generalized supertrace we apply methods described in [5] and yield induced 3-Lie Hom-superalgebras
whose bracket is defined using involution, derivation and both of them, together with generalized
supertrace.

First of all, we start by proposing equivalent form to the graded Filippov-Jacobi identity. To simplify
the equations, we will use the notation x̂y = x̂ + ŷ.

Proposition 2.3. Assume g = g0̄ ⊕ g1̄ is a super vector space and let

[·, ·, ·] : g × g × g→ g (2.1)

be a skew-symmetric multilinear map, such that ̂[x, y, z] = x̂yz. α1 : g → g and α2 : g → g are algebra
endomorphisms. Then (g, [·, ·, ·], α1, α2) is a 3-Lie Hom-superalgebra if and only if the equalities

[[x, y, z], α1(u), α2(v)] = (−1)̂ux̂yz+x̂ŷz[[u, y, z], α1(x), α2(v)]

+ (−1)̂uŷz+̂ŷz[[x, u, z], α1(y), α2(v)] + (−1)̂ûz[[x, y, u], α1(z), α2(v)]
(2.2)

and

[[x, y, z], α1(u), α2(v)] + (−1)x̂yẑuv+̂zûv[[u, v, z], α1(x), α2(y)]

− (−1)̂ŷu+̂ŷz+̂ẑu[[x, u, z], α1(y), α2(v)] − (−1)̂vŷzu+x̂ŷzu+ x̂̂v[[v, y, z], α1(u), α2(x)]

− (−1)ŷvẑu+̂v̂y[[x, v, z], α1(u), α2(y)] − (−1)x̂uŷz+ x̂̂u[[u, y, z], α1(x), α2(v)] = 0

(2.3)

hold for bracket [·, ·, ·] : g × g × g→ g.

Proof. Let g = g0̄ ⊕ g1̄ be a super vector space and assume that (g, [·, ·, ·], α1, α2) is a 3-Lie Hom-
superalgebra. If this is the case, then the Filippov-Jacobi identity must hold:

[α1(x), α2(y), [z, u, v]] =[[x, y, z], α1(u), α2(v)] + (−1)x̂ŷz[α1(z), [x, y, u], α2(v)]

+ (−1)x̂yẑu[α1(z), α2(u), [x, y, v]].
(2.4)

To show that identity (2.2) holds for bracket (2.1), apply Filippov-Jacobi identity (2.4) recursively
to itself on the right-most bracket. This yields us the following result:

[α1(x), α2(y), [z, u, v]] =[[x, y, z], α1(u), α2(v)] + (−1)x̂ŷz[α1(z), [x, y, u], α2(v)]

+ (−1)x̂yẑu([[z, u, x], α1(y), α2(v)] + (−1)ẑux̂[α1(x), [z, u, y], α2(v)]

+ (−1)ẑux̂y[α1(x), α2(y), [z, u, v]]
)

=[[x, y, z], α1(u), α2(v)] + (−1)x̂ŷz[α1(z), [x, y, u], α2(v)]

+ (−1)x̂yẑu[[z, u, x], α1(y), α2(v)] + (−1)x̂yẑu+ẑux̂
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[α1(x), [z, u, y], α2(v)] + (−1)x̂yẑu+ẑux̂y[α1(x), α2(y), [z, u, v]],

which gives

[[x, y, z], α1(u), α2(v)] = − (−1)x̂ŷz[α1(z), [x, y, u], α2(v)] − (−1)x̂yẑu[[z, u, x], α1(y), α2(v)]

− (−1)ẑûy[α1(x), [z, u, y], α2(v)].
(2.5)

We need to show that the right hand sides of (2.2) and (2.5) coincide. It is indeed the case:

−(−1)ẑûy[α1(x), [z, u, y], α2(v)] = − (−1)3(−1)ẑûy+x̂ẑuy+û̂z+̂ẑy[[u, y, z], α1(x), α2(v)]

= (−1)̂ux̂yz+x̂ŷz[[u, y, z], α1(x), α2(v)],

−(−1)x̂yẑu[[z, u, x], α1(y), α2(v)] = − (−1)3(−1)x̂yẑu+̂ẑu+̂zx̂+ x̂̂u[[x, u, z], α1(y), α2(v)]

= (−1)̂uŷz+̂ŷz[[x, u, z], α1(y), α2(v)],

−(−1)x̂ŷz[α1(z), [x, y, u], α2(v)] = − (−1)(−1)x̂ŷz+̂zx̂yu[[x, y, u], α1(z), α2(v)]

= (−1)̂ûz[[x, y, u], α1(z), α2(v)].

From those equalities we can deduce that if (g, [·, ·, ·], α1, α2) is indeed a 3-Lie Hom-superalgebra,
then identity (2.2) holds for bracket [·, ·, ·].

In order to prove the identity (2.3), we can apply Filippov-Jacobi identity recursively to itself once
again, but this time to both the right-most and middle brackets on the right hand side of identity (2.4).

[α1(x), α2(y), [z, u, v]]

=[[x, y, z], α1(u), α2(v)] − (−1)x̂ŷz+̂vx̂yu[α1(z), α2(v), [x, y, u]]

+ (−1)x̂yẑu[α1(z), α2(u), [x, y, v]]

=[[x, y, z], α1(u), α2(v)] − (−1)x̂ŷz+̂vx̂yu([[z, v, x], α1(y), α2(u)]

+ (−1)ẑvx̂[α1(x), [z, v, y], α2(u)] + (−1)ẑvx̂y[α1(x), α2(y), [z, v, u]]
)

+ (−1)x̂yẑu([[z, u, x], α1(y), α2(v)] + (−1)ẑux̂[α1(x), [z, u, y], α2(v)]

+ (−1)ẑux̂y[α1(x), α2(y), [z, u, v]]
)

=[[x, y, z], α1(u), α2(v)] − (−1)x̂ŷz+̂vx̂yu([[z, v, x], α1(y), α2(u)]

− (−1)x̂ŷz+̂vx̂yu+ẑvx̂[α1(x), [z, v, y], α2(u)] − (−1)x̂ŷz+̂vx̂yu+ẑvx̂y[α1(x), α2(y), [z, v, u]]

+ (−1)x̂yẑu[[z, u, x], α1(y), α2(v)] + (−1)x̂yẑu+ẑux̂[α1(x), [z, u, y], α2(v)]

+ (−1)x̂yẑu+ẑux̂y[α1(x), α2(y), [z, u, v]].

Reordering the summands in the last equation results in

[[x, y, z], α1(u), α2(v)] − (−1)x̂ŷz+̂vx̂yu+ẑvx̂y[α1(x), α2(y), [z, v, u]]

+ (−1)x̂yẑu[[z, u, x], α1(y), α2(v)] − (−1)x̂ŷz+̂vx̂yu+ẑvx̂[α1(x), [z, v, y], α2(u)]

− (−1)x̂ŷz+̂vx̂yu[[z, v, x], α1(y), α2(u)] + (−1)x̂yẑu+ẑux̂[α1(x), [z, u, y], α2(v)] = 0,

which is exactly (2.3) once the elements are ordered accordingly within the brackets:
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−(−1)x̂ŷz+̂vx̂yu+ẑvx̂y[α1(x), α2(y), [z, v, u]] = + (−1)x̂yẑuv+̂zûv[[u, v, z], α1(x), α2(y)]

+(−1)x̂yẑu[[z, u, x], α1(y), α2(v)] = − (−1)̂ŷu+̂ŷz+̂ẑu[[x, u, z], α1(y), α2(v)]

−(−1)x̂ŷz+̂vx̂yu+ẑvx̂[α1(x), [z, v, y], α2(u)] = − (−1)̂vŷzu+x̂ŷzu+ x̂̂v[[v, y, z], α1(u), α2(x)]

−(−1)x̂ŷz+̂vx̂yu[[z, v, x], α1(y), α2(u)] = − (−1)ŷvẑu+̂v̂y[[x, v, z], α1(u), α2(y)]

+(−1)x̂yẑu+ẑux̂[α1(x), [z, u, y], α2(v)] = − (−1)x̂uŷz+ x̂̂u[[u, y, z], α1(x), α2(v)].

This completes the proof of necessity. Sufficiency can be shown analogously. □

Let g = g0̄ ⊕ g1̄ be a Hom-superalgebra. We say that superalgebra g is commutative Hom-
superalgebra if for any two homogeneous elements u, v ∈ g it holds that uv = (−1)̂ûv. Let m ∈ Z2.

linear mapping δ : g→ g is said to be a degree m derivation of a superalgebra g if δ̂(u) = û + m, for all
u ∈ g, and it satisfies the graded leibniz rule

δ(uv) = δ(u)α(v) + (−1)mû̂vα(u)δ(v).

In case m = 0, we call it even degree derivation, and otherwise, for m = 1, we call it odd de-
gree derivation. We denote the degree of δ as δ̂. Consequently, if δ is an even degree derivation of
Hom-superalgebra g, then δ̂(u) = û. Or, in other words, derivation δ does not change the degree of
homogeneous element u ∈ g. Furthermore, in case of even δ the Leibniz rule for any u, v ∈ g simplifies
to

δ(uv) = δ(u)α(v) + α(u)δ(v).

Mapping (·)⋆ : g → g, u 7→ u⋆ is said to be an involution of a Hom-superalgebra g if it satisfies the
following conditions:

(1) involution is an even degree mapping of a Hom-superalgebra g, g⋆i ⊂ gi, i ∈ Z2, û⋆ = û;

(2) it is linear, (λu + µv)⋆ = λu⋆ + µv⋆;

(3) (·)⋆ : g→ g is its own inverse, (u⋆)⋆ = u;

(4) (uv)⋆ = (−1)̂ûvv⋆u⋆;

(5) (α(u))⋆ = α(u⋆).

In the case of commutative Hom-superalgebra the condition (4) takes on the form (uv)⋆ = u⋆v⋆.
Making use of involution and even degree derivation we can construct graded Hom-Lie brackets on

a Hom-superalgebra g. To achieve that, let us define

[u, v]⋆ = u⋆α(v) − (−1)̂ûvv⋆α(u); (2.6)
[u, v]δ = α(u)δ(v) − (−1)̂ûvα(v)δ(u); (2.7)

[u, v]⋆,δ = (α(u) − α(u⋆))δ(v) − (−1)̂ûv(α(v) − α(v⋆))δ(u). (2.8)
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Proposition 2.4. Brackets (2.6) and (2.7) are graded Hom-Lie brackets. If involution (·)⋆ : g→ g and
an even degree derivation δ : g→ g satisfy the condition

(δ(u))⋆ = −δ(u⋆),

then bracket (2.8) is also a graded Hom-Lie bracket.

Proof. Proving the proposition is similar for all three brackets (2.6)–(2.8). Let us only observe
(2.8), which is the most involved. To assure linearity, pick coefficients λ, µ ∈ K and homogeneous
elements u, v,w ∈ g such that v̂ = ŵ. Note that ω̂ = ̂λv + µw = v̂ = ŵ as both v and w are homogeneous,
and calculate

[u, λv + µw]⋆,δ =(α(u) − α(u⋆))δ(λv + µw) − (−1)̂uŵ(α(λv + µw) − α(λv + µw)⋆)δ(u)
=λ(α(u) − α(u⋆))δ(v) + µ(α(u) − α(u⋆))δ(w)

− (−1)̂uŵ(λ(α(v) − α(v⋆)) + µ(α(w) − α(w⋆)))δ(u)
=λ(α(u) − α(u⋆))δ(v) + µ(α(u) − α(u⋆))δ(w)

− (−1)̂uŵλ(α(v) − α(v⋆))δ(u) − (−1)̂uŵµ(α(w) − α(w⋆))δ(u)

=λ{(α(u) − α(u⋆))δ(v) − (−1)̂uŵ(α(v) − α(v⋆))δ(u)}

+ µ{(α(u) − α(u⋆))δ(w) − (−1)̂uŵ(α(w) − α(w⋆))δ(u)}
=λ[u, v]⋆,δ + µ[u,w]⋆,δ.

Antisymmetry is a result of direct computation

[u, v]⋆,δ =(α(u) − α(u⋆))δ(v) − (−1)̂ûv(α(v) − α(v)⋆)δ(u)

= − (−1)̂ûv{(α(v) − α(v⋆))δ(u) − (−1)̂ûv(α(u) − α(u)⋆)δ(v)}

= − (−1)̂ûv[v, u]⋆,δ.

In order to complete the proof, we still need to show that bracket defined by (2.8) satisfies the Hom-
Jacobi identity. To achieve that, first observe that due to the commutativity of g we can write bracket
[·, ·]⋆,δ as

[u, v]⋆,δ = α(u)δ(v) − α(u⋆)δ(v) − δ(u)α(v) + δ(u)α(v⋆).

Furthermore, if δ is even and (δ(u))⋆ = −δ(u⋆), then we can write

[α(u), α(v)δ(w)]⋆,δ =α2(u)δ(α(v))αδ(w) + α2(u)α2(v)δ2(w) − α2(u⋆)δ(α(v))αδ(w)
− α2(u⋆)α2(v)δ2(w) − δα(u)α2(v)αδ(w) − δα(u)α2(v⋆)αδ(w⋆).

[α(u), δ(v)α(w)]⋆,δ =α2(u)δ2(v)α2(w) + α2(u)αδ(v)δα(w) − α2(u⋆)δ2(v)α2(w)
− α2(u⋆)αδ(v)δα(w) − δα(u)αδ(v)α2(w) − δα(u)αδ(v⋆)α2(w⋆).
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Using the results above we can now calculate [α(u), [v,w]⋆,δ]⋆,δ :

[α(u), [v,w]⋆,δ]⋆,δ =[α(u), α(v)δ(w)]⋆,δ − [α(u), α(v⋆)δ(w)]⋆,δ
− [α(u), δ(v)α(w)]⋆,δ + [α(u), δ(v)α(w⋆)]⋆,δ
=α2(u)δ(α(v))αδ(w) + α2(u)α2(v)δ2(w) − α2(u⋆)δ(α(v))αδ(w)
− α2(u⋆)α2(v)δ2(w) − δα(u)α2(v)αδ(w) − δα(u)α2(v⋆)αδ(w⋆)
− α2(u)δ(α(v⋆))αδ(w) − α2(u)α2(v⋆)δ2(w) + α2(u⋆)δ(α(v⋆))αδ(w)
+ α2(u⋆)α2(v⋆)δ2(w) + δα(u)α2(v⋆)αδ(w) + δα(u)α2(v)αδ(w⋆)
− α2(u)δ2(v)α2(w) − α2(u)αδ(v)δα(w) + α2(u⋆)δ2(v)α2(w)
+ α2(u⋆)αδ(v)δα(w) + δα(u)αδ(v)α2(w) + δα(u)αδ(v⋆)α2(w⋆)
+ α2(u)δ2(v)α2(w⋆) + α2(u)αδ(v)δα(w⋆) − α2(u⋆)δ2(v)α2(w⋆)
− α2(u⋆)αδ(v)δα(w⋆) − δα(u)αδ(v)α2(w⋆) − δα(u)αδ(v⋆)α2(w).

(2.9)

As a next step we can apply (2.9) also to [α(v), [w, u]⋆,δ]⋆,δ and [α(w), [u, v]⋆,δ]⋆,δ, yielding all ele-
ments on the left hand side of Jacobi identity.

[α(u), [v,w]⋆,δ]⋆,δ + (−1)̂uv̂w[α(v), [w, u]⋆,δ]⋆,δ + (−1)ŵûv[α(w), [u, v]⋆,δ]⋆,δ =

+α2(u)δ(α(v))αδ(w) + α2(u)α2(v)δ2(w)
−α2(u⋆)δ(α(v))αδ(w) − α2(u⋆)α2(v)δ2(w)
−δα(u)α2(v)αδ(w) − δα(u)α2(v⋆)αδ(w⋆)
−α2(u)δ(α(v⋆))αδ(w) − α2(u)α2(v⋆)δ2(w)
+α2(u⋆)δ(α(v⋆))αδ(w) + α2(u⋆)α2(v⋆)δ2(w)
+δα(u)α2(v⋆)αδ(w) + δα(u)α2(v)αδ(w⋆)
−α2(u)δ2(v)α2(w) − α2(u)αδ(v)δα(w)
+α2(u⋆)δ2(v)α2(w) + α2(u⋆)αδ(v)δα(w)
+δα(u)αδ(v)α2(w) + δα(u)αδ(v⋆)α2(w⋆)
+α2(u)δ2(v)α2(w⋆) + α2(u)αδ(v)δα(w⋆)
−α2(u⋆)δ2(v)α2(w⋆) − α2(u⋆)αδ(v)δα(w⋆)
−δα(u)αδ(v)α2(w⋆) − δα(u)αδ(v⋆)α2(w)



[α(u), [v,w]⋆,δ]⋆,δ

+αδ(u)α2(v)δ(α(w)) + δ2(u)α2(v)α2(w)
−αδ(u)α2(v⋆)δ(α(w)) − δ2(u)α2(v⋆)α2(w)
−αδ(u)δα(v)α2(w) − αδ(u⋆)δα(v)α2(w⋆)
−αδ(u)α2(v)δ(α(w⋆)) − δ2(u)α2(v)α2(w⋆)
+αδ(u)α2(v⋆)δ(α(w⋆)) + δ2(u)α2(v⋆)α2(w⋆)
+αδ(u)δα(v)α2(w⋆) + αδ(u⋆)δα(v)α2(w)
−α2(u)α2(v)δ2(w) − δα(u)α2(v)αδ(w)
+α2(u)α2(v⋆)δ2(w) + δα(u)α2(v⋆)αδ(w)
+α2(u)δα(v)αδ(w) + α2(u⋆)δα(v)αδ(w⋆)
+α2(u⋆)α2(v)δ2(w) + δα(u⋆)α2(v)αδ(w)
−α2(u⋆)α2(v⋆)δ2(w) − δα(u⋆)α2(v⋆)αδ(w)
−α2(u⋆)δα(v)αδ(w) − α2(u)δα(v)αδ(w⋆)



(−1)̂uv̂w[α(v), [w, u]⋆,δ]⋆,δ
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+δ(α(u))αδ(v)α2(w) + α2(u)δ2(v)α2(w)
−δα(u)αδ(v)α2(w⋆) − α2(u)δ2(v)α2(w⋆)
−α2(u)αδ(v)δα(w) − α2(u⋆)αδ(v⋆)δα(w)
−δ(α(u⋆))αδ(v)α2(w) − α2(u⋆)δ2(v)α2(w)
+δ(α(u⋆))αδ(v)α2(w⋆) + α2(u⋆)δ2(v)α2(w⋆)
+α2(u⋆)αδ(v)δα(w) + α2(u)αδ(v⋆)δα(w)
−δ2(u)α2(v)α2(w) − αδ(u)δα(v)α2(w)+
δ2(u)α2(v)α2(w⋆) + αδ(u)δα(v)α2(w⋆)
+αδ(u)α2(v)δα(w) + αδ(u⋆)α2(v⋆)δα(w)
+δ2(u)α2(v⋆)α2(w) + αδ(u)δα(v⋆)α2(w)
−δ2(u)α2(v⋆)α2(w⋆) − αδ(u)δα(v⋆)α2(w⋆)
−αδ(u)α2(v⋆)δα(w) − αδ(u⋆)α2(v)δα(w)



(−1)ŵûv[α(w), [u, v]⋆,δ]⋆,δ

=0.
This means that Hom-Jacobi identity indeed holds, and [·, ·]⋆,δ is a graded Hom-Lie bracket. □

What the proposition tells us is that graded Hom-Lie brackets (2.6), (2.7) naturally define Hom-Lie
superalgebra structures (g, [u, v]δ, α) and (g, [u, v]⋆, β) on commutative Hom-superalgebra g. In case
we further assume that the derivation δ is even, and together with involution it satisfies the condition
(δ(u))⋆ = −δ(u⋆), then graded Hom-Lie bracket (2.8) defines another Hom-Lie superalgebra structure
(g, [u, v]⋆,δ, γ) on g.

Next let us consider the generalized supertraces on those Hom-Lie superalgebras:

ξ : (g, [u, v]⋆)→ K, (2.10)
η : (g, [u, v]δ)→ K, (2.11)
χ : (g, [u, v]⋆,δ)→ K. (2.12)

With the help of those generalized supertraces we can induce ternary Hom-Lie superalgebras out of
the binary Lie superalgebras, by following the construction described in [13].

Theorem 2.5. Let (g, µ, α) in which g = g0̄⊕g1̄ be a commutative Hom-superalgebra, and let (·)⋆ : g→
g and δ : g → g be involution and derivation of g, respectively. If (2.10) and (2.11) are supertraces,
then graded ternary brackets [·, ·, ·]⋆ : g⊕3 → g and [·, ·, ·]δ : g⊕3 → g, defined by

[u, v,w]⋆ = ξ(u)[v,w]⋆ + (−1)̂uv̂wξ(v)[w, u]⋆ + (−1)ŵûvξ(w)[u, v]⋆, (2.13)
[u, v,w]δ = η(u)[v,w]δ + (−1)̂uv̂wη(v)[w, u]δ + (−1)ŵûvη(w)[u, v]δ (2.14)

are graded ternary Hom-Lie brackets. If δ is even, (δ(u))⋆ = −δ(u⋆) and (2.12) is a supertrace, then
graded Hom-ternary bracket [·, ·, ·]⋆ : g⊕3 → g, defined as

[u, v,w]⋆,δ = χ(u)[v,w]⋆,δ + (−1)̂uv̂wχ(v)[w, u]⋆,δ + (−1)ŵûvχ(w)[u, v]⋆,δ (2.15)

is ternary Hom-Lie bracket.

Consequences of the theorem are that each and every one of (g, [·, ·, ·]δ, α), (g, [·, ·, ·]⋆, β) and
(g, [·, ·, ·]⋆,δ, γ) are all ternary Hom-Lie superalgebras. Of course granted that for the latter the deriva-
tion and involution satisfy the required condition.
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3. Induced representations of Induced 3-Hom-Lie superalgebras

In this section we consider 3-Hom-Lie superalgebras. It was shown [7] that the method of con-
structing an induced 3-Hom-Lie algebras with the help of a generalized trace can be extended to the
case of Hom-Lie superalgebras by means of a concept of a generalized supertrace. Let (g, [·, ·], α) in
which g = g0̄ ⊕ g1̄ be a Hom-Lie superalgebra. Then by generalized supertrace we mean a linear func-
tion S τ : g → C such that it vanishes on graded Hom-Lie brachet of g, i.e., S τ([x, y]) = 0, and it also
vanishes when restricted to g1̄, i.e., S τ|g1̄ ≡ 0.

Let (η, [·, ·, ·], α) in which η = η0̄⊕η1̄ be a 3-Hom-Lie superalgebra, (V, [·, ·], α) in which V = V0̄⊕V1̄

be a super vector space and End(V) be the super vector space of endomorphisms of V. The graded
commutator of two endomorphisms A, B ∈ End(V) of a super vector space V, defined by formula
[A, B] = AB − (−1)ÂB̂BA, where A, B are homogeneous endomorphisms and Â, B̂ are their gradings,
determines the structure of the Lie superalgebra on End(V) and we denote this Hom-Lie superalgebra
by sgl(V). There is a canonical structure of a super vector space on the tensor product η ⊗ η, which is
defined as follows:

η ⊗ η = (η ⊗ η)0̄ ⊕ (η ⊗ η)1̄,

where (η ⊗ η)0̄ = (η0̄ ⊗ η0̄) ⊕ (η1̄ ⊗ η1̄) and (η ⊗ η)1̄ = (η0̄ ⊗ η1̄) ⊕ (η1̄ ⊗ η0̄). In [5], the supertrace of an
endomorphism a : V → V be defined by

str(a) =
{

Tr(a|V0) − Tr(a|V1), if a is even;
0, if a is odd.

Definition 3.1. A representation of a multiplicative 3-Hom-Lie superalgebra (g, [·, ·, ·], α) on a vector
space V = V0̄⊕V1̄ with respect to a linear autmorphism β(β ∈ GL(V)) is a even linear map ρ : g× g→
sgl(V) such that for all x, y, z, u, v ∈ g. We have
(1) ρ(x, y) = −(−1) x̂̂yρ(y, x);
(2) ρ(α(x), α(y)) ◦ β = β ◦ ρ(x, y);
(3) ρ(α(x), α(y)) ◦ ρ(u, v) − (−1)x̂yûvρ(α(u), α(v)) ◦ ρ(x, y) = ρ([x, y, u], α(v)) ◦ β + (−1)̂ux̂y

ρ(α(u), [x, y, v]) ◦ β;
(4) ρ([x, y, z], α(u)) ◦ β = ρ(α(x), α(y)) ◦ ρ(z, u) + (−1)x̂ŷzρ(α(y), α(z)) ◦ ρ(x, u) + (−1)̂zx̂y

ρ(α(z), α(x)) ◦ ρ(y, u).We will this representation of 3-Hom-Lie superalgebra g in a super vector space
V by (g, ρ,V, β).

An evident example of a representation of 3-Hom-Lie superalgebra (g, [·, ·, ·], α) is an adjoint
representation. Fix two elements x, y of a 3-Hom-Lie superalgebra g and for any u ∈ g, define
ad(x,y)u = [x, y, u]. Thus ad : g ⊗ g → End(g), and (g, ad, g, α) is a representation of multiplicative
3-Hom-Lie superalgebra (g, [·, ·, ·], α) on g with respect to α. In fact, conditions (1) and (2) of Def-
inition 3.1 immediately follow from the properties of graded ternary Lie bracket. In order to prove
condition (3) of Definition 3.1, we calculate the graded commutator of two linear operators ad(x,y) and
ad(u,v) by means of graded Filippov-Jacobi identity. Then we have

(ad(α(x),α(y))ad(u,v) − (−1)x̂yûvad(α(u),α(v))ad(x,y))z

= [α(x), α(y)), [u, v, z]] − (−1)x̂yûv[α(u), α(v), [x, y, z]]

= [[x, y, u], α(v), α(z)] + (−1)̂ux̂y[α(u), [x, y, v], α(z)]
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+ (−1)ûvx̂y[α(u), α(v), [x, y, z]] − (−1)x̂yûv[α(u), α(v), [x, y, z]]

= [[x, y, u], α(v), α(z)] + (−1)̂ux̂y[α(u), [x, y, v], α(z)]

= ad([x,y,u],α(v))α(z) + (−1)̂ux̂yad(α(u),[x,y,v])α(z).

The last property of Definition 3.1 can be checked as follows:

ad([x,y,z],α(u))α(v) = [[x, y, z], α(u), α(v)] = (−1)ûvx̂yz[α(u), α(v), [x, y, z]]. (3.1)

Now making use of graded Filippov-Jacobi identity, we obtain

[α(u), α(v), [x, y, z]] =[[u, v, x], α(y), α(z)] + (−1)x̂ûv[α(x), [u, v, y], α(z)]

+ (−1)ûvx̂y[α(x), α(y), [u, v, z]].

Now we should substitute this expression into the right hand side of formula (3.1), but first we will
calculate the sign of each term in resulting expression. In the term [α(x), α(y), [u, v, z]], we will do the
following permutation of the arguments [α(x), α(y), [z, u, v]],which will entail multiplicaion by (−1)̂zûv.

Therefore, the coefficient of this term will be (−1) in power

ûvx̂yz + ûvx̂y + ẑûv = ûvx̂yz + ûvx̂yz = 0.

Analogously, we permute the arguments of the double bracket [[u, v, x], α(y), α(z)] as follows
[α(y), α(z), [x, u, v]] and this entails the appearance of the factor (−1) in power ŷzûvx + x̂ûv. All to-
gether it gives the following sign

ûvx̂yz + ŷzûvx + x̂ûv = ûvŷz + ŷzûvx = ŷzx̂.

Similarly, we permute the arguments of the double bracket [α(x), [u, v, y], α(z)] to cast it into the
form [α(z), α(x), [y, u, v]], then calculate the sign, which turns out be ẑx̂y. Hence, we get

ad([x,y,z],α(u)) ◦ α =ad(α(x),α(y))ad(z,u) + (−1)x̂ŷzad(α(y),α(z))ad(x,u)

+ (−1)̂zx̂yad(α(z),α(x))ad(y,u).

Now we assume that η = η0̄ ⊕ η1̄ is a 3-Hom-Lie superalgebra, V = V0̄ ⊕ V1̄ is a super vector
space and ρ : η ⊗ η → End(V) is a graded skew-symmetric mapping. Consider the direct sum η ⊕ V.
We equip it with a structure of super vector space if we associate grade 0̄ to elements x + v(elements
of even grade), where x ∈ η0̄, v ∈ V0̄, and grade 1̄ to elements x + v(elements of odd grade), where
x ∈ η1̄, v ∈ V1̄. Then η ⊕ V = (η ⊕ V)0̄ ⊕ (η ⊕ V)1̄, where (η ⊕ V)0̄ = η0̄ ⊕ V0̄ and (η ⊕ V)1̄ = η1̄ ⊕ V1̄.

In analogy with representations of 3-Lie algebra [8], we define the ternary bracket on the super vector
space η ⊕ V as follows:

[x1 + v1, x2 + v2, x3 + v3] =[x1, x2, x3] + ρ(x1, x2)v3 + (−1)x̂1 x̂2 x3ρ(x2, x3)v1

+ (−1)x̂3 x̂1 x2ρ(x3, x1)v2.
(3.2)

It is easy to show that this ternary bracket is a graded ternary bracket. Indeed, if we assume that
all arguments of this ternary bracket are homogenous elements η ⊕ V, then the grading of xi + vi is
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equal to the grading of xi(or vi). Thus it is sufficient to show that the grading of ternary bracket (3.2)
is x̂1 + x̂2 + x̂3. But this is true, because the grading of the first term [x1, x2, x3] is x̂1 + x̂2 + x̂3 and the
grading of the each term of the form ρ(xi, x j)vk, where i, j, k is a cyclic permutation of 1, 2, 3, is the
same integer, because

x̂i + x̂ j + v̂k = x̂i + x̂ j + x̂k = x̂1 + x̂2 + x̂3.

The fact that this ternary bracket has the correct graded symmetries is checked on the permutation
of the first two arguments x1 + v1, x2 + v2. Making use of the graded symmetry properties of a graded
ternary Hom-Lie bracket in η and the property (2) of Definition 3.1, we get

[x2 + v2, x1 + v1, x3 + v3] =[x2, x1, x3] + ρ(x2, x1)v3 + (−1)x̂2 x̂1 x3ρ(x1, x3)v2

+ (−1)x̂3 x̂1 x2ρ(x3, x2)v1

= − (−1)x̂1 x̂2[x1, x2, x3] − (−1)x̂1 x̂2ρ(x1, x2)v3

− (−1)x̂1 x̂3ρ(x2, x3)v1 − (−1)x̂1 x̂2+x̂3 x̂1 x2ρ(x3, x1)v2

= − (−1)x̂1 x̂2[x1 + v1, x2 + v2, x3 + v3].

We will need the following theorem or the induced representation, which will be discussed later in
this paper.

Theorem 3.2. Let η = η0̄ ⊕ η1̄ be a 3-Hom-Lie superalgebra, V = V0̄ ⊕ V1̄ be a super vector space,
ρ : η × η → gl(V) be a graded skew-symmetric bilinear mapping. Then (η, ρ,V) is a representation
of 3-Hom-Lie superalgebras η in a super vector space V if and only if the direct sum of super vector
space η ⊕ V equipped with the graded ternary bracket (3.2) is a 3-Hom-Lie superalgebra, or, in the
words, the graded ternary bracket (3.2) satisfies the graded Filippov-Jacobi identity.

Proof. First of all, we prove that if (η, ρ,V) is a representation of a 3-Hom-Lie superalgebra η,
then the graded ternary bracket (3.2) defines the structure of 3-Hom-Lie superalgebra on the direct sum
of super vector spaces η ⊕ V. Since we have already proved that the ternary bracket (3.2) is a graded
ternary bracket, the only thing we need to prove is that this bracket satisfies the graded Filippov-Jacobi
identity. To this end, we introduce the following notations:

Y = y + v,Z = z + w, Xi = xi + ui,

where i = 1, 2, 3, y, z, xi ∈ η and v,w, ui ∈ V. We assume that all elements Y,Z, Xi are homogeneous
with respect to super vector space structure of η ⊕ V. Evidently the grading of Y is equal to ŷ, grading
of Z is ẑ and the grading of Xi is x̂i. Now our aim is to prove the graded Filippov-Jacobi identity for
graded ternary bracket (3.2), that is, we need to show that the following expression

[α(Y), α(Z), [X1, X2, X3]] − [[Y,Z, X1], α(X2), α(X3)]]

− (−1)x̂1ŷz[α(X1), [Y,Z, X2], α(X3)] − (−1)x̂1 x2ŷz[α(X1), α(X2), [Y,Z, X3]]
(3.3)

is equal to zero. If we expand each double ternary bracket in this expression by means of (3.2), then
the η-component of resulting expression is

[α(y), α(z), [x1, x2, x3]] − [[y, z, x1], α(x2), α(x3)]]

− (−1)x̂1ŷz[α(x1), [y, z, x2], α(x3)] − (−1)x̂1 x2ŷz[α(x1), α(x2), [y, z, x3]]
(3.4)
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and this is zero by virtue of the graded Filippov-Jacobi identity in a 3-Lie superalgebra η. The V-
component of the resulting expression can be written in the form

Ψ1(u1) + Ψ2(u2) + Ψ3(u3) + Ψv(v) + Ψw(w), (3.5)

where Ψ1,Ψ2,Ψ3,Ψv,Ψw ∈ gl(V) and

Ψ1 =(−1)x̂1 x̂2 x3([ρ(y, z), ρ(x2, x3)] − ρ([y, z, x2], x3) − (−1)x̂2ŷzρ(x2, [y, z, x3])),

Ψ2 =(−1)x̂3 x̂1 x2([ρ(y, z), ρ(x3, x1)] − ρ([y, z, x3], x1) − (−1)x̂3ŷzρ(x3, [y, z, x1])),

Ψ3 =[ρ(y, z), ρ(x1, x2)] − ρ([y, z, x1], x2) − (−1)x̂1ŷzρ(x1, [y, z, x2]),

Ψv =(−1)α(ρ([x1, x2, x3], z) − ρ(x1, x2)ρ(x3, z) − (−1)x̂1 x̂2 x3ρ(x2, x3)ρ(x1, z)

− (−1)x̂3 x̂1 x2ρ(x3, x1)ρ(x2, z)),

Ψw =(−1)β(ρ([x1, x2, x3], y) − ρ(x1, x2)ρ(x3, y) − (−1)x̂1 x̂2 x3ρ(x2, x3)ρ(x1, y)

− (−1)x̂3 x̂1 x2ρ(x3, x1)ρ(x2, y)),

where α = ŷz ̂[x1, x2, x3]+ ŷ̂z+1, β = ŷz ̂[x1, x2, x3]. ExpressionsΨ1,Ψ2,Ψ3 vanish by virtue of condition
(3) of Definition 3.1 and expressions Ψv,Ψw by virtue of condition (4). Hence, the V-component of
expression (3.3) also vanishes and this means that the graded ternary bracket (3.2) is a graded ternary
Lie bracket, i.e. it satisfies the graded Filippov-Jacobi identity.

Now we prove that if the graded ternary bracket (3.2) satisfies the graded Filippov-Jacobi identity,
then (g, ρ,V, α) is a representation of 3-Hom-Lie superalgebra η. By other words, we assume that the
expression (3.3) vanishes. Vanishing of the η-component of this expression gives us nothing, because
it reduces to the graded Filippov-Jacobi identity in η, which already holds according to our assumption
that η is a 3-Hom-Lie superalgebra. From the equality to zero of the V-component, it immediately
follows that the expression (3.5), where u1, u2, u3, v,w are arbitrary vectors of V, is equal to zero. Taking
u2 = u3 = v = w = 0, we get Ψ1(u1) = 0 for any u1, which means that Ψ1 = 0. Hence, condition (3) of
Definition 3.1 is satisfied. Analogously we can prove that condition (4) is also satisfied and (g, ρ,V, α)
is a representation of 3-Hom-Lie superalgebra. □

Recall that if a Hom-Lie algebra is equipped with a generalized trace, then one can construct the
induced ternary Hom-Lie algebra (Section 3). This method of constructing the induced ternary Lie
algebras can be extended by means of a generalized supertrace to Hom-Lie superalgebras, as was
shown in [13]. Let g = g0̄ ⊕ g1̄ be a Hom-Lie superalgebra and S τ be a generalized supertrace of this
Hom-Lie superalgebra. It can be proved then [12] that the graded ternary bracket

[x, y, z] = Sτ(x)[y, z] + (−1)x̂ŷzSτ(y)[z, x] + (−1)̂zx̂ySτ(z)[x, y], x, y, z ∈ g. (3.6)

determines the 3-Lie superalgebra on the super vector space of a Lie superalgebra g. We will call
this 3-Lie superalgebra constructed by means of a generalized supertrace induced 3-Lie superalgebra.
Particularly, if we have a representation π : g → sgl(V) of a Lie superalgebra g, then we construct the
induced 3-Lie superalgebra (3.6) by simply using the supertrace of matrices in sgl(V), i.e., we define
the ternary bracket as follows:

[x, y, z] = str(π(x))[y, z] + (−1)x̂ŷzstr(π(y))[z, x] + (−1)̂zx̂ystr(π(z))[x, y], x, y, z ∈ g. (3.7)
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We will denote the induced 3-Lie superalgebra with graded ternary bracket (3.7) by tgπ.We can also
extend the method of constructing induced representations of induced 3-Hom-Lie algebras to induced
3-Hom-Lie superalgebras.

Lemma 3.3. Let (g, [·, ·], α) be a Hom-Lie superalgebra, π : g → sgl(V) be a representation of this
Hom-Lie superalgebra. If we equip the super vector space g ⊕ V with the graded skew-symmetric
bracket

[[x + v, y + w]] = [x, y] + π(x).w − (−1) x̂̂yπ(y).v, (3.8)

where x, y ∈ g, v,w ∈ V and [x, y] is a Hom-Lie bracket in g, then the direct sum of two super vector
spaces g ⊕ V becomes a Hom-Lie superalgebra, i.e. the graded skew-symmetric bracket (3.8) satisfies
the graded Jacobi-identity.

Proof. The proof of this lemma is simply to verify the graded Jacobi-identity for the bracket
(3.8). In order to simplify notations, we will denote µ1 = x̂1 x̂2x3, µ2 = x̂2 x̂1x3, µ3 = x̂3 x̂1x2 and
v = x̂1 x̂2 + x̂2 x̂3 + x̂1 x̂3. Then the first term of the graded Jacobi-identity can be expanded as follows:

[[[[x1 + v1, x2 + v2]],α(x3) + α(v3)]] = [[x1, x2], α(v3)] + π([x1, x2])α(v3)
− (−1)µ3π(α(x3))α(x1).v2 + (−1)vπ(α(x3))α(x2).v1.

The second term of the identity gives

(−1)µ1[[[[x2 + v2, x3 + v3]],α(x1) + α(v1)]] = (−1)µ1[[x2, x3], α(x1)] + (−1)µ1π([x2, x3])α(v1)

− π(α(x1))π(x2).v3 + (−1)x̂2 x̂3π(α(x1))π(x3).v2.

The third one yields the expression

(−1)µ3[[[[x3 + v3, x1 + v1]],α(x2) + α(v2)]] = (−1)µ3[[x3, x1], α(x2)] + (−1)µ3π([x3, x1])α(v2)

− (−1)µ1π(α(x2))π(x3).v1 + (−1)x̂1 x̂2π(α(x2))π(x1).v3.

If we now take the sum of the left hand sides of these relations, we get the left hand side of the
graded Jacobi identity for bracket (3.8). The sum of the right-hand sides of these relations gives zero.
Indeed, terms underlined by a solid line add up to zero, because the graded Jacobi identity holds in the
Hom-Lie superalgebra g. The terms underlined with dashed lines or not underlined at all also add up
to zero due to the fact that the terms in each group simply cancel each other. □

We will prove the following theorem by means of Theorem 3.2 and Lemma 3.3.

Theorem 3.4. Let (g, [·, ·], α) be a Hom-Lie superalgebra and π : g→ sgl(V) be a representation of g.
If

Tr(π(α(v))) = Tr(π(v))

for arbitrary v ∈ g, then mapping ρ : g × g→ sgl(V), defined by the formula

ρ(x, y) = str(π(x))π(y) − (−1) x̂̂ystr(π(y))π(x), (3.9)

where x, y ∈ g, is a representation of induced 3-Hom-Lie superalgebra tgπ.
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Proof. According to Theorem 3.2, if we show that the graded ternary bracket (3.2), where the
first term at the right hand side of (3.2) is the graded ternary bracket (3.7) and ρ is (3.9), determines
3-Hom-Lie superalgebra on the direct sum g⊕V, then we prove that (3.9) is a representation of induced
3-Hom-Lie superalgebra tgπ. Substituting (3.7) and (3.9) into (3.2), we find

[x1 + v1, x2 + v2, x3 + v3] = strπ(x1)[[x2 + v2, x3 + v3]]

+ (−1)x̂1 x̂2 x3strπ(x2)[[x3 + v3, x1 + v1]] + (−1)x̂3 x̂2 x1strπ(x3)[[x1 + v1, x2 + v2]],
(3.10)

According to Lemma 3.3, the bracket [[x,y]] determines the structure of Hom-Lie superalgebra on
g ⊕ V. Thus, the graded ternary bracket (3.10) has the form of a graded ternary bracket for an induced
3-Hom-Lie superalgebra constructed with the help of a graded Hom-Lie bracket and the super trace.
Hence, the graded ternary bracket (3.10) determines the induced 3-Hom-Lie superalgebra on g⊕V and
therefore, (3.9) is a representation of 3-Hom-Lie superalgebra. □
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