A contemporary fuzzy technique is employed in the current study to generalize some established and recent findings. For researchers, fixed point (FP) procedures are highly advantageous and appealing mechanisms. Discovering fuzzy fixed points of fuzzy mappings (FM) meeting Nadler's type contraction in complete fuzzy metric space (FMS) and?iri? type contraction in complete metric spaces (MS) is the core objective of this research. The outcomes are backed up by example and applications that highlight these findings. There are also preceding conclusions that are given as corollaries from the relevant literature. In this mode, numerous consequences exist in the significant literature are extended and combined by our findings.
Citation: Shazia Kanwal, Asif Ali, Abdullah Al Mazrooei, Gustavo Santos-Garcia. Existence of fuzzy fixed points of set-valued fuzzy mappings in metric and fuzzy metric spaces[J]. AIMS Mathematics, 2023, 8(5): 10095-10112. doi: 10.3934/math.2023511
A contemporary fuzzy technique is employed in the current study to generalize some established and recent findings. For researchers, fixed point (FP) procedures are highly advantageous and appealing mechanisms. Discovering fuzzy fixed points of fuzzy mappings (FM) meeting Nadler's type contraction in complete fuzzy metric space (FMS) and?iri? type contraction in complete metric spaces (MS) is the core objective of this research. The outcomes are backed up by example and applications that highlight these findings. There are also preceding conclusions that are given as corollaries from the relevant literature. In this mode, numerous consequences exist in the significant literature are extended and combined by our findings.
[1] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[2] | S. Heilpern, Fuzzy mappings and fixed point theorem, J. Math. Anal. Appl., 83 (1981), 566–569. https://doi.org/10.1016/0022-247X(81)90141-4 doi: 10.1016/0022-247X(81)90141-4 |
[3] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations integrals, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181 |
[4] | J. Rodríguez-López, S. Romaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Set. Syst., 147 (2004), 273–283. https://doi.org/10.1016/j.fss.2003.09.007 doi: 10.1016/j.fss.2003.09.007 |
[5] | I. Kramosil, J. Michálek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11 (1975), 336–344. |
[6] | A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Set. Syst., 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7 |
[7] | M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Set. Syst., 27 (1988), 385–389. https://doi.org/10.1016/0165-0114(88)90064-4 doi: 10.1016/0165-0114(88)90064-4 |
[8] | R. Badard, Fixed point theorems for fuzzy numbers, Fuzzy Set. Syst., 13 (1984), 291–302. https://doi.org/10.1016/0165-0114(84)90063-0 doi: 10.1016/0165-0114(84)90063-0 |
[9] | G. Wang, C. Wu, C. Wu, Fuzzy α-almost convex mappings and fuzzy fixed point theorems for fuzzy mappings, Ital. J. Pure Appl. Math., 17 (2005), 137–150. |
[10] | B. S. Lee, S. J. Cho, Common fixed point theorems for sequences of fuzzy mappings, Int. J. Math. Math. Sci., 17 (1994), 423–427. https://doi.org/10.1155/S0161171294000608 doi: 10.1155/S0161171294000608 |
[11] | D. Butnariu, Fixed points for fuzzy mappings, Fuzzy Set. Syst., 7 (1982), 191–207. https://doi.org/10.1016/0165-0114(82)90049-5 doi: 10.1016/0165-0114(82)90049-5 |
[12] | J. Y. Park, J. U. Jeong, Fixed point theorems for fuzzy mappings, Fuzzy Set. Syst., 87 (1997), 111–116. https://doi.org/10.1016/S0165-0114(96)00013-9 doi: 10.1016/S0165-0114(96)00013-9 |
[13] | A. Azam, Fuzzy fixed points of fuzzy mappings via a rational inequality, Hacet. J. Math. Stat., 40 (2011), 421–431. |
[14] | A. Azam, S. Kanwal, Common fixed point results for multivalued mappings in Hausdorff intuitionistic fuzzy metric spaces, Commun. Math. Appl., 9 (2018), 63–75. |
[15] | S. Kanwal, A. Azam, Common fixed points of intuitionistic fuzzy maps for Meir-Keeler type contractions, Adv. Fuzzy Syst., 2018 (2018), 1989423. https://doi.org/10.1155/2018/1989423 doi: 10.1155/2018/1989423 |
[16] | S. Kanwal, A. Azam, Bounded lattice fuzzy coincidence theorems with applications, J. Intell. Fuzzy Syst., 36 (2019), 1–15. https://doi.org/10.3233/JIFS-17063 doi: 10.3233/JIFS-17063 |
[17] | S. Kanwal, A. Azam, F. A. Shami, On coincidence theorem in intuitionistic fuzzy b-metric spaces with application, J. Funct. Space., 2022 (2022), 5616824. https://doi.org/10.1155/2022/5616824. doi: 10.1155/2022/5616824 |
[18] | S. Kumar, A. Rani, Common fixed point theorem for weakly compatible mappings in fuzzy metric spaces using implicit relation, J. Adv. Stud. Topol., 3 (2012), 86–95. https://doi.org/10.20454/jast.2012.301 doi: 10.20454/jast.2012.301 |
[19] | S. Sharma, Common fixed point theorems in fuzzy metric spaces, Fuzzy Set. Syst., 127 (2002), 345–352. https://doi.org/10.1016/S0165-0114(01)00112-9 doi: 10.1016/S0165-0114(01)00112-9 |
[20] | M. Arshad, A. Shoaib, Fixed points of multivalued mappings in fuzzy metric spaces, In Proceedings of the World Congress on Engineering, 1 (2012), 4–6. |
[21] | S. Kanwal, M. S. Shagari, H. Aydi, A. Mukheimer, T. Abdeljawad, Common fixed-point results of fuzzy mappings and applications on stochastic Volterra integral equations, J. Inequal. Appl., 110 (2022). https://doi.org/10.1186/s13660-022-02849-2 doi: 10.1186/s13660-022-02849-2 |
[22] | F. Xiao, EFMCDM: Evidential fuzzy multicriteria decision making based on belief entropy, IEEE T. Fuzzy Syst., 28 (2020), 1477–1491. https://doi.org/10.1109/TFUZZ.2019.2936368 doi: 10.1109/TFUZZ.2019.2936368 |
[23] | F. Xiao, A distance measure for intuitionistic fuzzy sets and its application to pattern classification problems, IEEE T. Syst. Man Cy.-S., 51 (2019), 3980–3992. https://doi.org/10.1109/TSMC.2019.2958635 doi: 10.1109/TSMC.2019.2958635 |
[24] | Z. Wang, F. Xiao, W. Ding, Interval-valued intuitionistic fuzzy jenson-shannon divergence and its application in multi-attribute decision making, Appl. Intell., 52 (2022), 16168–16184. https://doi.org/10.1007/s10489-022-03347-0 doi: 10.1007/s10489-022-03347-0 |
[25] | Z. Wang, F. Xiao, Z. Cao, Uncertainty measurements for Pythagorean fuzzy set and their applications in multiple-criteria decision making, Soft Comput., 26 (2022). https://doi.org/10.1007/s00500-022-07361-9 doi: 10.1007/s00500-022-07361-9 |
[26] | D. Liang, W. Pedrycz, D. Liu, P. Hu, Three-way decisions based on decision-theoretic rough sets under linguistic assessment with the aid of group decision making, Appl. Soft Comput., 29 (2015), 256–269. https://doi.org/10.1016/j.asoc.2015.01.008 doi: 10.1016/j.asoc.2015.01.008 |
[27] | J. Liu, B. Huang, H. Li, X. Bu, X. Zhou, Optimization-based three-way decisions with interval-valued intuitionistic fuzzy information, IEEE T. Cybern., 2022. https://doi.org/10.1109/TCYB.2022.3151899 doi: 10.1109/TCYB.2022.3151899 |
[28] | D. Liang, D. Liu, Systematic studies on three-way decisions with interval-valued decision-theoretic rough sets, Inform. Sci., 276 (2014), 186–203. https://doi.org/10.1016/j.ins.2014.02.054 doi: 10.1016/j.ins.2014.02.054 |
[29] | Q. Zhang, C. Yang, G. Wang, A sequential three-way decision model with intuitionistic fuzzy numbers, IEEE T. Syst. Man Cy.-S., 51 (2021), 2640–2652. https://doi.org/10.1109/TSMC.2019.2908518 doi: 10.1109/TSMC.2019.2908518 |
[30] | S. B. Nadler, Multi-valued contraction mappings, Pac. J. Math., 30 (1969), 475–488. https://doi.org/10.2140/pjm.1969.30.475 doi: 10.2140/pjm.1969.30.475 |