Recently, coupled systems of fractional differential equations play a central role in the modelling of many systems in e.g., financial economics, ecology, and many more. This study investigates the existence and uniqueness of solutions for a nonlinear coupled system of fractional differential equations involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions. The main tools are known fixed point theorems, namely, Leray-Schauder alternative, Banach fixed point theorem, and the Krasnoselskii fixed point theorem. The new system, which can be considered as a generalized version of many previous fascinating systems, is where the article's novelty lies. Examples are presented to illustrate the results. In this way, we generalize several earlier results.
Citation: Ymnah Alruwaily, Lamya Almaghamsi, Kulandhaivel Karthikeyan, El-sayed El-hady. Existence and uniqueness for a coupled system of fractional equations involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions[J]. AIMS Mathematics, 2023, 8(5): 10067-10094. doi: 10.3934/math.2023510
[1] | Bashir Ahmad, Ahmed Alsaedi, Ymnah Alruwaily, Sotiris K. Ntouyas . Nonlinear multi-term fractional differential equations with Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2020, 5(2): 1446-1461. doi: 10.3934/math.2020099 |
[2] | Ahmed Alsaedi, Fawziah M. Alotaibi, Bashir Ahmad . Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions. AIMS Mathematics, 2022, 7(5): 8314-8329. doi: 10.3934/math.2022463 |
[3] | Bashir Ahmad, Ahmed Alsaedi, Areej S. Aljahdali, Sotiris K. Ntouyas . A study of coupled nonlinear generalized fractional differential equations with coupled nonlocal multipoint Riemann-Stieltjes and generalized fractional integral boundary conditions. AIMS Mathematics, 2024, 9(1): 1576-1594. doi: 10.3934/math.2024078 |
[4] | Md. Asaduzzaman, Md. Zulfikar Ali . Existence of positive solution to the boundary value problems for coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2019, 4(3): 880-895. doi: 10.3934/math.2019.3.880 |
[5] | Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi . On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593 |
[6] | M. Manigandan, Subramanian Muthaiah, T. Nandhagopal, R. Vadivel, B. Unyong, N. Gunasekaran . Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order. AIMS Mathematics, 2022, 7(1): 723-755. doi: 10.3934/math.2022045 |
[7] | Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas . On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions. AIMS Mathematics, 2022, 7(7): 12718-12741. doi: 10.3934/math.2022704 |
[8] | Dumitru Baleanu, S. Hemalatha, P. Duraisamy, P. Pandiyan, Subramanian Muthaiah . Existence results for coupled differential equations of non-integer order with Riemann-Liouville, Erdélyi-Kober integral conditions. AIMS Mathematics, 2021, 6(12): 13004-13023. doi: 10.3934/math.2021752 |
[9] | Subramanian Muthaiah, Manigandan Murugesan, Muath Awadalla, Bundit Unyong, Ria H. Egami . Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system. AIMS Mathematics, 2024, 9(6): 16203-16233. doi: 10.3934/math.2024784 |
[10] | Xiaoming Wang, Mehboob Alam, Akbar Zada . On coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives. AIMS Mathematics, 2021, 6(2): 1561-1595. doi: 10.3934/math.2021094 |
Recently, coupled systems of fractional differential equations play a central role in the modelling of many systems in e.g., financial economics, ecology, and many more. This study investigates the existence and uniqueness of solutions for a nonlinear coupled system of fractional differential equations involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions. The main tools are known fixed point theorems, namely, Leray-Schauder alternative, Banach fixed point theorem, and the Krasnoselskii fixed point theorem. The new system, which can be considered as a generalized version of many previous fascinating systems, is where the article's novelty lies. Examples are presented to illustrate the results. In this way, we generalize several earlier results.
Numerous phenomena are mathematically described using fractional order differential and integral operators. The fundamental advantage of these operators is that they are nonlocal. This makes it possible to describe the components and procedures used throughout the phenomenon's history. As a result, fractional-order models are more precise and useful than their equivalents in integer order. Because fractional calculus (FC) techniques are frequently used in a number of real-world applications, numerous scholars established this significant branch of mathematical analysis (see e.g., [1,2,3,4,5,6,7,8,9]).
Recent studies on fractional differential equations (FDEs) with various boundary conditions (BCs) have been carried out by several researchers. Nonlocal nonlinear fractional-order boundary value issues, especially, have received a lot of attention. In the work of Bitsadze and Samarski (see [10]), when nonlocal conditions were first presented, they were used to describe physical occurrences that occurred within a specific domain's bounds. Due to a blood vessel's shifting form throughout the vessel, it is difficult to defend the assumption of a circular cross section in computational fluid dynamics analyses of blood flow problems. To overcome this issue, integral BCs have been introduced. Additionally, ill-posed parabolic backward problems are resolved using integral BCs. The mathematical models of bacterial self-regularization also depend heavily on integral BCs. In mathematical models of bacterial self-regularization, integral BCs are also essential.
In the mathematical modelling of a number of practical issues, coupled systems of FDEs represent the main tools. Examples include fractional dynamics, chaos, financial economics, ecology, and bio-engineering, etc (see e.g., [1,2,3,4,5,6,7,8,9]), also see the recent interesting results in e.g., [11,12,13,14]. The study of fractional differential systems has been a well-liked and significant field of science, supplemented by many types of BCs. The advancement of this topic has been aided by several researchers who have published countless outputs. Modern functional analysis techniques greatly aid in obtaining existence (Exs.) and uniqueness (Unq.) findings for these issues. We recommend the reader study a number of papers for some recent research on fractional or sequential FDEs with nonlocal integral BCs (e.g., [15,16]).
In [17], by using fixed point theorems (FPTs), the authors looked into the possibility of solving an initial value problem (IVP) involving a sequential FDE. In [18], using the method of upper and lower solutions and the monotone iterative technique, the Exs. and Unq. results for a periodic boundary value issue of nonlinear sequential FDEs were discovered. Since they contain multipoint and integral BCs as special examples, Riemann-Stieltjes BCs are highly general (see [19]). The astronomer T. J. Stieltjes generalization of the Riemann integral, the Riemann-Stieltjes integral, has potential uses in probability theory (see e.g., [20,21]).
Banach and Schaefer FPTs have been employed in [22] (see also e.g., [23,24,25]) to study the Exs. and Unq. of solutions for a coupled system of nonlinear fractional integro-differential equations (Int-DifEqn.) involving Riemann-Liouville integrals with several continuous functions.
{DαU(ρ)=f1(ρ,U(ρ),V(ρ))+∑mi=1∫ρ0(ρ−λ)αi−1Γ(αi)φi(λ)gi(λ,U(λ),V(λ))dλ,DβV(ρ)=f2(ρ,U(ρ),V(ρ))+∑mi=1∫ρ0(ρ−λ)βiΓ(βi)ϕi(λ)hi(λ,U(λ),V(λ))dλ,U(0)=a>0,V(0)=b>0,ρ∈[0,1], |
where Dα,Dβ denote the Caputo fractional derivatives (CFD), 0<α,β<1;αi;βi are nonnegative real numbers, φi and ϕi are some continuous functions. It should be remarked that the authors in [26] considered the short-memory which can be considered in some work.
The authors in [27] investigated a boundary value problem of coupled systems of nonlinear Riemann-Liouvillle fractional Int-DifEqn. supplemented with nonlocal Riemann-Liouvillle fractional Int-Dif. BCs. The results obtained by using some standard FPTs (with ρ∈[0,T], 1<α,β≤2)
{DαU(ρ)=A(ρ,U(ρ),V(ρ),(ϕ1U)(ρ),(ψ1V)(ρ)),DβV(ρ)=B(ρ,U(ρ),V(ρ),(ϕ2U)(ρ),(ψ2V)(ρ)), |
with the following coupled Riemann-Liouville Int-Dif. BCs (with 0<η<T, 0<σ<T)
{Dα−2u(0+)=0,Dα−1u(0+)=νIα−1υ(η),Dβ−2u(0+)=0,Dβ−1υ(0+)=μIβ−1u(σ), |
where the Riemann-Liouville derivatives is denoted by D(.), and I(.) denotes the Riemann-Liouville integral of fractional order (.), and f,g:[0,T]×R4→R are given continuous functions, ν,μ are real constants, and ϕi,ψi,i=1,2 are given operators.
For a nonlinear coupled system of Liouville-Caputo type fractional Int-DifEqn. with non-local discrete and integral BCs, the Exs. and Unq. of solutions have been studied in [28]. The Exs. results are obtained by usng Leray-Schauder FPT, while the Unq. results by the concept of Banach FPT.
{CDqx(r1)=A(r1,x(r1),y(r1))),CDpy(r1)=B(r1,x(r1),y(r1))),x′(0)=α∫ξ0x′(r2)dr2,x(1)=β∫10g(x′(r2))dr2,y′(0)=α1∫θ0y′(r2)dr2,y(1)=β1∫10g(y′(r2))dr2,r1∈[0,1],1<q,p≤2,0≤ξ,θ≤1, |
where CDq,CDp denote the Caputo fractional derivatives (CFDs) of order q,p,A,B:[0,1]×R×R→R are given continuous functions, and α,β,α1,β1 are real constants.
In [29], the authors discussed the FDEs with integral and ordinary-fractional flux BCs
{CDp1x(κ)=F(s,x(κ),y(κ))),CDp2y(κ)=G(s,x(κ),y(κ))),x(0)+x(1)=a∫10x(r2)dr2,x′(0)=bCDq1x(1),y(0)+y(1)=z∫10y(r2)dr2,y′(0)=bC1De1y(1),s∈[0,1],1<p1,p2≤2,0≤q,e1≤1, |
where CDp1,CDp2,CDq1,CDe1 denote the CFDs of order p1,p2,F,G:[0,1]×R×R→R are given continuous functions, and a,z,b,b1 are real constants. The Exs. results have been analyzed in [30] for coupled system of FDEs (with μ∈(0,1),1<α,β<2,0<η<1)
{DαU(μ)=A(μ,V(μ),DpV(μ))),DβV(μ)=B(μ,U(μ),DqU(μ))),U(0)=0,U(1)=γU(η),V(0)=0,V(1)=γV(η), |
where D⋅ denotes the Riemann-Liouville FDs of order (⋅), A,B:[0,1]×R2→R, are given continuous functions, and γ is a real constant.
Exs. of solutions for nonlinear coupled Caputo fractional Int-DifEqn has been investigated in [16],
{CDαu(ρ)=f(ρ,u(ρ),v(ρ),CDζ1υ(ρ),Iξυ(ρ)),ρ∈[0,T]:=U,CDβυ(ρ)=g(ρ,u(ρ),u(ρ),CDι1υ(ρ),Iςυ(ρ)),ρ∈[0,T]:=U, |
with nonlocal integral and multi-point BCs
{U(0)=ψ1(V),U′(0)=ε1∫ν10V′(θ)dθ,U′′(0)=0,⋯,Un−2(0)=0,U(T)=λ1∫δ10V(θ)dθ+μ1∑k−2j=1wjV(θj),V(0)=ψ2(V),V′(0)=ε2∫ν20U′(θ)dθ,V′′(0)=0,⋯,Vn−2(0)=0,V(T)=λ2∫δ20U(θ)dθ+μ2∑k−2j=1wjU(φj), |
where CDα,CDβ,CDζ1,CDι1 are the Caputo FDs of order n−1<α,β<n, 0<ζ1,ι1<1, Iξ,Iς are the Riemann-Liouville fractional integrals (FI) of order ξ,ς>0.
In this paper, we investigate the Exs. and Unq. of solutions for the following nonlinear coupled system of FDEs involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions
{RLDf1[(cDh1+α1)x(t)+β1Is1H(t,x(t),y(t))]=ϕ(t,x(t),y(t)),1<h1,f1≤2,t∈[q,p],RLDf2[(cDh2+α2)y(t)+β2Is2U(t,x(t),y(t))]=ψ(t,x(t),y(t)),1<h2,f2≤2,t∈[q,p], | (1.1) |
with coupled non-conjugate Riemann-Stieltjes integro-multipoint BCs:
{x(q)=τ−2∑i=1ηiy(ξi)+∫pqy(κ)dΛ(κ),x′(q)=0,x(p)=0,x′(p)=0,y(q)=τ−2∑i=1ηix(ξi)+∫pqx(κ)dΛ(κ),y′(q)=0,y(p)=0,y′(p)=0, | (1.2) |
where cDa denotes the Caputo fractional differential operator of order a with (a=h1,h2), RlDb denotes the Riemann-Liouville fractional differential operator of order b with (b=f1,f2), with h1+f1>3,h2+f2>3, Is1,Is2 are Riemann-Liouville FI of order s1,s2>1, αi,βi∈R,i=1,2, H,ϕ,U,ψ:[q,p]×R2→R are given continuous functions, Λ is a function of bounded variation, q<ξ1<ξ2<⋯<ξn−2<p, ηj∈R, j=1,2,⋯n−2. It should be remarked that some fundamental assumptions for orders of fractional derivatives are postulated in our study and potential relaxation of this limitations can be considered in some further study. The main contribution of this article can be seen as follows:
(1) A generalization of the results obtained in [16].
(2) A generalization of the results obtained in [29].
(3) A generalization of the results obtained in [30].
Here we emphasize that the present work is motivated by a recent work [31]. Next section recalls some basic definitions of FC and present an auxiliary lemma. In section 3, we discuss the existence of solutions for the given problem while the uniqueness results is presented in section 4, section 5 shows examples that illustrate our results, and section 6 concludes our work.
Now, we recall some basic definitions of fractional calculus.
Definition 2.1. [8] For β>0, the Riemann-Liouville FI of order β for ϑ∈L1[q,p], existing almost everywhere on [q,p], (with −∞<q<p<∞) is defined by
Iβϑ(t)=∫tq(t−s)β−1Γ(β)ϑ(s)ds, |
where Γ denotes the Euler gamma function.
Definition 2.2. [8] For, β∈(n−1,n],n∈N, and g∈ACn[q,p], the Riemann-Liouville and CFDs of order β are respectively defined by
RLDβϑ(t)=dndtn∫tq(t−s)n−β−1Γ(n−β)ϑ(s)dsandcDβϑ(r)=∫rq(r−s)n−β−1Γ(n−β)ϑ(n)(s)ds. |
Lemma 2.1. For m−1<β≤m,t∈[q,p], the general solution of the FDE cDβx(b)=0, is
x(b)=r0+r1(b−q)+r2(b−q)2+...+rm−1(b−q)m−1, |
ri∈R,i=0,1,...,m−1. Moreover,
(IβcDβx)(b)=x(b)+m−1∑i=0ri(b−q)i. |
Lemma 2.2. [8] For β>0 and x∈C(q,p)∩L(q,p), the general solution of (RLDβx)(b)=0 is
x(b)=σ1(b−q)β−1+σ2(b−q)β−2+⋯+σm−1(b−q)β−m−1+σm(b−q)β−m, |
where σj∈R,j=1,2,⋯,m, and
(IβRLDβx)(b)=x(b)+σ1(b−q)β−1+σ2(b−q)β−2+⋯+σm−1(b−q)β−m−1+σm(b−q)β−m=x(b)+m∑j=1σi(b−q)β−j. |
On the other hand, (RLDβIβx)(b)=x(b).
See also Lemma A.1 in Appendix. A for more details.
Denote by X∗={x(t)|x(t)∈C([q,p],R)} as the Banach space (BSp.) of all functions (continuous) from [q,p] into R equipped with the norm ‖x‖=supt∈[q,p]|x(t)|. Obviously (X∗,‖.‖) is a BSp. and as a result, the product space (X∗×X∗,‖.‖) is a BSp. with the norm ‖(r,s)‖=‖r‖+‖s‖ for (r,s)∈X∗×X∗.
By Lemma A.1, we define an operator A:X∗×X∗→X∗×X∗ as
A(x,y)(t):=(A1(x,y)(t),A2(x,y)(t)), | (3.1) |
where
A1(x,y)(t)=−α1∫tq(t−κ)h1−1Γ(h1)x(κ)dκ−β1∫tq(t−κ)s1+h1−1Γ(s1+h1)H(κ,x(κ),y(κ))dκ+∫tq(t−κ)h1+f1−1Γ(h1+f1)ϕ(κ,x(κ),y(κ))dκ+V1(t)[α1∫pq(p−κ)h1−1Γ(h1)x(κ)dκ+β1∫pq(p−κ)s1+h1−1Γ(s1+h1)H(κ,x(κ),y(κ))dκ−∫pq(p−κ)h1+f1−1Γ(h1+f1)ϕ(κ,x(κ),y(κ))dκ]+V2(t)[α1∫pq(p−κ)h1−2Γ(h1−1)x(κ)dκ+β1∫pq(p−κ)s1+h1−2Γ(s1+h1−1)H(κ,x(κ),y(κ))dκ−∫pq(p−κ)h1+f1−2Γ(h1+f1−1)ϕ(κ,x(κ),y(κ))dκ]+V3(t)[−α1n−2∑i=1ηi∫ξiq(ξi−κ)h1−1Γ(h1)x(κ)dκ−β1τ−2∑i=1ηi∫ξiq(ξi−κ)s1+h1−1Γ(s1+h1)H(κ,x(κ),y(κ))dκ+τ−2∑i=1ηi∫ξiq(ξi−κ)h1+f1−1Γ(h1+f1)ϕ(κ,x(κ),y(κ))dκ+∫pq(−α1∫κq(κ−u)h1−1Γ(h1)x(u)du−β1∫κq(κ−u)s1+h1−1Γ(s1+h1)H(u,x(u),y(u))du+∫κq(κ−u)h1+f1−1Γ(h1+f1)ϕ(u,x(u),y(u))du)dΛ(κ)]+V4(t)[α2∫pq(p−κ)h2−1Γ(h2)y(κ)dκ+β2∫pq(p−κ)s2+h2−1Γ(s2+h2)U(κ,x(κ),y(κ))dκ−∫pq(p−κ)h2+f2−1Γ(h2+f2)ψ(κ,x(κ),y(κ))dκ]+V5(t)[α2∫pq(p−κ)h2−2Γ(h2−1)y(κ)dκ+β2∫pq(p−κ)s2+h2−2Γ(s2+h2−1)U(κ,x(κ),y(κ))dκ−∫pq(p−κ)h2+f2−2Γ(h2+f2−1)ψ(κ,x(κ),y(κ))dκ]+V6(t)[−α2τ−2∑i=1ηi∫ξiq(ξi−κ)h2−1Γ(h2)y(κ)dκ−β2τ−2∑i=1ηi∫ξiq(ξi−κ)s2+h2−1Γ(s2+h2)U(κ,x(κ),y(κ))dκ+τ−2∑i=1ηi∫ξiq(ξi−κ)h2+f2−1Γ(h2+f2)ψ(κ,x(κ),y(κ))dκ+∫pq(−α2∫κq(κ−u)h2−1Γ(h2)y(u)du−β2∫κq(κ−u)s2+h2−1Γ(s2+h2)U(u,x(u),y(u))du+∫κq(κ−u)h2+f2−1Γ(h2+f2)ψ(u,x(u),y(u))du)dΛ(κ)]], | (3.2) |
A2(x,y)(t)=−α2∫tq(t−κ)h2−1Γ(h2)y(κ)dκ−β2∫tq(t−κ)s2+h2−1Γ(s2+h2)U(κ,x(κ),y(κ))dκ+∫tq(t−κ)h2+f2−1Γ(h2+f2)ψ(κ,x(κ),y(κ))dκ+W1(t)[α1∫pq(p−κ)h1−1Γ(h1)x(κ)dκ+β1∫pq(p−κ)s1+h1−1Γ(s1+h1)H(κ,x(κ),y(κ))dκ−∫pq(p−κ)h1+f1−1Γ(h1+f1)ϕ(κ,x(κ),y(κ))dκ]+W2(t)[α1∫pq(p−κ)h1−2Γ(h1−1)x(κ)dκ+β1∫pq(p−κ)s1+h1−2Γ(s1+h1−1)H(κ,x(κ),y(κ))dκ−∫pq(p−κ)h1+f1−2Γ(h1+f1−1)ϕ(κ,x(κ),y(κ))dκ]+W3(t)[−α1τ−2∑i=1ηi∫ξiq(ξi−κ)h1−1Γ(h1)x(κ)dκ−β1τ−2∑i=1ηi∫ξiq(ξi−κ)s1+h1−1Γ(s1+h1)H(κ,x(κ),y(κ))dκ+τ−2∑i=1ηi∫ξiq(ξi−κ)h1+f1−1Γ(h1+f1)ϕ(κ,x(κ),y(κ))dκ+∫pq(−α1∫κq(κ−u)h1−1Γ(h1)x(u)du−β1∫κq(κ−u)s1+h1−1Γ(s1+h1)H(u,x(u),y(u))du+∫κq(κ−u)h1+f1−1Γ(h1+f1)ϕ(u,x(u),y(u))du)dΛ(κ)]+W4(t)[α2∫pq(p−κ)h2−1Γ(h2)y(κ)dκ+β2∫pq(p−κ)s2+h2−1Γ(s2+h2)U(κ,x(κ),y(κ))dκ−∫pq(p−κ)h2+f2−1Γ(h2+f2)ψ(κ,x(κ),y(κ))dκ]+W5(t)[α2∫pq(p−κ)h2−2Γ(h2−1)y(κ)dκ+β2∫pq(p−κ)s2+h2−2Γ(s2+h2−1)U(κ,x(κ),y(κ))dκ−∫pq(p−κ)h2+f2−2Γ(h2+f2−1)ψ(κ,x(κ),y(κ))dκ]+W6(t)[−α2τ−2∑i=1ηi∫ξiq(ξi−κ)h2−1Γ(h2)y(κ)dκ−β2τ−2∑i=1ηi∫ξiq(ξi−κ)s2+h2−1Γ(s2+h2)U(κ,x(κ),y(κ))dκ+τ−2∑i=1ηi∫ξiq(ξi−κ)h2+f2−1Γ(h2+f2)ψ(κ,x(κ),y(κ))dκ+∫pq(−α2∫κq(κ−u)h2−1Γ(h2)y(u)du−β2∫κq(κ−u)s2+h2−1Γ(s2+h2)U(u,x(u),y(u))du+∫κq(κ−u)h2+f2−1Γ(h2+f2)ψ(u,x(u),y(u))du)dΛ(κ)], | (3.3) |
and Vi(t)(i=1,⋯,6) and Wj(t),j=1,...,6 are given by (A.4) and (A.5) respectively. From now on, we impose that H,ϕ,U,ψ:[q,p]×R2→R are continuous functions satisfying the following condition:
(H1) For all t∈[q,p],x,y∈R, ∃ real constants ϖi,εi,ni,mi≥0(i=1,2),ϖ0,ε0,n0,m0>0:
|H(t,x,y)|≤ϖ0+ϖ1|x|+ϖ2|y|, |
|ϕ(t,x,y)|≤ε0+ε1|x|+ε2|y|, |
|U(t,x,y)|≤n0+n1|x|+n2|y|, |
|ψ(t,x,y)|≤m0+m1|x|+m2|y|. |
For simplicity, we use the following notations:
F0=|α1|{(p−q)h1Γ(h1+1)+˜V1(p−q)h1Γ(h1+1)+˜V2(p−q)h1−1Γ(h1)+˜V3(τ−2∑i=1|ηi|(ξi−q)h1Γ(h1+1)+∫pq(κ−q)h1Γ(h1+1)dΛ(κ))},F1=|β1|{(p−q)s1+h1Γ(s1+h1+1)+˜V1(p−q)s1+h1Γ(s1+h1+1)+˜V2(p−q)s1+h1−1Γ(s1+h1)+˜V3(τ−2∑i=1|ηi|(ξi−q)s1+h1Γ(s1+h1+1)+∫pq(κ−q)s1+h1Γ(s1+h1+1)dΛ(κ))},F2={(p−q)h1+f1Γ(h1+f1+1)+˜V1(p−q)h1+f1Γ(h1+f1+1)+˜V2(p−q)h1+f1−1Γ(h1+f1)+˜V3(τ−2∑i=1|ηi|(ξi−q)h1+f1Γ(h1+f1+1)+∫pq(κ−q)h1+f1Γ(h1+f1+1)dΛ(κ))},F3=|α2|{˜V4(p−q)h2Γ(h2+1)+˜V5(p−q)h2−1Γ(h2)+˜V6(τ−2∑i=1|ηi|(ξi−q)h2Γ(h2+1)+∫pq(κ−q)h2Γ(h2+1)dΛ(κ))},F4=|β2|{˜V4(p−q)s2+h2Γ(s2+h2+1)+˜V5(p−q)s2+h2−1Γ(s2+h2)+˜V6(τ−2∑i=1|ηi|(ξi−q)s2+h2Γ(s2+h2+1)+∫pq(κ−q)s2+h2Γ(s2+h2+1)dΛ(κ))},F5={˜V4(p−q)h2+f2Γ(h2+f2+1)+˜V5(p−q)h2+f2−1Γ(h2+f2)+˜V6(τ−2∑i=1|ηi|(ξi−q)h2+f2Γ(h2+f2+1)+∫pq(κ−q)h2+f2Γ(h2+f2+1)dΛ(κ))}, | (3.4) |
G0=|α1|{˜W1(p−q)h1Γ(h1+1)+˜W2(p−q)h1−1Γ(h1)+˜W3(τ−2∑i=1|ηi|(ξi−q)h1Γ(h1+1)+∫pq(κ−q)h1Γ(h1+1)dΛ(κ))},G1=|β1|{˜W1(p−q)s1+h1Γ(s1+h1+1)+˜W2(p−q)s1+h1−1Γ(s1+h1)+˜W3(τ−2∑i=1|ηi|(ξi−q)s1+h1Γ(s1+h1+1)+∫pq(κ−q)s1+h1Γ(s1+h1+1)dΛ(κ))},G2={˜W1(p−q)h1+f1Γ(h1+f1+1)+˜W2(p−q)h1+f1−1Γ(h1+f1)+˜W3(τ−2∑i=1|ηi|(ξi−q)h1+f1Γ(h1+f1+1)+∫pq(κ−q)h1+f1Γ(h1+f1+1)dΛ(κ))},G3=|α2|{(p−q)h2Γ(h2+1)+˜W4(p−q)h2Γ(h2+1)+˜W5(p−q)h2−1Γ(h2)+˜W6(τ−2∑i=1|ηi|(ξi−q)h2Γ(h2+1)+∫pq(κ−q)h2Γ(h2+1)dΛ(κ))},G4=|β2|{(p−q)s2+h2Γ(s2+h2+1)+˜W4(p−q)s2+h2Γ(s2+h2+1)+˜W5(p−q)s2+h2−1Γ(s2+h2)+˜W6(τ−2∑i=1|ηi|(ξi−q)s2+h2Γ(s2+h2+1)+∫pq(κ−q)s2+h2Γ(s2+h2+1)dΛ(κ))},G5={(p−q)h2+f2Γ(h2+f2+1)+˜W4(p−q)h2+f2Γ(h2+f2+1)+˜W5(p−q)h2+f2−1Γ(h2+f2)+˜W6(τ−2∑i=1|ηi|(ξi−q)h2+f2Γ(h2+f2+1)+∫pq(κ−q)h2+f2Γ(h2+f2+1)dΛ(κ))}, | (3.5) |
where ˜Vi=supt∈[q,p]|Vi(t)|,i=1,...,6 and ˜Wj=supt∈[q,p]|Wj(t)|,j=1,...,6,
O0=(F1+G1)ϖ0+(F2+G2)ε0+(F4+G4)n0+(F5+G5)m0, | (3.6) |
O1=(F0+G0)+(F1+G1)ϖ1+(F2+G2)ε1+(F4+G4)|n1+(F5+G5)m1, | (3.7) |
O2=(F1+G1)ϖ2+(F2+G2)ε2+(F3+G3)+(F4+G4)n2+(F5+G5)m2, | (3.8) |
O=max{O1,O2}. | (3.9) |
Now we introduce our Exs. results. In the first method we use Leray-Schauder alternative to show the Exs. of solution for the systems (1.1) and (1.2).
Lemma 3.1. (Leray-Schauder alternative [32]): Let a completely continuous operator S:J⟶J. Assume that E(S)={y∈J:y=λS(y), 0<λ<1}. Then:
(1) the set E(S) is unbounded, or
(2) S has at lest one FP.
Theorem 3.1. If continuous functions H,ϕ,U,ψ:[q,p]×R2→R satisfying (H1). Then the systems (1.1) and (1.2) has at least one solution on [q,p] if O<1, where O is given by (3.9).
Proof. We start by proving that the operator A:X∗×X∗→X∗×X∗ is completely continuous. Since the functions H,ϕ,U and ψ, are continuous, then the operator A is continuous.
Let P⊂X∗×X∗ be bounded. Then ∃ constants ζi>0(i=1,...,4): |H(t,x(t),y(t))|≤ζ1,|ϕ(t,x(t),y(t))|≤ζ2,|U(t,x(t),y(t))|≤ζ3,|ψ(t,x(t),y(t))|≤ζ4,∀(x,y)∈P. Then, for any (x,y)∈P, we have
|A1(x,y)(t)|≤|α1|∫tq(t−κ)h1−1Γ(h1)|x(κ)|dκ+|β1|∫tq(t−κ)s1+h1−1Γ(s1+h1)ζ1dκ+∫tq(t−κ)h1+f1−1Γ(h1+f1)ζ2dκ+|V1(t)|[|α1|∫pq(p−κ)h1−1Γ(h1)|x(κ)|dκ+|β1|∫pq(p−κ)s1+h1−1Γ(s1+h1)ζ1dκ+∫pq(p−κ)h1+f1−1Γ(h1+f1)ζ2dκ]+|V2(t)|[|α1|∫pq(p−κ)h1−2Γ(h1−1)|x(κ)|dκ+|β1|∫pq(p−κ)s1+h1−2Γ(s1+h1−1)ζ1dκ+∫pq(p−κ)h1+f1−2Γ(h1+f1−1)ζ2dκ]+|V3(t)|[|α1|τ−2∑i=1|ηi|∫ξiq(ξi−κ)h1−1Γ(h1)|x(κ)|dκ+|β1|τ−2∑i=1|ηi|∫ξiq(ξi−κ)s1+h1−1Γ(s1+h1)ζ1dκ+τ−2∑i=1|ηi|∫ξiq(ξi−κ)h1+f1−1Γ(h1+f1)ζ2dκ+∫pq(|α1|∫κq(κ−u)h1−1Γ(h1)|x(u)|du+|β1|∫κq(κ−u)s1+h1−1Γ(s1+h1)ζ1du+∫κq(κ−u)h1+f1−1Γ(h1+f1)ζ2du)dΛ(κ)]+|V4(t)|[|α2|∫pq(p−κ)h2−1Γ(h2)|y(κ)|dκ+|β2|∫pq(p−κ)s2+h2−1Γ(s2+h2)ζ3dκ+∫pq(p−κ)h2+f2−1Γ(h2+f2)ζ4dκ]+|V5(t)|[|α2|∫pq(p−κ)h2−2Γ(h2−1)|y(κ)|dκ+|β2|∫pq(p−κ)s2+h2−2Γ(s2+h2−1)ζ3dκ+∫pq(p−κ)h2+f2−2Γ(h2+f2−1)ζ4dκ]+|V6(t)|[|α2|τ−2∑i=1|ηi|∫ξiq(ξi−κ)h2−1Γ(h2)|y(κ)|dκ+|β2|τ−2∑i=1|ηi|∫ξiq(ξi−κ)s2+h2−1Γ(s2+h2)ζ3dκ+τ−2∑i=1|ηi|∫ξiq(ξi−κ)h2+f2−1Γ(h2+f2)ζ4dκ+∫pq(|α2|∫κq(κ−u)h2−1Γ(h2)|y(u)|du+|β2|∫κq(κ−u)s2+h2−1Γ(s2+h2)ζ3du+∫κq(κ−u)h2+f2−1Γ(h2+f2)ζ4du)dΛ(κ)]≤F0|x(t)|+F1ζ1+F2ζ2+F3|y(t)|+F4ζ3+F5ζ4, |
which implies that,
‖A1(x,y)‖≤F0‖x‖+F1ζ1+F2ζ2+F3‖y‖+F4ζ3+F5ζ4. |
Similarly, we can get
‖A2(x,y)‖≤G0‖x‖+G1ζ1+G2ζ2+G3‖y‖+G4ζ3+G5ζ4. |
Hence, the operator A is uniformly bounded, since ‖A(x,y)‖≤(F0+G0)‖x‖+(F1+G1)ζ1+(F2+G2)ζ2+(F3+G3)‖y‖+(F4+G4)ζ3+(F5+G5)ζ4.
Next, we show that A is equicontinuous. For t1,t2∈[q,p] with t1<t2, we obtain
|A1(x,y)(t2)−A1(x,y)(t1)|≤|α1|[|∫t1q[(t2−κ)h1−1−(t1−κ)h1−1]Γ(h1)x(κ)dκ|+|∫t2t1(t2−κ)h1−1Γ(h1)x(κ)dκ|]+|β1|[|∫t1q[(t2−κ)s1+h1−1−(t1−κ)s1+h1−1]Γ(s1+h1)H(κ,x(κ),y(κ))dκ|+|∫t2t1(t2−κ)s1+h1−1Γ(s1+h1)H(κ,x(κ),y(κ))dκ|]+|∫t1q[(t2−κ)h1+f1−1−(t1−κ)h1+f1−1]Γ(h1+f1)ϕ(κ,x(κ),y(κ))dκ|+|∫t2t1(t2−κ)h1+f1−1Γ(h1+f1)ϕ(κ,x(κ),y(κ))dκ|+|V1(t2)−V1(t1)|[|α1|∫pq(p−κ)h1−1Γ(h1)|x(κ)|dκ+|β1|∫pq(p−κ)s1+h1−1Γ(s1+h1)|H(κ,x(κ),y(κ))|dκ+∫pq(p−κ)h1+f1−1Γ(h1+f1)|ϕ(κ,x(κ),y(κ))|dκ]+|V2(t2)−V2(t1)|[|α1|∫pq(p−κ)h1−2Γ(h1−1)|x(κ)|dκ+|β1|∫pq(p−κ)s1+h1−2Γ(s1+h1−1)|H(κ,x(κ),y(κ))|dκ+∫pq(p−κ)h1+f1−2Γ(h1+f1−1)|ϕ(κ,x(κ),y(κ))|dκ]+|V3(t2)−V3(t1)|[|α1|τ−2∑i=1|ηi|∫ξiq(ξi−κ)h1−1Γ(h1)|x(κ)|dκ+|β1|τ−2∑i=1|ηi|∫ξiq(ξi−κ)s1+h1−1Γ(s1+h1)|H(κ,x(κ),y(κ))|dκ+τ−2∑i=1|ηi|∫ξiq(ξi−κ)h1+f1−1Γ(h1+f1)|ϕ(κ,x(κ),y(κ))|dκ+∫pq(|α1|∫κq(κ−u)h1−1Γ(h1)|x(u)|du+|β1|∫κq(κ−u)s1+h1−1Γ(s1+h1)|H(u,x(u),y(u))|du+∫κq(κ−u)h1+f1−1Γ(h1+f1)|ϕ(u,x(u),y(u))|du)dΛ(κ)] |
+|V4(t2)−V4(t1)|[|α2|∫pq(p−κ)h2−1Γ(h2)|y(κ)|dκ+|β2|∫pq(p−κ)s2+h2−1Γ(s2+h2)|U(κ,x(κ),y(κ))|dκ+∫pq(p−κ)h2+f2−1Γ(h2+f2)|ψ(κ,x(κ),y(κ))|dκ]+|V5(t2)−V5(t1)|[|α2|∫pq(p−κ)h2−2Γ(h2−1)|y(κ)|dκ+|β2|∫pq(p−κ)s2+h2−2Γ(s2+h2−1)|U(κ,x(κ),y(κ))|dκ+∫pq(p−κ)h2+f2−2Γ(h2+f2−1)|ψ(κ,x(κ),y(κ))|dκ]+|V6(t2)−V6(t1)|[|α2|τ−2∑i=1|ηi|∫ξiq(ξi−κ)h2−1Γ(h2)|y(κ)|dκ+|β2|τ−2∑i=1|ηi|∫ξiq(ξi−κ)s2+h2−1Γ(s2+h2)|U(κ,x(κ),y(κ))|dκ+τ−2∑i=1|ηi|∫ξiq(ξi−κ)h2+f2−1Γ(h2+f2)|ψ(κ,x(κ),y(κ))|dκ+∫pq(|α2|∫κq(κ−u)h2−1Γ(h2)|y(u)|du+|β2|∫κq(κ−u)s2+h2−1Γ(s2+h2)|U(u,x(u),y(u))|du+∫κq(κ−u)h2+f2−1Γ(h2+f2)|ψ(u,x(u),y(u))|du)dΛ(κ)]≤|α1|‖x‖Γ(h1+1)(|(t2−q)h1−(t1−q)h1|+2(t2−t1)h1)+|β1|‖ζ1Γ(s1+h1+1)(|(t2−q)s1+h1−(t1−q)s1+h1|+2(t2−t1)s1+h1) |
+ζ2Γ(h1+f1+1)(|(t2−q)h1+f1−(t1−q)h1+f1|+2(t2−t1)h1+f1)+|V1(t2)−V1(t1)|[|α1|∫pq(p−κ)h1−1Γ(h1)|x(κ)|dκ+|β1|∫pq(p−κ)s1+h1−1Γ(s1+h1)ζ1dκ+∫pq(p−κ)h1+f1−1Γ(h1+f1)ζ2dκ]+|V2(t2)−V2(t1)|[|α1|∫pq(p−κ)h1−2Γ(h1−1)|x(κ)|dκ+|β1|∫pq(p−κ)s1+h1−2Γ(s1+h1−1)ζ1dκ+∫pq(p−κ)h1+f1−2Γ(h1+f1−1)ζ2dκ]+|V3(t2)−V3(t1)|[|α1|τ−2∑i=1|ηi|∫ξiq(ξi−κ)h1−1Γ(h1)|x(κ)|dκ+|β1|τ−2∑i=1|ηi|∫ξiq(ξi−κ)s1+h1−1Γ(s1+h1)ζ1dκ+τ−2∑i=1|ηi|∫ξiq(ξi−κ)h1+f1−1Γ(h1+f1)ζ2dκ+∫pq(|α1|∫κq(κ−u)h1−1Γ(h1)|x(u)|du+|β1|∫κq(κ−u)s1+h1−1Γ(s1+h1)ζ2du+∫κq(κ−u)h1+f1−1Γ(h1+f1)|ζ3du)dΛ(κ)]+|V4(t2)−V4(t1)|[|α2|∫pq(p−κ)h2−1Γ(h2)|y(κ)|dκ+|β2|∫pq(p−κ)s2+h2−1Γ(s2+h2)ζ3dκ+∫pq(p−κ)h2+f2−1Γ(h2+f2)ζ4dκ]+|V5(t2)−V5(t1)|[|α2|∫pq(p−κ)h2−2Γ(h2−1)|y(κ)|dκ+|β2|∫pq(p−κ)s2+h2−2Γ(s2+h2−1)ζ3dκ+∫pq(p−κ)h2+f2−2Γ(h2+f2−1)ζ4dκ]+|V6(t2)−V6(t1)|[|α2|τ−2∑i=1|ηi|∫ξiq(ξi−κ)h2−1Γ(h2)|y(κ)|dκ+|β2|τ−2∑i=1|ηi|∫ξiq(ξi−κ)s2+h2−1Γ(s2+h2)ζ3dκ+τ−2∑i=1|ηi|∫ξiq(ξi−κ)h2+f2−1Γ(h2+f2)ζ4dκ+∫pq(|α2|∫κq(κ−u)h2−1Γ(h2)|y(u)|du+|β2|∫κq(κ−u)s2+h2−1Γ(s2+h2)ζ3du+∫κq(κ−u)h2+f2−1Γ(h2+f2)ζ4du)dΛ(κ)]. |
Similarly, we can find that \|\mathcal{A}_2(x, y)-\mathcal{A}_2(x, y)\|\rightarrow 0 independent of x and y as t_2\rightarrow t_1 . Therefore, the operator \mathcal{A}(x, y) is equicontinuous. As a consequence of our steps together with the Arzela-Ascoli theorem, the operator \mathcal{A} is completely continuous. Next, we prove that the set \mathcal{E} = \{(x, y)\in \mathfrak{X}^*\times\mathfrak{X}^*|(x, y) = \sigma \mathcal{A}(x, y), 0\leq\sigma\leq1\} is bounded. Take (x, y)\in\mathcal{E}, then (x, y) = \sigma\mathcal{A}(x, y) and \forall t\in[\mathfrak{q}, \mathfrak{p}], we have
x(t) = \sigma\mathcal{A}_1(x, y)(t), \; y(t) = \sigma\mathcal{A}_2(x, y)(t). |
In consequence, we have
\begin{eqnarray*} |x(t)|& \leq& \mathcal{F}_0|x|+\mathcal{F}_1(\varpi_0+\varpi_1|x|+\varpi_2|y|)+\mathcal{F}_2(\varepsilon_0+\varepsilon_1|x|+\varepsilon_2|y|)\\ &+&\mathcal{F}_3|y|+\mathcal{F}_4(n_0+n_1|x|+n_2|y|)+\mathcal{F}_5(m_0+m_1|x|+m_2|y|), \end{eqnarray*} |
which yields
\begin{eqnarray} \|x\| &\leq& \mathcal{F}_0\|x\|+\mathcal{F}_1(\varpi_0+\varpi_1\|x\|+\varpi_2\|y\|)+\mathcal{F}_2(\varepsilon_0+\varepsilon_1\|x\|+\varepsilon_2\|y\|)\\ &+&\mathcal{F}_3\|y\|+\mathcal{F}_4(n_0+n_1\|x\|+n_2\|y\|)+\mathcal{F}_5(m_0+m_1\|x\|+m_2\|y\|). \end{eqnarray} | (3.10) |
In a similar manner, we can find that
\begin{eqnarray} \|y\| &\leq& \mathcal{G}_0\|x\|+\mathcal{G}_1(\varpi_0+\varpi_1\|x\|+\varpi_2\|y\|)+\mathcal{G}_2(\varepsilon_0+\varepsilon_1\|x\|+\varepsilon_2\|y\|)\\ &+&\mathcal{G}_3\|y\|+\mathcal{G}_4(n_0+n_1\|x\|+n_2\|y\|)+\mathcal{G}_5(m_0+m_1\|x\|+m_2\|y\|). \end{eqnarray} | (3.11) |
From (3.10) and (3.11) together with notations (3.6)–(3.9) lead to
\begin{eqnarray*} \|x\|+\|y\|&\leq& [(\mathcal{F}_1+\mathcal{G}_1)\varpi_0+(\mathcal{F}_2+\mathcal{G}_2)\varepsilon_0+(\mathcal{F}_4+\mathcal{G}_4)n_0+(\mathcal{F}_5+\mathcal{G}_5)m_0]\\ &+&[(\mathcal{F}_0+\mathcal{G}_0)+(\mathcal{F}_1+\mathcal{G}_1)|\varpi_1+(\mathcal{F}_2+\mathcal{G}_2)\varepsilon_1+(\mathcal{F}_4+\mathcal{G}_4)n_1\\ &+&(\mathcal{F}_5+\mathcal{G}_5)m_1]\|x\| +[(\mathcal{F}_1+\mathcal{G}_1)\varpi_2+(\mathcal{F}_2+\mathcal{G}_2)\varepsilon_2+(\mathcal{F}_3+\mathcal{G}_3)\\ &+&(\mathcal{F}_4+\mathcal{G}_4)n_2+(\mathcal{F}_5+\mathcal{G}_5)m_2]\|y\|. \end{eqnarray*} |
Which implies,
\begin{eqnarray*} \|(x, y)\|&\leq& {\bf O}_0+\max\{{\bf O}_1+{\bf O}_2\}\|(x, y)\|\\ &\leq& {\bf O}_0+{\bf O}\|(x, y)\|, \end{eqnarray*} |
consequently,
\|(x, y)\|\leq\frac{{\bf O}_0}{1-{\bf O}}. |
This prove that the set \mathcal{E} is bounded. Thus, by Lemma 3.1, the operator \mathcal{A} has at least one FP. Therefore, the systems (1.1) and (1.2) has at least one solution on [\mathfrak{q}, \mathfrak{p}] .
Next results are based on Krasnoselskii FPTs. We assume continuous functions H, \phi, \mathfrak{U}, \psi:[\mathfrak{q}, \mathfrak{p}]\times\mathbb{R}^{2}\rightarrow \mathbb{R} satisfying the condition:
( \mathcal{H}_2 ) For all t\in[\mathfrak{q}, \mathfrak{p}] and \mathtt{x}_j, \mathtt{y}_j\in \mathbb{R} (j = 1, 2), \exists L_i, \; i = 1, ..., 4 :
|H(t, \mathtt{x}_1, \mathtt{y}_1)-H(t, \mathtt{x}_2, \mathtt{y}_2)|\leq L_1 (|\mathtt{x}_1-\mathtt{x}_2|+|\mathtt{y}_1-\mathtt{y}_2|), |
|\phi(t, \mathtt{x}_1, \mathtt{y}_1)-\phi(t, \mathtt{x}_2, \mathtt{y}_2)|\leq L_2 (|\mathtt{x}_1-\mathtt{x}_2|+|\mathtt{y}_1-\mathtt{y}_2|), |
|\mathfrak{U}(t, \mathtt{x}_1, \mathtt{y}_1)-\mathfrak{U}((t, \mathtt{x}_2, \mathtt{y}_2)|\leq L_3 (|\mathtt{x}_1-\mathtt{x}_2|+|\mathtt{y}_1-\mathtt{y}_2|), |
|\psi(t, \mathtt{x}_1, \mathtt{y}_1)-\psi(t, \mathtt{x}_2, \mathtt{y}_2)|\leq L_4 (|\mathtt{x}_1-\mathtt{x}_2|+|\mathtt{y}_1-\mathtt{y}_2|); |
For simplicity, we introduce the following notations:
\begin{eqnarray} \mathfrak{N} = \Delta_1+ \Delta_2, \end{eqnarray} | (3.12) |
\begin{eqnarray} \overline{\mathfrak{N}} = \overline{\Delta}_1+\overline{\Delta}_2, \end{eqnarray} | (3.13) |
\begin{eqnarray} \Delta_1 = \mathcal{F}_{0}+L_1\mathcal{F}_{1}+L_2\mathcal{F}_{2}, \end{eqnarray} | (3.14) |
\begin{eqnarray} \Delta_2 = \mathcal{F}_{3}+L_3\mathcal{F}_{4}+L_4\mathcal{F}_{5}, \end{eqnarray} | (3.15) |
\begin{eqnarray} \Delta_3 = \mathcal{Q}_{0}+L_1\mathcal{Q}_{1}+L_2\mathcal{Q}_{2}, \end{eqnarray} | (3.16) |
\begin{eqnarray} \overline{\Delta}_1 = \mathcal{G}_{0}+L_1\mathcal{G}_{1}+L_2\mathcal{G}_{2}, \end{eqnarray} | (3.17) |
\begin{eqnarray} \overline{\Delta}_2 = \mathcal{G}_{3}+L_3\mathcal{G}_{4}+L_4\mathcal{G}_{5}, \end{eqnarray} | (3.18) |
\begin{eqnarray} \overline{\Delta}_3 = \mathcal{Q}_{3}+L_3\mathcal{Q}_{4}+L_4\mathcal{Q}_{5}, \end{eqnarray} | (3.19) |
where
\begin{eqnarray} \mathcal{Q}_0& = & \mathcal{F}_0-|\alpha_1|\frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{h}_1}}{\Gamma(\mathfrak{h}_1+1)}, \; \mathcal{Q}_1 = \mathcal{F}_1-|\beta_1|\frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{s}_1+\mathfrak{h}_1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1+1)}, \; \mathcal{Q}_2 = \mathcal{F}_2-\frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{h}_1+\mathfrak{f}_1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1+1)}, \\ \mathcal{Q}_3& = & \mathcal{G}_3-|\alpha_2|\frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{h}_2}}{\Gamma(\mathfrak{h}_2+1)}, \; \mathcal{Q}_4 = \mathcal{G}_4-|\beta_2|\frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{s}_2+\mathfrak{h}_2}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2+1)}, \; \mathcal{Q}_5 = \mathcal{G}_5-\frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{h}_2+\mathfrak{f}_2}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2+1)}, \\ \end{eqnarray} | (3.20) |
and \mathcal{F}_i, \; \mathcal{G}_i\; (i = 0, ..., 5) are given by (3.4) and (3.5).
Lemma 3.2. (Krasnoselskii) Let \mathcal{B}\neq \emptyset be a closed, bounded, convex subset of a BSp. \mathcal{K} . Let operators \mathcal{M}_1, \mathcal{M}_2 : \mathcal{B}\rightarrow \mathcal{K} :
(a) \mathcal{M}_1z_1+\mathcal{M}_{2}z_2 \in \mathcal{B} where z_1, z_2 \in \mathcal{B};
(b) \mathcal{M}_1 is compact and continuous;
(c) \mathcal{M}_2 is a contraction mapping.
Then \exists z \in \mathcal{B} : z = \mathcal{M}_1z+\mathcal{M}_{2}z .
Here we prove the Unq. result of solution for the systems (1.1) and (1.2) by applying Banach's FPTs.
For simplicity we use the following notations:
\begin{eqnarray} \mathfrak{B} = \mathfrak{B}_1+\mathfrak{B}_2, \; \; \mathfrak{B}_1 = \mathfrak{Z}_1\mathcal{F}_1+\mathfrak{Z}_2\mathcal{F}_2, \; \; \mathfrak{B}_2 = \mathfrak{Z}_3\mathcal{F}_4+\mathfrak{Z}_4\mathcal{F}_5, \end{eqnarray} | (4.1) |
\begin{eqnarray} \overline{\mathfrak{B}} = \overline{\mathfrak{B}}_1+\overline{\mathfrak{B}}_2, \; \; \overline{\mathfrak{B}}_1 = \mathfrak{Z}_1\mathcal{G}_1+\mathfrak{Z}_2\mathcal{G}_2, \; \; \overline{\mathfrak{B}}_2 = \mathfrak{Z}_3\mathcal{G}_4+\mathfrak{Z}_4\mathcal{G}_5, \end{eqnarray} | (4.2) |
\begin{eqnarray} \mathfrak{Z}_1 & = & \sup\limits_{t\in [\mathfrak{q}, \mathfrak{p}]}|H(t, 0, 0)| < \infty , \; \; \mathfrak{Z}_2 = \sup\limits_{t\in [\mathfrak{q}, \mathfrak{p}]}|\phi(t, 0, 0, )| < \infty, \; \mathfrak{Z}_3 = \sup\limits_{t\in [\mathfrak{q}, \mathfrak{p}]}|\mathfrak{U}(t, 0, 0, )| < \infty, \\ \mathfrak{Z}_4& = & \sup\limits_{t\in [\mathfrak{q}, \mathfrak{p}]}|\psi(t, 0, 0, )| < \infty. \end{eqnarray} | (4.3) |
Theorem 4.1. Let the condition (\mathcal{H}_2) holds. Then (1.1) and (1.2) has a unique solution on [\mathfrak{q}, \mathfrak{p}] if
\begin{equation} \mathfrak{N}+\overline{\mathfrak{N}} < 1, \end{equation} | (4.4) |
where \mathfrak{N} and \overline{\mathfrak{N}} are given by (3.12) and (3.13) respectively.
Proof. Setting \mathfrak{S} > \frac{\mathfrak{B}+\overline{\mathfrak{B}}}{1-\mathfrak{N}-\overline{\mathfrak{N}}}, where \mathfrak{N}, \overline{\mathfrak{N}}, \mathfrak{B} and \overline{\mathfrak{B}} are given by (3.12), (3.13), (4.1) and (4.2) respectively. We show that \mathcal{A}S_{\mathfrak{S}}\subset S_{\mathfrak{S}}, where S_{\mathfrak{S}} = \{(x, y)\in\mathfrak{X}^*\times\mathfrak{X}^*:\|(x, y)\|\leq\mathfrak{S}\}, and the operator \mathcal{A} is given by (3.1).
By assumption (\mathcal{H}_2) together with (4.3), for (x, y)\in S_{\mathfrak{S}}, \; e\in[\mathfrak{q}, \mathfrak{p}], we have
\begin{eqnarray*} |H(e, x(e), y(e))| \leq |H(e, x(e), y(e))-H(e, 0, 0)|+|H(e, 0, 0)| \leq L_1 (\|x\|+\|y\|)+\mathfrak{Z}_1 \leq L_1 \mathfrak{S} + \mathfrak{Z}_1, \end{eqnarray*} |
\begin{eqnarray*} |\phi(e, x(e), y(e))| \leq |\phi(e, x(e), y(e))-\phi(e, 0, 0)|+|\phi(e, 0, 0)| \leq L_2 (\|x\|+\|y\|)+\mathfrak{Z}_2 \leq L_2 \mathfrak{S} + \mathfrak{Z}_2. \end{eqnarray*} |
\begin{eqnarray*} |\mathfrak{U}(e, x(e), y(e))| \leq |\mathfrak{U}(e, x(e), y(e))-\mathfrak{U}(e, 0, 0)|+|\mathfrak{U}(e, 0, 0)| \leq L_3 (\|x\|+\|y\|)+\mathfrak{Z}_3 \leq L_3 \mathfrak{S} + \mathfrak{Z}_3, \end{eqnarray*} |
\begin{eqnarray*} |\psi(e, x(e), y(e))| \leq |\psi(e, x(e), y(e))-\psi(e, 0, 0)|+|\psi(e, 0, 0)| \leq L_4 (\|x\|+\|y\|)+\mathfrak{Z}_4 \leq L_4 \mathfrak{S} + \mathfrak{Z}_4. \end{eqnarray*} |
By using (3.12) and (4.1), we obtain
\begin{eqnarray*} |\mathcal{A}_1(x, y)(e)|&\leq&\|x\|\mathcal{F}_0+(L_1\mathfrak{S}+\mathfrak{Z}_1)\mathcal{F}_1+(L_2\mathfrak{S}+\mathfrak{Z}_2)\mathcal{F}_2\\ &+&\|y\|\mathcal{F}_3+(L_3\mathfrak{S}+\mathfrak{Z}_3)\mathcal{F}_4+(L_4\mathfrak{S}+\mathfrak{Z}_4)\mathcal{F}_5\\ &\leq&\Big(\mathcal{F}_0+L_1\mathcal{F}_1+L_2\mathcal{F}_2+|\mathcal{F}_3+L_3\mathcal{F}_4+L_4\mathcal{F}_5\Big)\mathfrak{S}\\ &+&\Big(\mathfrak{Z}_1\mathcal{F}_1+\mathfrak{Z}_2\mathcal{F}_2+\mathfrak{Z}_3\mathcal{F}_4+\mathfrak{Z}_4\mathcal{F}_5\Big)\\ & = &(\Delta_1+\Delta_2)\mathfrak{S}+(\mathfrak{B}_1+\mathfrak{B}_2)\\ & = &\mathfrak{N}\mathfrak{S}+\mathfrak{B}, \end{eqnarray*} |
hence,
\begin{eqnarray} \|\mathcal{A}_1(x, y)\|&\leq&\mathfrak{N}\mathfrak{S}+\mathfrak{B}. \end{eqnarray} | (4.5) |
In the same way, by using (3.13) and (4.2), we obtain
\begin{eqnarray*} |\mathcal{A}_2(x, y)(e)|&\leq&\Big(\mathcal{G}_0+L_1\mathcal{G}_1+L_2\mathcal{G}_2+\mathcal{G}_3+L_3\mathcal{G}_4+L_4\mathcal{G}_5\Big)\mathfrak{S}\\ &+&\Big(\mathfrak{Z}_1|\mathcal{G}_1+\mathfrak{Z}_2\mathcal{G}_2+|\mathfrak{Z}_3\mathcal{G}_4+\mathfrak{Z}_4\mathcal{G}_5\Big)\\ & = &(\overline\Delta_1+\overline\Delta_2)\mathfrak{S}+(\overline{\mathfrak{B}}_1+\overline{\mathfrak{B}}_2)\\ & = &\overline{\mathfrak{N}} \mathfrak{S}+ \overline{\mathfrak{B}}, \end{eqnarray*} |
which lead to
\begin{eqnarray} \|\mathcal{A}_2(x, y)\|&\leq&\overline{\mathfrak{N}} \mathfrak{S}+ \overline{\mathfrak{B}}. \end{eqnarray} | (4.6) |
Consequently, from (4.5) and (4.6) we get
\begin{eqnarray*} \|\mathcal{A} (x, y)\|& \leq&(\mathfrak{N}\mathfrak{S}+\mathfrak{B})+(\overline{\mathfrak{N}} \mathfrak{S}+ \overline{\mathfrak{B}})\\ &\leq&(\mathfrak{N}+\overline{\mathfrak{N}})\mathfrak{S}+(\mathfrak{B}+\overline{\mathfrak{B}})\leq\mathfrak{S}. \end{eqnarray*} |
Therefore, \mathcal{A}S_{\mathfrak{S}} \subset S_{\mathfrak{S}}. Now, for any (x_1, y_1), (x_2, y_2)\in\mathfrak{X}^*\times\mathfrak{X}^*, \; e\in[\mathfrak{q}, \mathfrak{p}] and by using conditions (\mathcal{H}_2) , (3.12) and (3.13), we get
\begin{eqnarray*} &&\|\mathcal{A}_1 (x_1, y_1)-\mathcal{A}_1 (x_2, y_2)\| = \sup\limits_{t\in[\mathfrak{q}, \mathfrak{p}]}|\mathcal{A}_1 (x_1, y_1)(e)-\mathcal{A}_1 (x_2, y_2)(e)|\\ &\leq& \sup\limits_{e\in[\mathfrak{q}, \mathfrak{p}]}\Bigg\{|\alpha_1|\int_{\mathfrak{q}}^{e}\frac {(e-\kappa)^{\mathfrak{h}_{1}-1}}{\Gamma(\mathfrak{h}_{1})}|x_1(\kappa)-x_2(\kappa)|d\kappa\\ &+&|\beta_1|\int_{\mathfrak{q}}^{e}\frac {(e-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_{1}-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_{1})}\Big|H(\kappa, x_1(\kappa), y_1(\kappa))-H(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\\ &+&\int_{\mathfrak{q}}^{e}\frac {(e-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Big|\phi(\kappa, x_1(\kappa), y_1(\kappa))-\phi(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\\ &+&|\mathcal{V}_1(e)|\Big[|\alpha_1|\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1-1}}{\Gamma(\mathfrak{h}_1)}|x_1(\kappa)-x_2(\kappa)|d\kappa\\\nonumber &+&|\beta_1|\int_{\mathfrak{q}}^{\mathfrak{p}}\frac{(\mathfrak{p}-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1)}\Big|H(\kappa, x_1(\kappa), y_1(\kappa))-H(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\\\nonumber &+&\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Big|\phi(\kappa, x_1(\kappa), y_1(\kappa))-\phi(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\Big]\\\nonumber &+&|\mathcal{V}_2(e)|\Big[|\alpha_1|\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1-2}}{\Gamma(\mathfrak{h}_1-1)}|x_1(\kappa)-x_2(\kappa)|d\kappa\\\nonumber &+&|\beta_1|\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-2}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1-1)}\Big|H(\kappa, x_1(\kappa), y_1(\kappa))-H(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\\\nonumber &+&\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-2}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1-1)}\Big|\phi(\kappa, x_1(\kappa), y_1(\kappa))-\phi(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\Big]\\\nonumber &+&|\mathcal{V}_3(e)|\Big[|\alpha_1|\sum\limits_{i = 1}^{\tau-2}{|\eta_{i}|}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_1-1}}{\Gamma(\mathfrak{h}_1)}|x_1(\kappa)-x_2(\kappa)|d\kappa \\\nonumber &+&|\beta_1|\sum\limits_{i = 1}^{\tau-2}{|\eta_{i}|}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1)}\Big|H(\kappa, x_1(\kappa), y_1(\kappa))-H(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\\\nonumber &+&\sum\limits_{i = 1}^{\tau-2}{|\eta_{i}|}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Big|\phi(\kappa, x_1(\kappa), y_1(\kappa))-\phi(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\\\nonumber \end{eqnarray*} |
\begin{eqnarray*} &+&\int_{\mathfrak{q}}^{\mathfrak{p}}\Big(|\alpha_1|\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_1-1}}{\Gamma(\mathfrak{h}_1)}|x_1(u)-x_2(u)|du\\\nonumber &+&|\beta_1|\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{s}_1+\mathfrak{h}_1-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1)}\Big|H(u, x_1(u), y_1(u))-H(u, x_2(u), y_2(u))\Big|du\\\nonumber &+&\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Big|\phi(u, x_1(u), y_1(u))-\phi(u, x_2(u), y_2(u))\Big|du\Big)d\Lambda(\kappa)\Big]\\\nonumber &+&|\mathcal{V}_4(e)|\Big[|\alpha_2|\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2-1}}{\Gamma(\mathfrak{h}_2)}|y_1(\kappa)-y_2(\kappa)|d\kappa\\\nonumber &+&|\beta_2|\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2)}\Big|\mathfrak{U}(\kappa, x_1(\kappa), y_1(\kappa))-\mathfrak{U}(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\\\nonumber &+&\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Big|\psi(\kappa, x_1(\kappa), y_1(\kappa))-\psi(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\Big]\\\nonumber &+&|\mathcal{V}_5(e)|\Big[|\alpha_2|\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2-2}}{\Gamma(\mathfrak{h}_2-1)}|y_1(\kappa)-y_2(\kappa)|d\kappa\\\nonumber &+&|\beta_2|\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-2}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2-1)}\Big|\mathfrak{U}(\kappa, x_1(\kappa), y_1(\kappa))-\mathfrak{U}(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\\\nonumber &+&\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-2}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2-1)}\Big|\psi(\kappa, x_1(\kappa), y_1(\kappa))-\psi(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\Big]\\\nonumber &+&|\mathcal{V}_6(e)|\Big[|\alpha_2|\sum\limits_{i = 1}^{\tau-2}{|\eta_{i}|}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_2-1}}{\Gamma(\mathfrak{h}_2)}|y_1(\kappa)-y_2(\kappa)|d\kappa\\\nonumber &+&|\beta_2|\sum\limits_{i = 1}^{\tau-2}{|\eta_{i}|}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2)}\Big|\mathfrak{U}(\kappa, x_1(\kappa), y_1(\kappa))-\mathfrak{U}(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\\\nonumber &+&\sum\limits_{i = 1}^{\tau-2}{|\eta_{i}|}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Big|\psi(\kappa, x_1(\kappa), y_1(\kappa))-\psi(\kappa, x_2(\kappa), y_2(\kappa))\Big|d\kappa\\\nonumber &+&\int_{\mathfrak{q}}^{\mathfrak{p}}\Big(|\alpha_2|\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_2-1}}{\Gamma(\mathfrak{h}_2)}|y_1(u)-y_2(u)|du\\\nonumber &+&|\beta_2|\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{s}_2+\mathfrak{h}_2-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2)}\Big|\mathfrak{U}(u, x_1(u), y_1(u))-\mathfrak{U}(u, x_1(u), y_1(u))\Big|du\\ &+&\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Big|\psi(u, x_1(u), y_1(u))-\psi(u, x_2(u), y_2(u))\Big|du\Big)d\Lambda(\kappa)\Big]\Bigg\}\\\nonumber &\leq&\Bigg\{\mathcal{F}_0\|x_1-x_2\|+L_1\mathcal{F}_1\Big(\|x_1-x_2\|+\|y_1-y_2\|\Big)+L_2\mathcal{F}_2\Big(\|x_1-x_2\|+\|y_1-y_2\|\Big)\\\nonumber &+&\mathcal{F}_3\|y_1-y_2\|+L_3\mathcal{F}_4\Big(\|x_1-x_2\|+\|y_1-y_2\|\Big)+L_4\mathcal{F}_5\Big(\|x_1-x_2\|+\|y_1-y_2\|\Big)\Bigg\}\\\nonumber &\leq&\Big(\mathcal{F}_0+L_1\mathcal{F}_1+L_2\mathcal{F}_2+\mathcal{F}_3+L_3\mathcal{F}_4+L_4\mathcal{F}_5\Big)\Big(\|x_1-x_2\|+\|y_1-y_2\|\Big)\\ & = &\Big(\Delta_1+\Delta_2\Big)\Big(\|x_1-x_2\|+\|y_1-y_2\|\Big)\\ & = &\mathfrak{N}\Big(\|x_1-x_2\|+\|y_1-y_2\|\Big). \end{eqnarray*} |
Similarly
\begin{eqnarray*} \|\mathcal{A}_2 (x_1, y_1)-\mathcal{A}_2 (x_2, y_2)\|& = & \sup\limits_{e\in[\mathfrak{q}, \mathfrak{p}]}|\mathcal{A}_2 (x_1, y_1)(e)-\mathcal{A}_2 (x_2, y_2)(e)|\\ &\leq&\Big(\overline{\Delta}_1+\overline{\Delta}_2\Big)\Big(\|x_1-x_2\|+\|y_1-y_2\|\Big)\\ & = &\overline{\mathfrak{N}}\Big(\|x_1-x_2\|+\|y_1-y_2\|\Big). \end{eqnarray*} |
Consequently, we obtain
\begin{equation} \nonumber \|\mathcal{A} (x_1, y_1) - \mathcal{A} (x_2, y_2))\| \leq (\mathfrak{N}+\overline{\mathfrak{N}})(\|x_1-x_2\|+\|y_1-y_2\|), \end{equation} |
which implies that \mathcal{A} is a contraction operator by the assumption (4.4). Hence, by Banach's FPT, the operator \mathcal{A} has a unique FP, which is the unique solution of systems (1.1) and (1.2) on [\mathfrak{q}, \mathfrak{p}].
This section presents examples that illustrate our results.
Example 5.1. Assume the coupled system of FDEs given by
\begin{equation} \left\{ \begin{array}{ll} ^{RL}D^{19/11}\Big[(^cD^{39/21}+\frac{1}{414})x(t)+\frac{4}{407} I^{8/3}H(t, x(t), y(t))\Big] = \phi(t, x(t), y(t)), \\ ^{RL}D^{29/17}\Big[(^cD^{38/23}+\frac{3}{880})x(t)+\frac{1}{336} I^{16/5}\mathfrak{U}(t, x(t), y(t))\Big] = \psi(t, x(t), y(t)), \; t\in[-2, -1], \end{array} \right . \end{equation} | (5.1) |
with the BCs
\begin{equation} \left\{ \begin{array}{ll} x'(-2) = 0, \; x(-1) = 0, \; x'(-1) = 0, \; x(-2) = \sum\limits_{i = 1}^{3}\eta_i y(\xi_i)+\int_{-2}^{-1}y(\kappa)d\Lambda(\kappa) , \\ y'(-2) = 0, \; y(-1) = 0, \; y'(-1) = 0, \; y(-2) = \sum\limits_{i = 1}^{3}\eta_i x(\xi_i)+\int_{-2}^{-1}x(\kappa)d\Lambda(\kappa). \end{array} \right. \end{equation} | (5.2) |
where \mathfrak{q} = -2, \; \mathfrak{p} = -1, \; \mathfrak{f}_{1} = \frac{19}{11}, \; \mathfrak{h}_{1} = \frac{39}{21}, \; \mathfrak{f}_{2} = \frac{29}{17}, \mathfrak{h}_{2} = \frac{38}{23}, \; \mathfrak{s}_{1} = \frac{8}{3}, \; \mathfrak{s}_{2} = \frac{16}{5}, \; \alpha_1 = \frac{1}{414}, \; \beta_1 = \frac{4}{407}, \; \alpha_2 = \frac{3}{880}, \beta_2 = \frac{1}{336}, \; \xi_{1} = \frac{-7}{4}, \; \xi_{2} = \frac{-3}{2}, \; \xi_{3} = \frac{-5}{4}, \; \eta_{1} = -3, \; \eta_{2} = \frac{9}{4}, \; \eta_{3} = \frac{5}{2}
\begin{eqnarray*} H(t, x(t), y(t))& = &\frac{1}{\ln(5)}+\frac{\sin x(t)}{933}+\frac{y(t)}{(t^2+649)}, \\ \phi(t, x(t), y(t))& = &\frac{1}{66}+\frac{x(t)}{(t^8+22)^2}+\frac{y(t)|x(t)|}{800(1+|x(t)|)}, \\ \mathfrak{U}(t, x(t), y(t))& = &\frac{2y(t)}{23(1+y(t))}+\frac{\sin(2\pi x(t))}{900\pi}+\frac{y(t)}{\sqrt{t^4+2400}}, \end{eqnarray*} |
and
\begin{eqnarray*} \psi(t, x(t), y(t)) = \frac{1}{312+t^3}+\frac{\sin x(t)|\tan^{-1}y(t)|}{57\pi}+\frac{y(t)}{12(\sqrt[4]{t^2+6560})}. \end{eqnarray*} |
Using the given data, we have that \mathcal{F}_0\simeq 0.016050, \; \mathcal{F}_1\simeq 0.002735, \; \mathcal{F}_2\simeq 1.04237, \; \mathcal{F}_3\simeq 0.0294380, \; \mathcal{F}_4\simeq 0.000408, \; \mathcal{F}_5\simeq 1.26577, \; \mathcal{G}_0\simeq 0.017124, \mathcal{G}_1\simeq 0.002247, \; \mathcal{G}_2\simeq 0.918958, \; \mathcal{G}_3\simeq0.245213, \; \mathcal{G}_4\simeq0.006572, \; \mathcal{G}_5\simeq 16.2678. Clearly,
\begin{eqnarray*} |H(t, x(t), y(t))| &\leq& \frac{1}{\ln(5)}+\frac{1}{933} \|x\|+\frac{1}{650} \|y\|, \; \; |\phi(t, x(t), y(t))| \leq \frac{1}{66}+\frac{1}{529} \|x\|+\frac{1}{800} \|y\|, \end{eqnarray*} |
\begin{eqnarray*} |\mathfrak{U}(t, x(t), y(t))|&\leq& \frac{2}{23}+\frac{1}{450}\|x\|+\frac{1}{49}\|y\|, \; \; |\psi(t, x(t), y(t))| \leq \frac{1}{313}+\frac{1}{114} \|x\|+\frac{1}{108} \|y\|, \end{eqnarray*} |
with \varpi_0 = \frac{1}{\ln(5)}, \; \varpi_1 = \frac{1}{933}, \; \varpi_2 = \frac{1}{650}, \; \varepsilon_0 = \frac{1}{66}, \; \varepsilon_1 = \frac{1}{529}\; \varepsilon_2 = \frac{1}{800}, \; n_0 = \frac{2}{23}, \; n_1 = \frac{1}{450}, \; n_2 = \frac{1}{49}, \; m_0 = \frac{1}{313}, \; m_1 = \frac{1}{114}, and m_2 = \frac{1}{108}. Using (3.7) and (3.8), we find that {\bf O}_1\simeq 0.190707, \; {\bf O}_2\simeq 0.439600 and {\bf O} = \max\{{\bf O}_1, {\bf O}_2\}\simeq 0.439600 < 1. Therefore, by Theorem 3.1, the problems (5.1) and (5.2) have at least one solution on [-2, -1].
Example 5.2. Consider the system (5.1) with the coupled BCs (5.2) and
\begin{eqnarray*} H(a, x(a), y(a))& = &e^{-2a}\cos 2a+\frac{1}{70}\Big(\sin x(a)+y(a) \Big), \; \; a\in[-2, -1], \\ \phi(a, x(a), y(a))& = &30a^5+\frac{1}{510}\Big(\frac{|x(a)|}{1+|x(a)|}+\cos y(a) \Big), \; \; a\in[-2, -1], \\ \mathfrak{U}(a, x(a), y(a))& = &\frac{1}{4\sqrt{a^6+6399}}\Big(x(a)+\tan^{-1} y(a) \Big), \; \; a\in[-2, -1], \\ \psi(a, x(a), y(a))& = &2\sec a+\frac{1}{1800}\Big(\sin^2 x(a)+\frac{2|y(a)|}{1+|y(a)|} \Big), \; \; a\in[-2, -1]. \end{eqnarray*} |
Clearly,
\begin{eqnarray*} |H(a, x_1, y_1)-H(a, x_2, y_2)|&\leq& \frac{1}{70}(\|x_1-x_2\|+\|y_1-y_2\|), \\ |\phi(a, x_1, y_1)-\phi(a, x_2, y_2)|&\leq& \frac{1}{510}(\|x_1-x_2\|+\|y_1-y_2\|), \\ |\mathfrak{U}(a, x_1, y_1)-\mathfrak{U}((a, x_2, y_2)|&\leq& \frac{1}{320}(\|x_1-x_2\|+\|y_1-y_2\|), \\ |\psi(a, x_1, y_1)-\psi(a, x_2, y_2)|&\leq& \frac{1}{900}(\|x_1-x_2\|+\|y_1-y_2\|). \end{eqnarray*} |
Using the given data in Example (5.1), we find that \mathfrak{N}+\overline{\mathfrak{N}}\simeq0.331246 < 1. Thus, in view of Theorem 4.1 the problem (5.1) has a unique solution on [-2, -1] .
We managed to employ Leray-Schauder alternative, Banach, and the Krasnoselskii fixed point theory to study the Existence and Uniqueness of solutions for a nonlinear coupled system of fractional differential equations involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions. The system under study is a generalized version of many recent studied system. We used some examples to illustrate the results. Potential future work could be to investigate our results based on other fractional derivates such as, e.g., Abu-Shady-Kaabar fractional derivative, Katugampola derivative, and conformable derivative.
The authors declare that there are no competing interests.
Lemma A.1. Let H, \Phi, U, \Psi \in C(\mathfrak{q}, \mathfrak{p})\cap L(\mathfrak{q}, \mathfrak{p}), the solution of the linear system of FDEs:
\begin{eqnarray} \left\{ \begin{array}{rcl} ^{RL}D^{\mathfrak{f}_{1}}\Big[(^cD^{\mathfrak{h}_{1}}+\alpha_{1})x(t)+\beta_{1} I^{\mathfrak{s}_{1}}H^*(t)\Big] = \Phi(t), \; 1 < \mathfrak{h}_{1}, \mathfrak{f}_{1}\leq 2, \; t\in (\mathfrak{q}, \mathfrak{p}), \\ ^{RL}D^{\mathfrak{f}_{2}}\Big[(^cD^{\mathfrak{h}_{2}}+\alpha_{2})y(t)+\beta_{2} I^{\mathfrak{s}_{2}}\mathfrak{U}^*(t)\Big] = \Psi(t), \; 1 < \mathfrak{h}_{2}, \mathfrak{f}_{2}\leq 2, \; t\in (\mathfrak{q}, \mathfrak{p}), \end{array} \right. \end{eqnarray} | (A.1) |
with the BCs (1.2) is equivalent to the system:
\begin{eqnarray} x(t)& = &-\alpha_1\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{h}_{1}-1}}{\Gamma(\mathfrak{h}_{1})}x(\kappa)d\kappa-\beta_1\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_{1}-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_{1})}H^*(\kappa)d\kappa+\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Phi(\kappa)d\kappa\\ &+&\mathcal{V}_1(t)\Big[\alpha_1\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1-1}}{\Gamma(\mathfrak{h}_1)}x(\kappa)d\kappa+\beta_1\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1)}H^*(\kappa)d\kappa -\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Phi(\kappa)d\kappa\Big]\\ &+&\mathcal{V}_{2}(t)\Big[\alpha_1\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1-2}}{\Gamma(\mathfrak{h}_1-1)}x(\kappa)d\kappa+\beta_1\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-2}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1-1)}H^*(\kappa)d\kappa-\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-2}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1-1)}\Phi(\kappa)d\kappa\Big]\\ &+&\mathcal{V}_{3}(t)\Big[-\alpha_1\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_1-1}}{\Gamma(\mathfrak{h}_1)}x(\kappa)d\kappa -\beta_1\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1)}H^*(\kappa)d\kappa\\ &+&\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Phi(\kappa)d\kappa\\ &+&\int_{\mathfrak{q}}^{\mathfrak{p}}\Big(-\alpha_1\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_1-1}}{\Gamma(\mathfrak{h}_1)}x(u)du -\beta_1\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{s}_1+\mathfrak{h}_1-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1)}H^*(u)du\\ &+&\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Phi(u)du\Big)d\Lambda(\kappa)\Big] +\mathcal{V}_{4}(t)\Big[\alpha_2\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2-1}}{\Gamma(\mathfrak{h}_2)}y(\kappa)d\kappa\\ &+&\beta_2\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2)}\mathfrak{U}^*(\kappa)d\kappa -\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Psi(\kappa)d\kappa\Big] +\mathcal{V}_{5}(t)\Big[\alpha_2\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2-2}}{\Gamma(\mathfrak{h}_2-1)}y(\kappa)d\kappa\\ &+&\beta_2\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-2}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2-1)}\mathfrak{U}^*(\kappa)d\kappa -\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-2}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2-1)}\Psi(\kappa)d\kappa\Big]\\ &+&\mathcal{V}_{6}(t)\Big[-\alpha_2\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_2-1}}{\Gamma(\mathfrak{h}_2)}y(\kappa)d\kappa -\beta_2\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2)}\mathfrak{U}^*(\kappa)d\kappa\\ &+&\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Psi(\kappa)d\kappa \\ &+&\int_{\mathfrak{q}}^{\mathfrak{p}}\Big(-\alpha_2\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_2-1}}{\Gamma(\mathfrak{h}_2)}y(u)du -\beta_2\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{s}_2+\mathfrak{h}_2-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2)}\mathfrak{U}^*(u)du\\ &+&\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Psi(u)du\Big)d\Lambda(\kappa)\Big], \end{eqnarray} | (A.2) |
\begin{eqnarray} y(t)& = &-\alpha_2\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{h}_{2}-1}}{\Gamma(\mathfrak{h}_{2})}y(\kappa)d\kappa-\beta_2\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_{2}-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_{2})}\mathfrak{U}^*(\kappa)d\kappa+\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Psi(\kappa)d\kappa\\ &+&\mathcal{W}_{1}(t)\Big[\alpha_1\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1-1}}{\Gamma(\mathfrak{h}_1)}x(\kappa)d\kappa+\beta_1\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1)}H^*(\kappa)d\kappa -\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Phi(\kappa)d\kappa\Big]\\ &+&\mathcal{W}_{2}(t)\Big[\alpha_1\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1-2}}{\Gamma(\mathfrak{h}_1-1)}x(\kappa)d\kappa+\beta_1\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-2}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1-1)}H^*(\kappa)d\kappa-\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-2}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1-1)}\Phi(\kappa)d\kappa\Big]\\ &+&\mathcal{W}_{3}(t)\Big[-\alpha_1\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_1-1}}{\Gamma(\mathfrak{h}_1)}x(\kappa)d\kappa -\beta_1\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1)}H^*(\kappa)d\kappa \\ &+&\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Phi(\kappa)d\kappa\\ &+&\int_{\mathfrak{q}}^{\mathfrak{p}}\Big(-\alpha_1\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_1-1}}{\Gamma(\mathfrak{h}_1)}x(u)du -\beta_1\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{s}_1+\mathfrak{h}_1-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1)}H(u)du\\ &+&\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Phi(u)du\Big)d\Lambda(\kappa)\Big] +\mathcal{W}_{4}(t)\Big[\alpha_2\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2-1}}{\Gamma(\mathfrak{h}_2)}y(\kappa)d\kappa\\ &+&\beta_2\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2)}\mathfrak{U}^*(\kappa)d\kappa -\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Psi(\kappa)d\kappa\Big] +\mathcal{W}_{5}(t)\Big[\alpha_2\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2-2}}{\Gamma(\mathfrak{h}_2-1)}y(\kappa)d\kappa\\&+&\beta_2\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-2}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2-1)}\mathfrak{U}^*(\kappa)d\kappa -\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-2}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2-1)}\Psi(\kappa)d\kappa\Big]\\ &+&\mathcal{W}_{6}(t)\Big[-\alpha_2\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_2-1}}{\Gamma(\mathfrak{h}_2)}y(\kappa)d\kappa -\beta_2\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2)}\mathfrak{U}^*(\kappa)d\kappa\\ &+&\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Psi(\kappa)d\kappa\\ &+&\int_{\mathfrak{q}}^{\mathfrak{p}}\Big(-\alpha_2\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_2-1}}{\Gamma(\mathfrak{h}_2)}y(u)du -\beta_2\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{s}_2+\mathfrak{h}_2-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2)}\mathfrak{U}^*(u)du\\ &+&\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Psi(u)du\Big)d\Lambda(\kappa)\Big], \end{eqnarray} | (A.3) |
where
\begin{eqnarray} \mathcal{V}_i(t)& = & \mathfrak{B}_{1}(t)\rho_i+\mathfrak{Q}_{1}(t)\omega_i+\epsilon_{i}, \; i = 1, ..., 6, \end{eqnarray} | (A.4) |
\begin{eqnarray} \mathcal{W}_j(t)& = & \mathfrak{B}_{2}(t)\tau_j+\mathfrak{Q}_{2}(t)\lambda_j+\delta_{j}, \; j = 1, ..., 6, \end{eqnarray} | (A.5) |
\begin{eqnarray} \mathfrak{B}_{\ell}(t) = \frac{(t-\mathfrak{q})^{\mathfrak{h}_\ell+\mathfrak{f}_\ell-1}\Gamma(\mathfrak{f}_\ell)}{\Gamma(\mathfrak{h}_\ell+\mathfrak{f}_\ell)}, \; \mathfrak{Q}_{\ell}(t) = \frac{(t-\mathfrak{q})^{\mathfrak{h}_\ell+\mathfrak{f}_\ell-2}\Gamma(\mathfrak{f}_\ell-1)}{\Gamma(\mathfrak{h}_\ell+\mathfrak{f}_\ell-1)}, \; \ell = 1, 2, \end{eqnarray} | (A.6) |
\begin{eqnarray} \left\{ \begin{array}{rcl} \rho_{1}& = & \frac{(A_4A^{2}_{7}-A_4)\mu_3+A_4A_{7}\mu_1}{\sigma}, \; \rho_{2} = \frac{(-A_2A^{2}_{7}+A_6A_7+A_2)\mu_3+(-A_2A_{7}+A_6)\mu_1}{\sigma}, \\ \rho_{3}& = & \frac{A_4A_{7}\mu_3+A_4\mu_1}{\sigma}, \; \rho_{4} = \frac{-A_4\mu_1}{\sigma}, \; \rho_{5} = \frac{A_4\mu_2}{\sigma}, \; \rho_{6} = \frac{A_4\mu_3}{\sigma}, \end{array} \right. \end{eqnarray} | (A.7) |
\begin{eqnarray} \left\{ \begin{array}{rcl} \omega_{1}& = & \frac{-(A_3A^{2}_{7}-A_3)\mu_3-A_3A_{7}\mu_1}{\sigma}, \; \omega_{2} = \frac{(A_1A^{2}_{7}-A_5A_7-A_1)\mu_3+(A_1A_{7}-A_5)\mu_1}{\sigma}, \\ \omega_{3}& = & \frac{-(A_3A_{7}\mu_3+A_3\mu_1)}{\sigma}, \; \omega_{4} = \frac{A_3\mu_1}{\sigma}, \; \omega_{5} = \frac{-A_3\mu_2}{\sigma}, \; \omega_{6} = \frac{-A_3\mu_3}{\sigma}, \end{array} \right. \end{eqnarray} | (A.8) |
\begin{eqnarray} \left\{ \begin{array}{rcl} \epsilon_{1}& = & \frac{\nu_1A_{7}\mu_3+\nu_1\mu_1}{\sigma}, \; \epsilon_{2} = \frac{-(\nu_2A_{7}\mu_3+\nu_2\mu_1)}{\sigma}, \\ \epsilon_{3}& = & \frac{-(\nu_3A_{7}\mu_3+\nu_3\mu_1)}{\sigma}, \; \epsilon_{4} = \frac{\nu_3\mu_1}{\sigma}, \; \epsilon_{5} = \frac{-\nu_3\mu_2}{\sigma}, \; \epsilon_{6} = \frac{-\nu_3\mu_3}{\sigma}, \end{array} \right. \end{eqnarray} | (A.9) |
\begin{eqnarray} \left\{ \begin{array}{rcl} \tau_{1}& = & \frac{-B_4\nu_1}{\sigma}, \; \tau_{2} = \frac{B_4\nu_2}{\sigma}, \; \tau_{3} = \frac{B_4\nu_3}{\sigma}, \; \tau_{4} = \frac{(A^{2}_{7}B_4-B_4)\nu_3+A_7B_4\nu_1}{\sigma}, \\ \tau_{5}& = & \frac{(-A^{2}_{7}B_2+A_7B_6+B_2)\nu_3-(A_7B_2-B_6)\nu_1}{\sigma}, \; \tau_{6} = \frac{A_7B_4\nu_3+B_4\nu_1}{\sigma}, \end{array} \right. \end{eqnarray} | (A.10) |
\begin{eqnarray} \left\{ \begin{array}{rcl} \lambda_{1}& = & \frac{B_3\nu_1}{\sigma}, \; \lambda_{2} = \frac{-B_3\nu_2}{\sigma}, \; \lambda_{3} = \frac{-B_3\nu_3}{\sigma}, \; \lambda_{4} = \frac{-(A^{2}_{7}B_3-B_3)\nu_3-A_7B_3\nu_1}{\sigma}, \\ \lambda_{5}& = & \frac{(A^{2}_{7}B_1-A_7B_5-B_1)\nu_3+(A_7B_1-B_5)\nu_1}{\sigma}, \; \lambda_{6} = \frac{-A_7B_3\nu_3-B_3\nu_1}{\sigma}, \end{array} \right. \end{eqnarray} | (A.11) |
\begin{eqnarray} \left\{ \begin{array}{rcl} \delta_{1}& = & \frac{\mu_3\nu_1}{\sigma}, \; \delta_{2} = \frac{-\mu_3\nu_2}{\sigma}, \; \delta_{3} = \frac{-\mu_3\nu_3}{\sigma}, \; \delta_{4} = \frac{\mu_1A_7\nu_3+\mu_1\nu_1}{\sigma}, \\ \delta_{5}& = & \frac{-\mu_2A_7\nu_3-\mu_2\nu_1}{\sigma}, \; \delta_{6} = \frac{-\mu_3A_7\nu_3-\mu_3\nu_1}{\sigma}, \end{array} \right. \end{eqnarray} | (A.12) |
\begin{eqnarray} \mu_1& = &B_3B_6-B_4B_5, \; \mu_2 = B_1B_6-B_2B_5, \; \mu_3 = B_1B_4-B_2B_3, \end{eqnarray} | (A.13) |
\begin{eqnarray} \nu_1& = &A_3A_6-A_4A_5, \; \nu_2 = A_1A_6-A_2A_5, \; \nu_3 = A_1A_4-A_2A_3, \end{eqnarray} | (A.14) |
\begin{eqnarray} \left\{ \begin{array}{rcl} A_{1}& = & \frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{h}_1+\mathfrak{f}_1-1}\Gamma(\mathfrak{f}_1)}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}, \ A_{2} = \frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{h}_1+\mathfrak{f}_1-2}\Gamma(\mathfrak{f}_1-1)}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1-1)}, \\ A_{3}& = & \frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{h}_1+\mathfrak{f}_1-2}\Gamma(\mathfrak{f}_1)}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1-1)}, \ A_{4} = \frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{h}_1+\mathfrak{f}_1-3}\Gamma(\mathfrak{f}_1-1)}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1-2)}, \\ A_{5}& = & \sum\limits_{i = 1}^{\tau-2}\eta_{i}\frac{(\xi_{i}-\mathfrak{q})^{\mathfrak{h}_1+\mathfrak{f}_1-1}\Gamma(\mathfrak{f}_1)}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}+\int_{\mathfrak{q}}^{\mathfrak{p}}\frac{(\kappa-\mathfrak{q})^{\mathfrak{h}_1+\mathfrak{f}_1-1}\Gamma(\mathfrak{f}_1)}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}d\Lambda(\kappa), \\ A_{6}& = & \sum\limits_{i = 1}^{\tau-2}\eta_{i}\frac{(\xi_{i}-\mathfrak{q})^{\mathfrak{h}_1+\mathfrak{f}_1-2}\Gamma(\mathfrak{f}_1-1)}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1-1)}+\int_{\mathfrak{q}}^{\mathfrak{p}}\frac{(\kappa-\mathfrak{q})^{\mathfrak{h}_1+\mathfrak{f}_1-2}\Gamma(\mathfrak{f}_1-1)}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1-1)}d\Lambda(\kappa), \; \\ A_{7}& = & \sum\limits_{i = 1}^{\tau-2}\eta_{i}+\int_{\mathfrak{q}}^{\mathfrak{p}}d\Lambda(\kappa), \end{array} \right. \end{eqnarray} | (A.15) |
\begin{eqnarray} \left\{ \begin{array}{rcl} B_{1}& = & \frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{h}_2+\mathfrak{f}_2-1}\Gamma(\mathfrak{f}_2)}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}, \ B_{2} = \frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{h}_2+\mathfrak{f}_2-2}\Gamma(\mathfrak{f}_2-1)}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2-1)}, \\ B_{3}& = & \frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{h}_2+\mathfrak{f}_2-2}\Gamma(\mathfrak{f}_2)}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2-1)}, \ B_{4} = \frac{(\mathfrak{p}-\mathfrak{q})^{\mathfrak{h}_2+\mathfrak{f}_2-3}\Gamma(\mathfrak{f}_2-1)}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2-2)}, \\ B_{5}& = & \sum\limits_{i = 1}^{\tau-2}\eta_{i}\frac{(\xi_{i}-\mathfrak{q})^{\mathfrak{h}_2+\mathfrak{f}_2-1}\Gamma(\mathfrak{f}_2)}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}+\int_{\mathfrak{q}}^{\mathfrak{p}}\frac{(\kappa-\mathfrak{q})^{\mathfrak{h}_2+\mathfrak{f}_2-1}\Gamma(\mathfrak{f}_2)}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}d\Lambda(\kappa), \\ B_{6}& = & \sum\limits_{i = 1}^{\tau-2}\eta_{i}\frac{(\xi_{i}-\mathfrak{q})^{\mathfrak{h}_2+\mathfrak{f}_2-2}\Gamma(\mathfrak{f}_2-1)}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2-1)}+\int_{\mathfrak{q}}^{\mathfrak{p}}\frac{(\kappa-\mathfrak{q})^{\mathfrak{h}_2+\mathfrak{f}_2-2}\Gamma(\mathfrak{f}_2-1)}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2-1)}d\Lambda(\kappa), \end{array} \right. \end{eqnarray} | (A.16) |
and it is assumed that
\begin{eqnarray} \sigma = (\nu_3A^{2}_{7}+\nu_1A_7-\nu_3)\mu_3+(\nu_3A_{7}+\nu_1)\mu_1\neq 0, \end{eqnarray} | (A.17) |
Proof. Solving the FDE (A.1) in a standard manner and using Lemmas 2.1 and 2.2, we get
\begin{eqnarray} x(t)& = &-\alpha_1\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{h}_1-1}}{\Gamma(\mathfrak{h}_1)}x(\kappa)d\kappa-\beta_1\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1)}H^*(\kappa)d\kappa+\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Phi(\kappa)d\kappa\\ &+&c_{1}\frac{(t-\mathfrak{q})^{\mathfrak{h}_1+\mathfrak{f}_1-1}\Gamma(\mathfrak{f}_1)}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}+c_{2}\frac{(t-\mathfrak{q})^{\mathfrak{h}_1+\mathfrak{f}_1-2}\Gamma(\mathfrak{f}_1-1)}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1-1)} +c_{3}+c_{4}(t-\mathfrak{q}), \end{eqnarray} | (A.18) |
\begin{eqnarray} x'(t)& = &-\alpha_1\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{h}_1-2}}{\Gamma(\mathfrak{h}_1-1)}x(\kappa)d\kappa-\beta_1\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-2}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1-1)}H^*(\kappa)d\kappa+\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-2}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1-1)}\Phi(\kappa)d\kappa\\ &+&c_{1}\frac{(t-\mathfrak{q})^{\mathfrak{h}_1+\mathfrak{f}_1-2}\Gamma(\mathfrak{f}_1)}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1-1)}+c_{2}\frac{(t-\mathfrak{q})^{\mathfrak{h}_1+\mathfrak{f}_1-3}\Gamma(\mathfrak{f}_1-1)}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1-2)} +c_{4}. \end{eqnarray} | (A.19) |
\begin{eqnarray} y(t)& = &-\alpha_2\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{h}_2-1}}{\Gamma(\mathfrak{h}_2)}y(\kappa)d\kappa-\beta_2\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2)}\mathfrak{U}^*(\kappa)d\kappa+\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Psi(\kappa)d\kappa\\ &+&b_{1}\frac{(t-\mathfrak{q})^{\mathfrak{h}_2+\mathfrak{f}_2-1}\Gamma(\mathfrak{f}_2)}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}+b_{2}\frac{(t-\mathfrak{q})^{\mathfrak{h}_2+\mathfrak{f}_2-2}\Gamma(\mathfrak{f}_2-1)}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2-1)} +b_{3}+b_{4}(t-\mathfrak{q}), \end{eqnarray} | (A.20) |
\begin{eqnarray} y'(t)& = &-\alpha_2\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{h}_2-2}}{\Gamma(\mathfrak{h}_2-1)}y(\kappa)d\kappa-\beta_2\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-2}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2-1)}\mathfrak{U}^*(\kappa)d\kappa+\int_{\mathfrak{q}}^{t}\frac {(t-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-2}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2-1)}\Psi(\kappa)d\kappa\\ &+&b_{1}\frac{(t-\mathfrak{q})^{\mathfrak{h}_2+\mathfrak{f}_2-2}\Gamma(\mathfrak{f}_2)}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2-1)}+b_{2}\frac{(t-\mathfrak{q})^{\mathfrak{h}_2+\mathfrak{f}_2-3}\Gamma(\mathfrak{f}_2-1)}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2-2)} +b_{4}. \end{eqnarray} | (A.21) |
c_i, b_i \in \mathbb{R}, i = 1, \cdots, 4 are some unknown arbitrary constants.
Using the BCs (1.2) in Eqs (A.18)–(A.21), together with notations (A.15) and (A.16), we obtain c_4 = 0, \; b_4 = 0, and a system of equations in c_i, \; b_i(i = 1, 2, 3) given by
\begin{eqnarray} \left\{ \begin{array}{rcl} A_1c_1+A_2c_2+c_3& = &K_1, \\ B_1b_1+B_2b_2+b_3& = &E_1, \\ A_3c_1+A_4c_2& = &K_2, \\ B_3b_1+B_4b_2& = &E_2, \\ c_3-B_5b_1-B_6b_2-A_7b_3& = &E_3, \\ b_3-A_5c_1-A_6c_2-A_7c_3& = &K_3, \end{array} \right. \end{eqnarray} | (A.22) |
where A_{i}\; (i = 1, ..., 7), \; B_{j}\; (j = 1, ..., 6) are given by (A.15) and (A.16) and K_{i}, E_{i}, i = 1, 2, 3, are defined by
\begin{eqnarray} K_{1}& = &\alpha_1\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1-1}}{\Gamma(\mathfrak{h}_1)}x(\kappa)d\kappa+\beta_1\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1)}H^*(\kappa)d\kappa-\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Phi(\kappa)d\kappa, \\ K_{2}& = &\alpha_1\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1-2}}{\Gamma(\mathfrak{h}_1-1)}x(\kappa)d\kappa+\beta_1\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-2}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1-1)}H^*(\kappa)d\kappa-\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-2}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1-1)}\Phi(\kappa)d\kappa, \\ K_{3}& = &-\alpha_1\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_1-1}}{\Gamma(\mathfrak{h}_1)}x(\kappa)d\kappa-\beta_1\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{s}_1+\mathfrak{h}_1-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1)}H^*(\kappa)d\kappa\\ &+&\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Phi(\kappa)d\kappa +\int_{\mathfrak{q}}^{\mathfrak{p}}\Big(-\alpha_1\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_1-1}}{\Gamma(\mathfrak{h}_1)}x(u)du\\ &-&\beta_1\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{s}_1+\mathfrak{h}_1-1}}{\Gamma(\mathfrak{s}_1+\mathfrak{h}_1)}H^*(u)du +\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_1+\mathfrak{f}_1-1}}{\Gamma(\mathfrak{h}_1+\mathfrak{f}_1)}\Phi(u)du\Big)d\Lambda(\kappa), \\ E_{1}& = &\alpha_2\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2-1}}{\Gamma(\mathfrak{h}_2)}y(\kappa)d\kappa+\beta_2\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2)}\mathfrak{U}^*(\kappa)d\kappa-\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Psi(\kappa)d\kappa, \\ E_{2}& = &\alpha_2\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2-2}}{\Gamma(\mathfrak{h}_2-1)}y(\kappa)d\kappa+\beta_2\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-2}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2-1)}\mathfrak{U}^*(\kappa)d\kappa-\int_{\mathfrak{q}}^{\mathfrak{p}}\frac {(\mathfrak{p}-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-2}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2-1)}\Psi(\kappa)d\kappa, \\ E_{3}& = &-\alpha_2\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_2-1}}{\Gamma(\mathfrak{h}_2)}y(\kappa)d\kappa-\beta_2\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{s}_2+\mathfrak{h}_2-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2)}\mathfrak{U}^*(\kappa)d\kappa\\ &+&\sum\limits_{i = 1}^{\tau-2}{\eta_{i}}\int_{\mathfrak{q}}^{\xi_{i}}\frac {(\xi_{i}-\kappa)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Psi(\kappa)d\kappa +\int_{\mathfrak{q}}^{\mathfrak{p}}\Big(-\alpha_2\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_2-1}}{\Gamma(\mathfrak{h}_2)}y(u)du\\ &-&\beta_2\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{s}_2+\mathfrak{h}_2-1}}{\Gamma(\mathfrak{s}_2+\mathfrak{h}_2)}\mathfrak{U}^*(u)du +\int_{\mathfrak{q}}^{\kappa}\frac {(\kappa-u)^{\mathfrak{h}_2+\mathfrak{f}_2-1}}{\Gamma(\mathfrak{h}_2+\mathfrak{f}_2)}\Psi(u)du\Big)d\Lambda(\kappa), \end{eqnarray} | (A.23) |
Solving the system (A.22) for c_i, \; b_i (i = 1, 2, 3) , we find that
\begin{eqnarray} c_1& = &\rho_1K1+\rho_2K_2+\rho_3K_3+\rho_4E_1+\rho_5E_2+\rho_6E_3, \end{eqnarray} | (A.24) |
\begin{eqnarray} c_2& = &\omega_1K1+\omega_2K_2+\omega_3K_3+\omega_4E_1+\omega_5E_2+\omega_6E_3, \end{eqnarray} | (A.25) |
\begin{eqnarray} c_3& = &\epsilon_1K1+\epsilon_2K_2+\epsilon_3K_3+\epsilon_4E_1+\epsilon_5E_2+\epsilon_6E_3, \end{eqnarray} | (A.26) |
\begin{eqnarray} b_1& = &\tau_1K1+\tau_2K_2+\tau_3K_3+\tau_4E_1+\tau_5E_2+\tau_6E_3, \end{eqnarray} | (A.27) |
\begin{eqnarray} b_1& = &\lambda_1K1+\lambda_2K_2+\lambda_3K_3+\lambda_4E_1+\lambda_5E_2+\rho_6E_3, \end{eqnarray} | (A.28) |
\begin{eqnarray} b_1& = &\delta_1K1+\delta_2K_2+\delta_3K_3+\delta_4E_1+\delta_5E_2+\delta_6E_3, \end{eqnarray} | (A.29) |
where \rho_{i}, \; \omega_i, \; \epsilon_i, \; \tau_i, \; \lambda_i and \delta_{i}\; (i = 1, ..., 6) are given by (A.7)–(A.12) respectively.
Inserting the values of c_1, c_2, c_3, c_4, b_1, b_2, b_{3} and b_{4} in (A.18) and (A.20), we get (A.2) and (A.3). The converse follows by direct computation. This completes the proof.
[1] |
Y. Ding, Z. Wang, H. Ye, Optimal control of a fractional-order HIV-immune system with memory, IEEE T. Contr. Syst. T., 20 (2012), 763–769. https://doi.org/10.1109/TCST.2011.2153203 doi: 10.1109/TCST.2011.2153203
![]() |
[2] |
A. Carvalho, C. M. A. Pinto, A delay fractional order model for the co-infection of malaria and HIV/AIDS, Int. J. Dynam. Control, 5 (2017), 168–186. https://doi.org/10.1007/s40435-016-0224-3 doi: 10.1007/s40435-016-0224-3
![]() |
[3] |
M. Javidi, B. Ahmad, Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system, Ecol. Model., 318 (2015), 8–18. https://doi.org/10.1016/j.ecolmodel.2015.06.016 doi: 10.1016/j.ecolmodel.2015.06.016
![]() |
[4] |
V. V. Tarasova, V. E. Tarasov, Logistic map with memory from economic model, Chaos Soliton. Fract., 95 (2017), 84–91. https://doi.org/10.1016/j.chaos.2016.12.012 doi: 10.1016/j.chaos.2016.12.012
![]() |
[5] |
D. Wang, X. L. Ding, B. Ahmad, Existence and stability results for multi-time scale stochastic fractional neural networks, Adv. Differ. Equ., 2019 (2019), 441. https://doi.org/10.1186/s13662-019-2368-x doi: 10.1186/s13662-019-2368-x
![]() |
[6] |
M. S. Ali, G. Narayanan, V. Shekher, A. Alsaedi, B. Ahmad, Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays, Commun. Nonlinear Sci., 83 (2020), 105088. https://doi.org/10.1016/j.cnsns.2019.105088 doi: 10.1016/j.cnsns.2019.105088
![]() |
[7] |
F. Zhang, G. Chen, C. Li, J. Kurths, Chaos synchronization in fractional differential systems, Philos. T. R. Soc. A, 371 (2013), 20120155. https://doi.org/10.1098/rsta.2012.0155 doi: 10.1098/rsta.2012.0155
![]() |
[8] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[9] | K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Springer Science & Business Media, 2010. |
[10] | A. V. Bitsadze, A. A. Samarskii, On some simple generalizations of linear elliptic boundary problems, Sov. Math. Dokl., 10 (1969), 398–400. |
[11] |
H. Gunerhan, H. Rezazadeh, W. Adel, M. Hatami, K. M. Sagayam, H. Emadifar, et al., Analytical approximate solution of fractional order smoking epidemic model, Adv. Mech. Eng., 14 (2022), 9. https://doi.org/10.1177/16878132221123888 doi: 10.1177/16878132221123888
![]() |
[12] |
P. Junswang, Z. Sabir, M. A. Z. Raja, W. Adel, T. Botmart, Intelligent networks for chaotic fractional-order nonlinear financial model, CMC-Comput. Mater. Con., 72 (2022), 5015–5030. https://doi.org/10.32604/cmc.2022.027523 doi: 10.32604/cmc.2022.027523
![]() |
[13] |
A. El-Mesady, A. Elsonbaty, W. Adel, On nonlinear dynamics of a fractional order monkeypox virus model, Chaos Soliton. Fract., 164 (2022), 112716. https://doi.org/10.1016/j.chaos.2022.112716 doi: 10.1016/j.chaos.2022.112716
![]() |
[14] |
M. Izadi, S. Yuzbası, W. Adel, Accurate and efficient matrix techniques for solving the fractional Lotka-Volterra population model, Physica A, 600 (2022), 127558. https://doi.org/10.1016/j.physa.2022.127558 doi: 10.1016/j.physa.2022.127558
![]() |
[15] |
B. Ahmad, S. K. Ntouyas, Some fractional-order one-dimensional semi-linear problems under nonlocal integral boundary conditions, RACSAM, 110 (2016), 159–172. https://doi.org/10.1007/s13398-015-0228-4 doi: 10.1007/s13398-015-0228-4
![]() |
[16] |
M. Subramanian, J. Alzabut, M. I. Abbas, C. Thaiprayoon, W. Sudsutad, Existence of solutions for coupled higher-order fractional integro-differential equations with nonlocal integral and multi-point boundary conditions depending on lower-order fractional derivatives and integrals, Mathematics, 10 (2022), 1823. https://doi.org/10.3390/math10111823 doi: 10.3390/math10111823
![]() |
[17] | H. Fazli, J. J. Nieto, F. Bahrami, On the existence and uniqueness results for nonlinear sequential fractional differential equations, Appl. Comput. Math., 17 (2018), 36–47. |
[18] |
X. Su, S. Zhang, L. Zhang, Periodic boundary value problem involving sequential fractional derivatives in Banach space, AIMS Math., 5 (2020), 7510–7530. https://doi.org/10.3934/math.2020481 doi: 10.3934/math.2020481
![]() |
[19] |
J. R. L. Webb, G. Infante, Positive solutions of nonlocal boundary value problems involving integral conditions, Nonlinear Differ. Equ. Appl., 15 (2008), 45–67. https://doi.org/10.1007/s00030-007-4067-7 doi: 10.1007/s00030-007-4067-7
![]() |
[20] | E. Ok, Probability theory with economic applications, SUNY-Oswego, Department of Economics, 2014. |
[21] | D. Anevski, Riemann-stieltjes integrals, Sweden: Mathematical Sciences, 2012. |
[22] | Z. Dahmani, M. A. Abdellaoui, M. Houas, Coupled systems of fractional integro-differential equations involving several functions, Theor. Appl. Math. Comput. Sci., 5 (2015), 53–61. |
[23] |
R. Arul, P. Karthikeyan, K. Karthikeyan, P. Geetha, Y. Alruwaily, L. Almaghamsi, et al., On nonlinear \Psi-Caputo fractional integro differential equations involving non-instantaneous conditions, Symmetry, 15 (2023), 5. https://doi.org/10.3390/sym15010005 doi: 10.3390/sym15010005
![]() |
[24] |
R. Arul, P. Karthikeyan, K. Karthikeyan, P. Geetha, Y. Alruwaily, L. Almaghamsi, et al., On \Psi-Hilfer fractional integro-diffrential equations with non-instantaneous impulsive conditions, Fractal Fract., 6 (2022), 732. https://doi.org/10.3390/fractalfract6120732 doi: 10.3390/fractalfract6120732
![]() |
[25] |
R. Arul, P. Karthikeyan, K. Karthikeyan, Y. Alruwaily, L. Almaghamsi, E. El-hady, Sequential Caputo-Hadamard fractional differrential equations with boundary conditions in Banach spaces, Fractal Fract., 6 (2022), 730. https://doi.org/10.3390/fractalfract6120730 doi: 10.3390/fractalfract6120730
![]() |
[26] |
Y. Zhou, Y. Zhang, Noether symmetries for fractional generalized Birkhoffian systems in terms of classical and combined Caputo derivatives, Acta Mech., 231 (2020), 3017–3029. https://doi.org/10.1007/s00707-020-02690-y doi: 10.1007/s00707-020-02690-y
![]() |
[27] | A. Alsaedi, S. Aljoudi, B. Ahmad, Existence of solutions for Riemann-Liouville type coupled systems of fractional integro-differential equations and boundary conditions, Electron. J. Differ. Equ., 2016 (2016), 211. |
[28] | B. Ahmad, S. K. Ntouyas, A. Alsaedi, On solvability of a coupled system of fractional differential equations supplemented with a new kind of flux type integral boundary conditions, J. Comput. Anal. Appl., 24 (2018), 1304–1312. |
[29] | B. Ahmad, S. K. Ntouyas, A. Alsaedi, Fractional differential equations with integral and ordinary-fractional flux boundary conditions, J. Comput. Anal. Appl., 21 (2016), 52–61. |
[30] |
B. Ahmad, J. J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl., 58 (2009), 1838–1843. https://doi.org/10.1016/j.camwa.2009.07.091 doi: 10.1016/j.camwa.2009.07.091
![]() |
[31] |
B. Ahmad, R. P. Agarwal, A. Alsaedi, S. K. Ntouyas, Y. Alruwaily, Fractional order coupled systems for mixed fractional derivatives with nonlocal multi-point and Riemann-Stieltjes integral-multi-strip conditions, Dynam. Syst. Appl., 29 (2020), 71–86. https://doi.org/10.46719/dsa20202915 doi: 10.46719/dsa20202915
![]() |
[32] | D. R. Smart, Fixed point theorems, Cambridge University Press, 1980. |
1. | Hasanen A. Hammad, Hassen Aydi, Manuel De la Sen, The existence and stability results of multi-order boundary value problems involving Riemann-Liouville fractional operators, 2023, 8, 2473-6988, 11325, 10.3934/math.2023574 | |
2. | Kamal Shah, Muhammad Sher, Muhammad Sarwar, Thabet Abdeljawad, Analysis of a nonlinear problem involving discrete and proportional delay with application to Houseflies model, 2024, 9, 2473-6988, 7321, 10.3934/math.2024355 | |
3. | Yan Qiao, Tao Lu, Solvability of a Class of Fractional Advection–Dispersion Coupled Systems, 2024, 12, 2227-7390, 2873, 10.3390/math12182873 | |
4. | Lamya Almaghamsi, Ymnah Alruwaily, Kulandhaivel Karthikeyan, El-sayed El-hady, On Coupled System of Langevin Fractional Problems with Different Orders of μ-Caputo Fractional Derivatives, 2023, 7, 2504-3110, 337, 10.3390/fractalfract7040337 | |
5. | Safoura Rezaei Aderyani, Reza Saadati, Chenkuan Li, Tofigh Allahviranloo, 2024, Chapter 9, 978-3-031-55563-3, 231, 10.1007/978-3-031-55564-0_9 |