Research article Special Issues

Existence and uniqueness for a coupled system of fractional equations involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions

  • Received: 20 December 2022 Revised: 09 February 2023 Accepted: 12 February 2023 Published: 24 February 2023
  • MSC : 26A33, 34A08, 34A12, 47H10

  • Recently, coupled systems of fractional differential equations play a central role in the modelling of many systems in e.g., financial economics, ecology, and many more. This study investigates the existence and uniqueness of solutions for a nonlinear coupled system of fractional differential equations involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions. The main tools are known fixed point theorems, namely, Leray-Schauder alternative, Banach fixed point theorem, and the Krasnoselskii fixed point theorem. The new system, which can be considered as a generalized version of many previous fascinating systems, is where the article's novelty lies. Examples are presented to illustrate the results. In this way, we generalize several earlier results.

    Citation: Ymnah Alruwaily, Lamya Almaghamsi, Kulandhaivel Karthikeyan, El-sayed El-hady. Existence and uniqueness for a coupled system of fractional equations involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions[J]. AIMS Mathematics, 2023, 8(5): 10067-10094. doi: 10.3934/math.2023510

    Related Papers:

  • Recently, coupled systems of fractional differential equations play a central role in the modelling of many systems in e.g., financial economics, ecology, and many more. This study investigates the existence and uniqueness of solutions for a nonlinear coupled system of fractional differential equations involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions. The main tools are known fixed point theorems, namely, Leray-Schauder alternative, Banach fixed point theorem, and the Krasnoselskii fixed point theorem. The new system, which can be considered as a generalized version of many previous fascinating systems, is where the article's novelty lies. Examples are presented to illustrate the results. In this way, we generalize several earlier results.



    加载中


    [1] Y. Ding, Z. Wang, H. Ye, Optimal control of a fractional-order HIV-immune system with memory, IEEE T. Contr. Syst. T., 20 (2012), 763–769. https://doi.org/10.1109/TCST.2011.2153203 doi: 10.1109/TCST.2011.2153203
    [2] A. Carvalho, C. M. A. Pinto, A delay fractional order model for the co-infection of malaria and HIV/AIDS, Int. J. Dynam. Control, 5 (2017), 168–186. https://doi.org/10.1007/s40435-016-0224-3 doi: 10.1007/s40435-016-0224-3
    [3] M. Javidi, B. Ahmad, Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system, Ecol. Model., 318 (2015), 8–18. https://doi.org/10.1016/j.ecolmodel.2015.06.016 doi: 10.1016/j.ecolmodel.2015.06.016
    [4] V. V. Tarasova, V. E. Tarasov, Logistic map with memory from economic model, Chaos Soliton. Fract., 95 (2017), 84–91. https://doi.org/10.1016/j.chaos.2016.12.012 doi: 10.1016/j.chaos.2016.12.012
    [5] D. Wang, X. L. Ding, B. Ahmad, Existence and stability results for multi-time scale stochastic fractional neural networks, Adv. Differ. Equ., 2019 (2019), 441. https://doi.org/10.1186/s13662-019-2368-x doi: 10.1186/s13662-019-2368-x
    [6] M. S. Ali, G. Narayanan, V. Shekher, A. Alsaedi, B. Ahmad, Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays, Commun. Nonlinear Sci., 83 (2020), 105088. https://doi.org/10.1016/j.cnsns.2019.105088 doi: 10.1016/j.cnsns.2019.105088
    [7] F. Zhang, G. Chen, C. Li, J. Kurths, Chaos synchronization in fractional differential systems, Philos. T. R. Soc. A, 371 (2013), 20120155. https://doi.org/10.1098/rsta.2012.0155 doi: 10.1098/rsta.2012.0155
    [8] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [9] K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Springer Science & Business Media, 2010.
    [10] A. V. Bitsadze, A. A. Samarskii, On some simple generalizations of linear elliptic boundary problems, Sov. Math. Dokl., 10 (1969), 398–400.
    [11] H. Gunerhan, H. Rezazadeh, W. Adel, M. Hatami, K. M. Sagayam, H. Emadifar, et al., Analytical approximate solution of fractional order smoking epidemic model, Adv. Mech. Eng., 14 (2022), 9. https://doi.org/10.1177/16878132221123888 doi: 10.1177/16878132221123888
    [12] P. Junswang, Z. Sabir, M. A. Z. Raja, W. Adel, T. Botmart, Intelligent networks for chaotic fractional-order nonlinear financial model, CMC-Comput. Mater. Con., 72 (2022), 5015–5030. https://doi.org/10.32604/cmc.2022.027523 doi: 10.32604/cmc.2022.027523
    [13] A. El-Mesady, A. Elsonbaty, W. Adel, On nonlinear dynamics of a fractional order monkeypox virus model, Chaos Soliton. Fract., 164 (2022), 112716. https://doi.org/10.1016/j.chaos.2022.112716 doi: 10.1016/j.chaos.2022.112716
    [14] M. Izadi, S. Yuzbası, W. Adel, Accurate and efficient matrix techniques for solving the fractional Lotka-Volterra population model, Physica A, 600 (2022), 127558. https://doi.org/10.1016/j.physa.2022.127558 doi: 10.1016/j.physa.2022.127558
    [15] B. Ahmad, S. K. Ntouyas, Some fractional-order one-dimensional semi-linear problems under nonlocal integral boundary conditions, RACSAM, 110 (2016), 159–172. https://doi.org/10.1007/s13398-015-0228-4 doi: 10.1007/s13398-015-0228-4
    [16] M. Subramanian, J. Alzabut, M. I. Abbas, C. Thaiprayoon, W. Sudsutad, Existence of solutions for coupled higher-order fractional integro-differential equations with nonlocal integral and multi-point boundary conditions depending on lower-order fractional derivatives and integrals, Mathematics, 10 (2022), 1823. https://doi.org/10.3390/math10111823 doi: 10.3390/math10111823
    [17] H. Fazli, J. J. Nieto, F. Bahrami, On the existence and uniqueness results for nonlinear sequential fractional differential equations, Appl. Comput. Math., 17 (2018), 36–47.
    [18] X. Su, S. Zhang, L. Zhang, Periodic boundary value problem involving sequential fractional derivatives in Banach space, AIMS Math., 5 (2020), 7510–7530. https://doi.org/10.3934/math.2020481 doi: 10.3934/math.2020481
    [19] J. R. L. Webb, G. Infante, Positive solutions of nonlocal boundary value problems involving integral conditions, Nonlinear Differ. Equ. Appl., 15 (2008), 45–67. https://doi.org/10.1007/s00030-007-4067-7 doi: 10.1007/s00030-007-4067-7
    [20] E. Ok, Probability theory with economic applications, SUNY-Oswego, Department of Economics, 2014.
    [21] D. Anevski, Riemann-stieltjes integrals, Sweden: Mathematical Sciences, 2012.
    [22] Z. Dahmani, M. A. Abdellaoui, M. Houas, Coupled systems of fractional integro-differential equations involving several functions, Theor. Appl. Math. Comput. Sci., 5 (2015), 53–61.
    [23] R. Arul, P. Karthikeyan, K. Karthikeyan, P. Geetha, Y. Alruwaily, L. Almaghamsi, et al., On nonlinear $\Psi$-Caputo fractional integro differential equations involving non-instantaneous conditions, Symmetry, 15 (2023), 5. https://doi.org/10.3390/sym15010005 doi: 10.3390/sym15010005
    [24] R. Arul, P. Karthikeyan, K. Karthikeyan, P. Geetha, Y. Alruwaily, L. Almaghamsi, et al., On $\Psi$-Hilfer fractional integro-diffrential equations with non-instantaneous impulsive conditions, Fractal Fract., 6 (2022), 732. https://doi.org/10.3390/fractalfract6120732 doi: 10.3390/fractalfract6120732
    [25] R. Arul, P. Karthikeyan, K. Karthikeyan, Y. Alruwaily, L. Almaghamsi, E. El-hady, Sequential Caputo-Hadamard fractional differrential equations with boundary conditions in Banach spaces, Fractal Fract., 6 (2022), 730. https://doi.org/10.3390/fractalfract6120730 doi: 10.3390/fractalfract6120730
    [26] Y. Zhou, Y. Zhang, Noether symmetries for fractional generalized Birkhoffian systems in terms of classical and combined Caputo derivatives, Acta Mech., 231 (2020), 3017–3029. https://doi.org/10.1007/s00707-020-02690-y doi: 10.1007/s00707-020-02690-y
    [27] A. Alsaedi, S. Aljoudi, B. Ahmad, Existence of solutions for Riemann-Liouville type coupled systems of fractional integro-differential equations and boundary conditions, Electron. J. Differ. Equ., 2016 (2016), 211.
    [28] B. Ahmad, S. K. Ntouyas, A. Alsaedi, On solvability of a coupled system of fractional differential equations supplemented with a new kind of flux type integral boundary conditions, J. Comput. Anal. Appl., 24 (2018), 1304–1312.
    [29] B. Ahmad, S. K. Ntouyas, A. Alsaedi, Fractional differential equations with integral and ordinary-fractional flux boundary conditions, J. Comput. Anal. Appl., 21 (2016), 52–61.
    [30] B. Ahmad, J. J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl., 58 (2009), 1838–1843. https://doi.org/10.1016/j.camwa.2009.07.091 doi: 10.1016/j.camwa.2009.07.091
    [31] B. Ahmad, R. P. Agarwal, A. Alsaedi, S. K. Ntouyas, Y. Alruwaily, Fractional order coupled systems for mixed fractional derivatives with nonlocal multi-point and Riemann-Stieltjes integral-multi-strip conditions, Dynam. Syst. Appl., 29 (2020), 71–86. https://doi.org/10.46719/dsa20202915 doi: 10.46719/dsa20202915
    [32] D. R. Smart, Fixed point theorems, Cambridge University Press, 1980.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1118) PDF downloads(138) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog