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1. Introduction and preliminaries 

An ongoing aspect of social existence is anonymity. In this area, accurate computations or 

hypotheses are not relevant. For human intelligence, this value error is particularly sticky. Many other 

mathematical ideas, like fuzzy sets (FS), soft sets, intuitionistic sets etc. have been developed as 

practical solutions to this problem. The fuzzy logics were created using a group structure with hazy 

knowledge. Due to fuzzy sets’s adaptability in handling unreliability, it is even fantastically terrific for 



10096 

AIMS Mathematics  Volume 8, Issue 5, 10095–10112. 

humanistic logic that is based on correct truth and limitless information. This idea is certainly a 

cornerstone of classical sets since it gives greater room for wrong knowledge to be used, which leads 

to better answers for a variety of problems. When faced with extremely constrained options like yes 

or no, these firms create favorable models. The ability to examine the benefits and drawbacks of false 

ideas is another important quality of this knowledge. 

The branch of mathematics connected with fuzzy set theory is known as fuzzy mathematics. In 

1965, Zadeh [1] is the first to mention the concept of fuzzy logic. The affiliation of an element to the 

set in the theory of fuzzy logic is given as a number from the interval [0,1], unlike the theory of 

classical logic, where an element either belongs to the set or not. Zadeh has been studying the theory of FS 

to address the issue of indeterminacy because uncertainty is a crucial component of a genuine problem.  

In the discipline of mathematical analysis, the fixed point (FP) principles offer excellent 

conditions for approximation the solutions of differential and integral equations with both linear and 

nonlinear. Analysis, geometry, and topology are remarkably linked in the framework of FP theory, 

making it a valuable and essential technique for analyzing non-linear phenomena. The FP paradigm is 

intensively used in both applied and pure mathematics. Across many numerous domains, 

encompassing biology, engineering, non-linear programming, economics, game theory, theory of 

differential equations, etc., FP techniques frequently prove to be advantageous. 

Fuzzy logic is one of the many perspectives that may be used to understand theory of FP in fuzzy 

metric spaces (FMS). Heilpern [2] introduced the theory of fuzzy mapping (FM) and established a 

theorem on FP for FM in metric linear space, which serves as a fuzzy generalization of Banach's 

contraction principle [3]. This sparked the interest of numerous authors to investigate various 

contractions conditions using FM. 

The subject of Hausdorff distance is essential to several areas of computer science and 

mathematics, such as fractals, image processing, and optimization theory. Lopez and Romaguern [4] 

applied the concept of Hausdorff metric space in fuzzy setting and introduced Hausdorff fuzzy metric 

spaces. This allowed researchers to investigate the “fixed point theory” of multivalued mappings in 

spaces with fuzzy metrics form. 

Every metric, in a very normal and modest way, generates a FMS. The theory of FP is being 

evolved as a crucial area of interest in the core of non-linear analysis and FS theory within the 

framework of FMS.  

In 1975, Kramosil and Michalek [5] developed the idea of FMS, opening the door for further 

development of analysis in such environments. George and Veeramani [6] improved fuzzy metric 

spaces to become Hausdorff spaces. However, it seems that Kramosil and Michhlek’s analysis of fuzzy 

metric spaces offers a route for very smoothing machinery to produce FP theorems, especially for 

contractive type maps. Grabiec [7] was the next from among a number (at least four) of formulations 

of FMS. In fuzzy mathematics, fixed point theorems are emerging with fervent hope and firm 

confidence. Since then, numerous attempts to develop FP theorems in fuzzy mathematics have been 

made (see, for instance, [7–16]). Numerous fixed point and common fixed point results in FMS and 

Hausdorff metric spaces can be found in literature (see [17–21] and references therein). Literature 

shows that a lot of valuable and practical work is done in fuzzy set, rough set, soft set, intuitionistic 

set theories in several ways of decision making, decision models, pattern classifications and in other 

fields (see [22–29]). 

The structure of paper is as follows: 
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First of all, some basic concepts are recalled, the motivation behind this action is to facilitate the 

readers to have comprehensive knowledge about the fundamental definitions, examples and lemmas 

that are necessary to understand our established results. All these essentials are collected from previous 

research articles exist in the literature.  

In Section 2, existence theorems regarding fuzzy FPs of FMs satisfying �́�𝑖𝑟𝑖�́� type contractions 

are obtained in the framework of complete metric spaces. The result is equipped with an interesting 

example and an application. Further, some previous results are given as corollaries of our results. 

Section 3 deals with some theoretical results. In this study, we have established fuzzy FPs of set-

valued FM by using a contraction in the setting of complete FMS. The obtained results are furnished 

an example and applications. Previous results are given in the form of corollaries of obtained results. 

Note: i) 𝐶𝐵(Ω) denotes the family of all closed and bounded subsets of metric space (𝛺, 𝑑); 
ii) Ќ (Ω) denotes the family of all compact subsets of fuzzy metric space (𝛺, 𝐹,∗). 

Hausdorff Metric Space. ([16]) Let (𝛺, 𝑑) be a MS. Hausdorff metric H on 𝐶𝐵(Ω) induced by 𝑑 

is defined as 𝐻 (𝛢, 𝛣) = 𝑚𝑎𝑥 { 𝑠𝑢𝑝
𝜇𝜖𝛢

𝑑(𝜇, 𝛣) , 𝑠𝑢𝑝
𝜈𝜖𝛣

𝑑(𝛢, 𝜈)} for all 𝛢, 𝛣 ∈ 𝐶𝐵(𝛺), where 

𝑑 (𝜇, 𝛣) = 𝑖𝑛𝑓 {𝑑 (𝜇, 휂): 휂 ∈  𝛣}. 

Lemma 1. ([13]) Let 𝐺, 𝛫 ∈  𝐶𝐵(Ω) . If 𝜇 ∈ 𝐺 then, 𝑑 (𝜇, 𝛫) ≤ 𝐻 (𝐺, 𝛫) for all 𝜇 ∈ 𝐺. 
Lemma 2. ([13]) Let 𝑃, 𝑄 ∈ 𝐶𝐵(Ω) and 0 < 𝜎 ∈ ℝ. Then, for 𝑖 ∈ 𝑃, there exists 휁 ∈ 𝑄 such that 

𝑑 (𝑖, 휁) ≤ 𝐻 (𝑃, 𝑄) + 𝜎. 

Lemma 3. ([13]) If 𝑃, 𝑄 ∈ 𝐶𝐵(𝛺) with 𝐻 (𝛲, 𝑄)  < 휀, then for all 𝜇 ∈ 𝑃 there exists 𝜐 ∈  𝑄 such 

that 𝑑 (𝜇, 𝜐) < 휀. 
Lemma 4. ([13]) For 𝜇 ∈ Ω 𝑎𝑛𝑑 𝑃 ∈  𝐶𝐵(Ω), 𝑑(𝜇, 𝑃) ≤ 𝑑 (𝜇, 𝜈) for all 𝜈 ∈ 𝑃. 
Fuzzy Set. ([1]) In the fuzzy theory, fuzzy set A of universe X is defined by function µA: X → [0, 1] 

called the membership function of set A 

                         where µA(x) = 1 if x is totally in A; 

µA(x) = 0 if x is not in A; 

0 < µA(x) < 1 if x is partly in A. 

This definition of set allows a continuum of possible choices. For any element x of universe 

X, membership function µA(x) equals the degree to which x is an element of set A. This degree, a 

value between 0 and 1, represents the degree of membership, also called membership value, of 

element x in set A.  

The 𝛼-cut of fuzzy set A is defined as: 

[𝐴] 𝛼 = {𝑢 ∈ X: 𝐴(𝑢) ≥ 𝛼}; 𝛼 ∈ (0, 1]. 

Fuzzy Mapping. ([16]) Let Ψ1 be any set and Ψ2 be a metric space. A function 𝑔:Ψ1 → 𝐹(Ψ2) is 

called a FM. A FM 𝑔 is a FS on Ψ1 × Ψ2 with membership function 𝑔(𝑥)(𝑦). The image 𝑔(𝑥)(𝑦) 
is the grade of membership of 𝑦 in 𝑔(𝑥). 
Fuzzy Fixed Point. ([13]) Suppose (Ψ, 𝑑) is a MS and 𝑇:Ψ → 𝐹(Ψ). A point 𝑧 ∈ Ψ is a fuzzy FP 

of 𝑇 if 𝑧 ∈ [𝑇𝑧]𝛼 for some 𝛼 ∈ (0, 1]. 
Common Fuzzy Fixed Point. ([16]) Consider a MS (Ψ, 𝑑) and 𝑇1, 𝑇2: Ψ → 𝐹(Ψ). A point 𝑧 ∈ Ψ is 

a fuzzy common FP of 𝑇1 and 𝑇2 if 𝑧 ∈ [𝑇1𝑧]𝛼𝑇1 ∩
[𝑇2𝑧]𝛼𝑇2  for some 𝛼𝑇1 , 𝛼𝑇2 ∈ (0, 1]. 

�́�𝐢𝐫𝐢�́� Type Contraction for Fuzzy Mappings. Let (Ω, 𝑑) be a complete MS and 𝐺:Ω → 𝐹(Ω) be a 

fuzzy map. Let [𝐺(𝑢)]𝛼 𝑎𝑛𝑑 [𝐺(𝑣)]𝛼 be non-empty closed and bounded subsets of Ω, the condition 

𝐻([[𝐺(𝑢)]𝛼, [𝐺(𝑣)]𝛼)  ≤ 𝛼𝑑(𝑢, 𝑣) + 𝛽 [𝑑(𝑢, [𝐺(𝑢)]𝛼) + 𝑑(𝑣, [𝐺(𝑣)]𝛼)] + 𝛾[𝑑(𝑢, [𝐺(𝑣)]𝛼) +
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𝑑(𝑣, [𝐺(𝑢)]𝛼)], 

where 𝛼, 𝛽, 𝛾 ≥ 0 and 𝛼 + 2𝛽 + 2𝛾 < 1 is Ćirić type contraction for FM. 

Triangular Norm. ([17]) A map ∗ from [0,1] [0,1]  to [0,1]  is called continuous triangular norm 

(t-norm) or a conjunction, if following conditions are fulfilled for all 𝜚, 𝜎, 𝜍, 𝜏 ∈ [0, 1]: 
(1) Symmetry: 𝜚 ∗  𝜎 =  𝜎 ∗ 𝜚; 

(2) Monotonicity: 𝜚 ∗  𝜎 ≤  𝜍 ∗  𝜏, 𝑖𝑓 𝜚 ≤  𝜍 𝑎𝑛𝑑 𝜎 ≤  𝜏;
  

(3) Associativity: (𝜚 ∗ (𝜎 ∗ 𝜍)) = ((𝜚 ∗  𝜎) ∗ 𝜍); 

(4) Boundary condition: 1 ∗ 𝜚 = 𝜚.
 

The following are three basic t-norms:  

(1)  𝜚 ∗ 𝜎 = 𝑚𝑖𝑛(𝜚, 𝜎); 
(2)  𝜚 ∗ 𝜎 =  𝜚𝜎;  

(3) 𝜚 ∗ 𝜎 = 𝑚𝑎𝑥(𝜚 +  𝜎 − 1, 0). 

Fuzzy Metric Space. ([6]) The triple (Ω,𝑀,∗) is known as FMS if Ω is an arbitrary set,   is t-

norm and M is a FS on Ω × Ω × [0,∞) s.t ∀ 𝜉, 휂, 휁 ∈ Ω and 𝜇, 𝜈 ≥  0 we have: 

(𝑀1) 𝑀(𝜉, 휂, 0) = 0; 
(𝑀2) 𝑀(𝜉, 휂, 𝜇) = 1, ∀𝜇 > 0 iff ξ = η; 
(𝑀3) 𝑀(𝜉, 휂, 𝜇) = 𝑀(휂, 𝜉, 𝜇) 
(𝑀4) 𝑀(𝜉, 휁, 𝜇 + 𝜈) ≥ 𝑀(𝜉, 휂, 𝜇) ∗ 𝑀(휂, 휁, 𝜈); 
(𝑀5) 𝑀(𝜉, 휂, . ): (0,∞) → [0, 1] is continuous. 

Example 1. Let (𝛺, 𝑑) be a MS. Define 𝑀: 𝛺 × 𝛺 × ℝ+ ∪ {0} → [0, 1] as 

𝑀(휂, 𝜆, 𝜇) =
𝑚𝑖𝑛 {𝜂,   𝛾} +𝜇

𝑚𝑎𝑥 {𝜂,   𝛾} +𝜇
, 

for all 휂, 𝜆 ∈ 𝛺 and μ ≥ 0 is a fuzzy MS. 

Example 2. Let (Ω, 𝑑)  be a bounded MS with 𝑑 (𝑢, 𝑣) < 𝜅  (for all 𝑢, 𝑣 ∈ Ω,  where 𝜅  is fixed 

constant in (0,∞)) and 𝐺: ℝ+  → (𝜅,∞) be an increasing continuous function. Define a function 

𝑀: Ω 2 × (0,∞) → [0, 1] as 

𝑀 (𝑢, 𝑣, 𝜆) = 1 −
𝑑(𝑢,𝑣)

𝐺(𝜆)
, for all 𝑢, 𝑣 ∈ Ω, and 𝜆 > 0. 

Then (Ω,𝑀,∗) is a FMS on Ω where ∗ is a Lukasiewicz t-norm. 

Example 3. Let (Ω, 𝑑)  be a MS. Define 𝜇 ∗ 𝜈 = 𝜇𝜈 (𝑜𝑟 𝜇 ∗ 𝜈 = 𝑚𝑖𝑛{𝜇, 𝜈})  for all 𝜇, 𝜈 ∈ [0,1] . 

Then, one can define a fuzzy metric 𝐹 by 𝐹(𝜉, 휂, 𝜎) =
𝜎

𝜎+𝑑(𝜉,𝜂)
 for all 𝜉, 휂 ∈ Ω and 𝜎 ≥  0. 

Example 4. Let Ω be a non-empty set, 𝑓: Ω → ℝ+ be a one-one function and 𝑔:ℝ+ → [0,∞) be 

an increasing continuous function. For fixed 𝛼, 𝛽 > 0, define M: Ω 2 × (0,∞) → [0, 1] as  

𝑀(𝑢, 𝑣, 𝜆) = (
𝑚𝑖𝑛 {𝑓(𝑢),𝑓(𝑣)}𝛼+𝑔(𝜆)

𝑚𝑎𝑥 {𝑓(𝑢),𝑓(𝑣)}𝛼+𝑔(𝜆)
)𝛽, for all 𝑢, 𝑣 ∈ Ω and 𝜆 > 0. 

Then (Ω,𝑀,∗) is a FMS on Ω where ∗ is the product t-norm. 

Convergent Sequence in Fuzzy Metric Space. ([7]) Let (Ω,𝑀,∗) be a FMS. A sequence {𝜔𝑛} in 

Ω is said to be convergent to a point 𝜔 ∈ Ω if lim
𝑛→∞

𝑀 (𝜔𝑛, 𝜔, 𝜇) = 1 for all 𝜇 > 0. 

Cauchy Sequence in Fuzzy Metric Space. ([7]) Let (Ω,𝑀,∗) be a fuzzy MS. A sequence {𝜔𝑛} in a 

FMS (Ω,𝑀,∗) is said to be Cauchy sequence if for every 휀 ∈ (0,1) and µ > 0 there exists 𝑛0 ∈ ℕ 

such that 

𝑀(𝜔𝑛, 𝜔𝑚, µ) > 1 − 휀, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛,𝑚 ≥ 𝑛0. 

Complete Fuzzy Metric Space. ([7]) A FMS in which every Cauchy sequence is convergent is 

called complete.  



10099 

AIMS Mathematics  Volume 8, Issue 5, 10095–10112. 

Hausdorff Fuzzy Metric. ([4]) Let (Ω, 𝐹,∗)  be a FMS. Hausdorff FM 𝐻𝐹  on Ќ(Ω) ×  Ќ(Ω) ×
(0,∞) to [0,1] is defined as: 

𝐻𝐹(𝐴, 𝐵, 𝜌) = 𝑚𝑖𝑛{inf
𝑖∈𝐴
(sup
𝑗∈𝐵

𝐹(𝑖, 𝑗, 𝜌)) , inf
𝑗∈𝐵
(sup
𝑖∈𝐴

𝐹(𝑖, 𝑗, 𝜌))} , for all 𝐴, 𝐵 ∈ Ќ (Ω)  and 𝜌 > 0 , where 

Ќ (𝑋) is the collection of all non-empty compact subsets of Ω. 

Lemma 5. ([4]) Let (Ω, 𝐹,∗) be a complete FMS, such that (Ќ (Ω),𝐻𝐹 ,∗) is a Hausdorff fuzzy MS 

on Ќ (Ω ). Then for all 𝑆, 𝐺 ∈ Ќ (𝑋), for all 𝑢 ∈ 𝑆 and for 𝜆 > 0, there exist 𝑣𝑢 ∈ 𝐺 satisfies  

𝐹(𝑢, 𝐺, 𝑡) = 𝐹(𝑢, 𝑣𝑢, 𝜆). 

Then, 𝐻𝐹(𝑆, 𝐺, 𝜆) ≤ 𝐹(𝑢, 𝑣𝑢, 𝜆). 
Lemma 6. ([14]) Let (Ω, 𝐹,∗) be a complete FMS, if there exist 𝜎 ∈ (0,1) such that 𝐹(𝜉, 휂, 𝜎𝜆) ≥
𝐹(𝜉, 휂, 𝜆) for all 𝜉, 휂, ∈ Ω and 𝜆 ∈  (0,∞), then 휂 = 𝜉. 

Lemma 7. ([14]) Let (Ω, 𝐹,∗) be a FMS. Then, for each 𝑖 ∈ Ω, 𝐵 ∈ Ќ(Ω) and for 𝜏 > 0 there exists 

𝑗0 ∈ 𝐵 such that 

𝐹(𝑖, 𝑗0, 𝜏) = 𝐹(𝑖, 𝐵, 𝜏). 

Where Ќ (𝑋) is the collection of all non-empty compact subsets of Ω. 

Lemma 8. ([14]) Let 𝐵 be any non-empty subset of a FMS (Ω, 𝐹,∗), for 𝜔 ∈ Ω 

and 𝜏 > 0 then, 

𝐹(𝜔, 𝐵, 𝜏) = 𝑠𝑢𝑝{𝐹(𝜔, 𝜇, 𝜏) ∶ 𝜇 ∈ 𝐵}. 

2. Fuzzy fixed points of fuzzy mappings in metric spaces 

2.1. Fuzzy fixed points for �́�𝑖𝑟𝑖�́� type contraction 

In this section, we apply the Hasudorff metric for fuzzy sets to find the fuzzy fixed points of fuzzy 

mapping that meet a rational inequality. These results are free from the conditions of approximate 

quantity for G(x) and linearity for Ω. 

Theorem 2.1. Let (Ω, 𝑑) be a complete MS and 𝐺: Ω → 𝐹(Ω) be a FM. Suppose for all 𝑎, 𝑏 ∈ Ω 

there exists 𝛼 ∈ (0,1] and [𝐺(𝑎)]𝛼 and [𝐺(𝑏)]𝛼) be non-empty closed and bounded subsets of Ω 

such that 

𝐻 ([𝐺(𝑎)]𝛼, [𝐺(𝑏)]𝛼) 

≤ 𝜌𝑑 (𝑎, 𝑏) + 𝛽[𝑑(𝑎, [𝐺(𝑎)]𝛼) + 𝑑(𝑏, [𝐺(𝑏)]𝛼)] 

+𝛾[𝑑(𝑎, [𝐺(𝑏)]𝛼) + 𝑑(𝑏, [𝐺(𝑎)]𝛼)],        (2.1) 

for 𝜌, 𝛽, 𝛾 > 0 and 𝜌 + 2𝛽 + 2𝛾 <  1. Then 𝐺 has a FP in Ω i.e there exists 𝑢 ∈ Ω such that 𝑢 ∈
[𝐺(𝑢)]𝛼. 

Proof. Since 𝜌 + 2𝛽 + 2𝛾 <  1, so (
𝜌+𝛽+𝛾

1−𝛽−𝛾
) < 1. Consider 𝜆 =  (

𝜌+𝛽+𝛾

1−𝛽−𝛾
). 

Let 𝑎0 ∈ Ω and [𝐺(𝑎0)]𝛼 ≠ 0 be a closed and bounded subset of Ω. 

Let 𝑎1 ∈ [𝐺(𝑎0)]𝛼. 𝑆𝑖𝑛𝑐𝑒 𝐺(𝑎1) ≠ ∅ a closed and bounded subset of Ω, using Lemma 2, there exists 

𝑎2 ∈ [𝐺(𝑎1)]𝛼 such that  

𝑑 (𝑎1, 𝑎2) ≤ 𝐻 [𝐺(𝑎0)]𝛼, [𝐺(𝑎1)]𝛼)  +  𝜆. 

Now [𝐺(𝑎2)]𝛼 ≠  ∅ are also closed and bounded subset of Ω. By using Lemma 2, there exist 𝑎3 ∈
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[𝐺(𝑎2)]𝛼 such that  

𝑑 (𝑎2, 𝑎3) ≤ 𝐻 ([𝐺(𝑎1)]𝛼, [𝐺(𝑎2)]𝛼) + 𝜆
2. 

Similarly, for 𝑎𝑛  ∈  [𝐺(𝑎𝑛−1)]𝛼, we can choose 𝑎𝑛+1 ∈  [𝐺(𝑎𝑛−1)]𝛼 such that  

𝑑 (𝑎𝑛, 𝑎𝑛+1) ≤ 𝐻 ([𝐺(𝑎𝑛−1)]𝛼, [𝐺(𝑎𝑛)]𝛼 )  +  𝜆
𝑛. 

Now, 

𝑑 (𝑎1, 𝑎2) ≤  𝐻 ([𝐺(𝑎0)]𝛼, [𝐺(𝑎1)]𝛼) + 𝜆, 

using (2.1) we get 

𝑑 (𝑎1, 𝑎2) ≤ 𝜌𝑑(𝑎0, 𝑎1) + 𝛽[𝑑(𝑎0, [𝐺(𝑎0)]𝛼) + 𝑑(𝑎1, [𝐺(𝑎1)]𝛼)]

+ 𝛾[𝑑(𝑎0, [𝐺(𝑎1)]𝛼) + 𝑑(𝑎1, [𝐺(𝑎0)]𝛼)] + 𝜆, 

𝑑 (𝑎1, 𝑎2) ≤ 𝜌𝑑 (𝑎0, 𝑎1) + 𝛽𝑑(𝑎0, 𝑎1) + 𝛽𝑑 (𝑎1, 𝑎2) + 𝛾𝑑 (𝑎0, 𝑎2) + 𝛾𝑑(𝑎1, 𝑎1) + 𝜆, 

𝑑 (𝑎1, 𝑎2) ≤ 𝜌𝑑 (𝑎0, 𝑎1) +  𝛽𝑑(𝑎0, 𝑎1) +  𝛽𝑑 (𝑎1, 𝑎2) + 𝛾𝑑 (𝑎0, 𝑎2) + 𝜆. 

Using triangular inequality we get 

𝑑 (𝑎1, 𝑎2) ≤ 𝜌𝑑 (𝑎0, 𝑎1) +  𝛽𝑑(𝑎0, 𝑎1) +  𝛽𝑑 (𝑎1, 𝑎2) + 𝛾𝑑 (𝑎0, 𝑎1) + 𝛾𝑑 (𝑎1, 𝑎2) + 𝜆, 

(1 − 𝛽 − 𝛾) 𝑑 (𝑎1, 𝑎2) ≤ (𝜌 + 𝛽 + 𝛾)𝑑 (𝑎0, 𝑎1)  +  𝜆, 

𝑑 (𝑎1, 𝑎2)  ≤  (
𝜌 + 𝛽 + 𝛾

1 − 𝛽 − 𝛾
)𝑑 (𝑎0, 𝑎1) + (

𝜆

1 − 𝛽 − 𝛾
). 

Thus, 

𝑑 (𝑎1, 𝑎2)  ≤  𝜆𝑑 (𝑎0, 𝑎1) + (
𝜆

1−𝛽−𝛾
).       (2.2) 

Now, 

𝑑 (𝑎2, 𝑎3) ≤ 𝐻([𝐺(𝑎1)]𝛼, [𝐺(𝑎2)]𝛼) + 𝜆
2, 

using (2.1) we get 

𝑑(𝑎2, 𝑎3) ≤ 𝜌𝑑(𝑎1, 𝑎2) +  𝛽[𝑑(𝑎1, [𝐺(𝑎1)]𝛼) + 𝑑(𝑎2, [𝐺(𝑎2)]𝛼)]

+ 𝛾[𝑑(𝑎1, [𝐺(𝑎2)]𝛼) + 𝑑(𝑎2, [𝐺(𝑎1)]𝛼)] + 𝜆
2, 

𝑑(𝑎2, 𝑎3) ≤ 𝜌𝑑(𝑎1, 𝑎2) +  𝛽[𝑑(𝑎1, 𝑎2 ) + 𝑑(𝑎2, 𝑎3)] + 𝛾[𝑑(𝑎1, 𝑎3) + 𝑑(𝑎2, 𝑎2)] + 𝜆
2, 

again using triangular inequality we get 

𝑑(𝑎2, 𝑎3) ≤ 𝜌𝑑(𝑎1, 𝑎2) +  𝛽[𝑑(𝑎1, 𝑎2 ) + 𝑑(𝑎2, 𝑎3)] + 𝛾𝑑(𝑎1, 𝑎2 ) + 𝛾𝑑(𝑎2, 𝑎3 ) + 𝜆
2, 

(1 − 𝛽 − 𝛾)𝑑(𝑎2, 𝑎3)  ≤ (𝜌 + 𝛽 + 𝛾)𝑑(𝑎1, 𝑎2) + 𝜆
2, 

𝑑 (𝑎2, 𝑎3)  ≤  (
𝜌 + 𝛽 + 𝛾

1 − 𝛽 − 𝛾
)𝑑 (𝑎1, 𝑎2) + (

𝜆2

1 − 𝛽 − 𝛾
), 

𝑑 (𝑎2, 𝑎3)  ≤  𝜆𝑑 (𝑎1, 𝑎2) + (
𝜆2

1 − 𝛽 − 𝛾
). 

Using (2.2) we get 
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𝑑 (𝑎2, 𝑎3)  ≤  𝜆 [𝜆𝑑 (𝑎0, 𝑎1) + (
𝜆

1 − 𝛽 − 𝛾
)] + (

𝜆2

1 − 𝛽 − 𝛾
), 

𝑑 (𝑎2, 𝑎3)  ≤ 𝜆2𝑑 (𝑎0, 𝑎1) + (
𝜆2

1 − 𝛽 − 𝛾
) + (

𝜆2

1 − 𝛽 − 𝛾
), 

𝑑 (𝑎2, 𝑎3)  ≤ 𝜆2𝑑 (𝑎0, 𝑎1) + (
2𝜆2

1−𝛽−𝛾
).       (2.3) 

Now, 

𝑑 (𝑎3, 𝑎4) ≤ 𝐻 ([𝐺(𝑎2)]𝛼, [𝐺(𝑎3)]𝛼) + 𝜆
3, 

applying (2.1) we get 

𝑑 (𝑎3, 𝑎4) ≤ 𝜌𝑑(𝑎2, 𝑎3) +  𝛽[𝑑(𝑎2, [𝐺(𝑎2)]𝛼) + 𝑑(𝑎3, [𝐺(𝑎3)]𝛼)]

+ 𝛾[𝑑(𝑎2, [𝐺(𝑎3)]𝛼) + 𝑑(𝑎3, [𝐺(𝑎2)]𝛼)] + 𝜆
3, 

𝑑 (𝑎3, 𝑎4) ≤ 𝜌𝑑(𝑎2, 𝑎3) + 𝛽[𝑑(𝑎2, 𝑎3) + 𝑑(𝑎3, 𝑎4)] + 𝛾[𝑑(𝑎2, 𝑎4) + 𝑑(𝑎3, 𝑎3)] + 𝜆
3. 

Since 𝑑(𝑎3, 𝑎3) = 0, this implies that 

𝑑 (𝑎3, 𝑎4) ≤ 𝜌𝑑(𝑎2, 𝑎3) + 𝛽[𝑑(𝑎2, 𝑎3) + 𝑑(𝑎3, 𝑎4)] + 𝛾𝑑(𝑎2, 𝑎4) + 𝜆
3. 

Again using triangular inequality we get 

𝑑 (𝑎3, 𝑎4) ≤ 𝜌𝑑(𝑎2, 𝑎3) + 𝛽[𝑑(𝑎2, 𝑎3) + 𝑑(𝑎3, 𝑎4)] + 𝛾𝑑(𝑎2, 𝑎3) + 𝛾𝑑(𝑎3, 𝑎4) + 𝜆
3, 

(1 − 𝛽 − 𝛾)𝑑 (𝑎3, 𝑎4) ≤ (𝜌 + 𝛽 + 𝛾)𝑑(𝑎2, 𝑎3) + 𝜆
3, 

𝑑 (𝑎3, 𝑎4)  ≤  (
𝜌 + 𝛽 + 𝛾

1 − 𝛽 − 𝛾
)𝑑(𝑎2, 𝑎3) + (

𝜆3

1 − 𝛽 − 𝛾
). 

Using (2.3) we get 

𝑑 (𝑎3, 𝑎4)  ≤ 𝜆 [𝜆
2𝑑 (𝑎0, 𝑎1) + (

2𝜆2

1 − 𝛽 − 𝛾
)] + (

𝜆3

1 − 𝛽 − 𝛾
), 

𝑑 (𝑎3, 𝑎4)  ≤ 𝜆3𝑑 (𝑎0, 𝑎1) + (
2𝜆3

1 − 𝛽 − 𝛾
) + (

𝜆3

1 − 𝛽 − 𝛾
), 

𝑑 (𝑎3, 𝑎4)  ≤ 𝜆3𝑑 (𝑎0, 𝑎1) + (
3𝜆3

1 − 𝛽 − 𝛾
). 

So, 

𝑑 (𝑎𝑛, 𝑎𝑛+1)  ≤ 𝜆
𝑛𝑑 (𝑎0, 𝑎1) + (

𝑛𝜆𝑛

1−𝛽−𝛾
).      (2.4) 

Let m, n ϵℕ with 𝑚 > 𝑛 

𝑑 (𝑎𝑛, 𝑎𝑚) ≤ 𝑑(𝑎𝑛, 𝑎𝑛+1) + 𝑑(𝑎𝑛+1, 𝑎𝑛+2) + ⋯+ 𝑑(𝑎𝑚−1, 𝑎𝑚), 

applying (2.4) we get 



10102 

AIMS Mathematics  Volume 8, Issue 5, 10095–10112. 

𝑑 (𝑎𝑛, 𝑎𝑚)  ≤ 𝜆
𝑛𝑑 (𝑎0, 𝑎1) + (

𝑛𝜆𝑛

1 − 𝛽 − 𝛾
) + 𝜆𝑛+1𝑑 (𝑎0, 𝑎1) + (

(𝑛 + 1)𝜆𝑛+1

1 − 𝛽 − 𝛾
) +⋯

+ 𝜆𝑚−1𝑑 (𝑎0, 𝑎1) + (
(𝑚 − 1)𝜆𝑚−1

1 − 𝛽 − 𝛾
), 

𝑑 (𝑎𝑛, 𝑎𝑚)  ≤ 𝜆𝑛𝑑 (𝑎0, 𝑎1)(1 + 𝜆 + 𝜆
2 + 𝜆3 + 𝜆4 + 𝜆5 +⋯+ 𝜆𝑚−𝑛−1) + ∑

𝑖𝜆𝑖

1 − 𝛽 − 𝛾

𝑚−1

𝑖=𝑛

, 

𝑑 (𝑎𝑛, 𝑎𝑚)  ≤ 𝜆𝑛𝑑 (𝑎0, 𝑎1) (
1 − 𝜆𝑚−𝑛

1 − 𝜆
) + ∑

𝑖𝜆𝑖

1 − 𝛽 − 𝛾

𝑚−1

𝑖=𝑛

. 

When 𝑚, 𝑛 → ∞ then right hand side becomes zero. So, 

𝑑 (𝑎𝑛, 𝑎𝑚) = 0. 

Thus, {𝑎𝑛} is a Cauchy sequence in complete MS. Therefore, there exist 𝜇 ∈ Ω such that 𝑎𝑛 → 𝜇. 

Now, 

𝑑(𝜇, [𝐺(𝜇)]𝛼) ≤ [𝑑(𝜇, 𝑎𝑛) + 𝑑(𝑎𝑛, [𝐺(𝜇)]𝛼)], 

𝑑(𝜇, [𝐺(𝜇)]𝛼) ≤ [𝑑(𝜇, 𝑎𝑛) + 𝐻([𝐺(𝑎𝑛−1)]𝛼, [𝐺(𝜇)]𝛼)], 

using (2.1) we get 

𝑑(𝜇, [𝐺(𝜇)]𝛼) ≤ 𝑑(𝜇, 𝑎𝑛) + 𝜌𝑑(𝑎𝑛−1, 𝜇) + 𝛽[𝑑(𝑎𝑛−1, [𝐺(𝑎𝑛−1)]𝛼) + 𝑑(𝜇, [𝐺(𝜇)]𝛼)]

+ 𝛾[𝑑(𝑎𝑛−1, [𝐺(𝜇)]𝛼) + 𝑑(𝜇, [𝐺(𝑎𝑛−1)]𝛼)], 

𝑑(𝑢, [𝐺(𝑢)]𝛼) ≤ 𝑑(𝜇, 𝑎𝑛) + 𝜌𝑑(𝑎𝑛−1, 𝜇) + 𝛽[𝑑(𝑎𝑛−1, 𝑎𝑛) + 𝑑(𝜇, [𝐺(𝜇)]𝛼)]

+ 𝛾[𝑑(𝑎𝑛−1, [𝐺(𝜇)]𝛼) + 𝑑(𝜇, 𝑎𝑛)]. 

As 𝑛 approaches to ∞ then, 

𝑑(𝜇, [𝐺(𝜇)]𝛼) ≤ 𝑑(𝜇, 𝜇) + 𝜌 𝑑(𝜇, 𝜇) + 𝛽[𝑑(𝜇, 𝜇) + 𝑑(𝜇, [𝐺(𝜇)]𝛼)] + 𝛾[𝑑(𝜇, [𝐺(𝜇)]𝛼) + 𝑑(𝜇, 𝜇)]. 

Since 𝑑(𝜇, 𝜇) = 0. So, (1 − 𝛽 − 𝛾)𝑑(𝜇, [𝐺(𝜇)]𝛼) ≤ 0. 
As 𝜌 + 2𝛽 + 2𝛾 <  1, this implies that 𝜌 + 𝛽 + 𝛾 < 1 −  𝛽 − 𝜆, therefore, 1 −  𝛽 − 𝜆 ≠ 0. 

So only possibility is 

𝑑(𝜇, [𝐺(𝜇)]𝛼) = 0. 

This implies that 𝜇 ∈ [𝐺(𝜇)]𝛼. Thus, 𝜇 is a FP of 𝐺. 

Example 2.2. Let Ω = [0, 2] be a usual MS which is complete and 𝐽: Ω → 𝐹(Ω) be a FM such that 

𝐽(𝑤) ∈ 𝐹(Ω), where 𝑤 ∈ Ω and 𝐽(𝑤): Ω → [0,1] is a function defined as 

𝐽𝑤(𝑡) =

{
 
 

 
 
1

2
 ,

1

3
,

0,

    

0 ≤ 𝑡 ≤
1

2
1

2
< 𝑡 < 1

1 ≤ 𝑡 ≤ 2

. 

Taking 𝛼 =  
1

2
 we define 
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[𝐽𝑤]1
2
= {𝑡: 𝐽𝑤(𝑡) ≥

1

2
}, 

[𝐽𝑤]1
2

= [0,
1

2
] and [𝐽𝑣]1

2

= [0,
1

2
]. 

Now, 

𝐻([𝐽𝑤]1
2
, [𝐽𝑣]1

2
) = max { 𝑑 (𝑥, [𝐽𝑣]1

2
) ,𝑥∈[𝐽𝑤]1

2

𝑠𝑢𝑝 𝑑 (𝑥, [𝐽𝑤]1
2
)}𝑦∈[𝐽𝑣]1

2

𝑠𝑢𝑝 , 

𝐻([𝐽𝑤]1
2
, [𝐽𝑣]1

2
) = 0. 

𝑑(𝑤, 𝑣) = |𝑤 − 𝑣|. 

𝑑 ([𝐽𝑣]1
2
, 𝑣) = {

0  𝑖𝑓 𝑣 ∈ [𝐽𝑣]1
2

Otherwise non zero
. 

𝑑 ([𝐽𝑤]1
2
, 𝑤) = {

0  𝑖𝑓 𝑤 ∈ [𝐽𝑤]1
2

Otherwise non zero
. 

𝑑 ([𝐽𝑤]1
2
, 𝑣) = {

0  𝑖𝑓 𝑣 ∈ [𝐽𝑤]1
2

Otherwise non zero
. 

𝑑 ([𝐽𝑣]1
2
, 𝑤) = {

0  𝑖𝑓 𝑤 ∈ [𝐽𝑣]1
2

Otherwise non zero
. 

Take 𝜌 =
1

10
, 𝛽 =

1

4
 and 𝛾 =

1

4
, we get 

𝐻([𝐽𝑤]1
2
, [𝐽𝑣]1

2
) ≤  

1

10
𝑑(𝑥, 𝑦) +

1

4
[𝑑 ([𝐽𝑣]1

2
, 𝑣) + 𝑑 ([𝐽𝑤]1

2
, 𝑤)] 

+
1

4
[𝑑 ([𝐽𝑤]1

2
, 𝑣) + 𝑑 ([𝐽𝑣]1

2
, 𝑤)]. 

0 ≤
1

10
|𝑥 − 𝑦| +

1

4
[𝑑 ([𝐽𝑣]1

2
, 𝑣) + 𝑑 ([𝐽𝑤]1

2
, 𝑤)] +

1

4
[𝑑 ([𝐽𝑤]1

2
, 𝑣) + 𝑑 ([𝐽𝑣]1

2
, 𝑤)]. 

So, for all 𝑤, 𝑣 ∈ Ω the conditions of Theorem 2.1, are satisfied. Hence 𝐽 has FP in Ω. 
Corollary 2.3. Let (Ω, 𝑑) be a complete MS and 𝐺: Ω → 𝐹(Ω) be an FM. Suppose for all 𝑎, 𝑏 ∈ Ω 

there exists 𝛼 ∈ (0,1] and [𝐺(𝑎)]𝛼, [𝐺(𝑏)]𝛼)) ∈ 𝐶𝐵(Ω) such that  

𝐻 ([𝐺(𝑎)]𝛼, [𝐺(𝑏)]𝛼) ≤  𝜌𝑑 (𝑎, 𝑏) +  𝛽[𝑑(𝑎, [𝐺(𝑎)]𝛼) + 𝑑(𝑏, [𝐺(𝑏)]𝛼)] 

for 𝜌, 𝛽 > 0 and 𝜌 + 2𝛽 <  1. Then 𝐺 has a FP in Ω. 

Corollary 2.4. Let (Ω, 𝑑) be a complete MS and 𝐺: Ω → 𝐹(Ω) be an FM. Suppose for all 𝑎, 𝑏 ∈ Ω 

there exists 𝛼 ∈ (0,1] and [𝐺(𝑎)]𝛼, [𝐺(𝑏)]𝛼)∈ 𝐶𝐵(Ω) such that  

𝐻 ([𝐺(𝑎)]𝛼, [𝐺(𝑏)]𝛼) ≤  𝜌𝑑 (𝑎, 𝑏) + 𝛾[𝑑(𝑎, [𝐺(𝑏)]𝛼) + 𝑑(𝑏, [𝐺(𝑎)]𝛼)] 

for 𝜌, 𝛾 > 0 and 𝜌 + 2𝛾 <  1. Then 𝐺 has an FP in Ω. 

Corollary 2.5. Let (Ω, 𝑑) be a complete MS and 𝐺: Ω → 𝐹(Ω) be an FM. Suppose for all 𝑎, 𝑏 ∈ Ω 

there exists 𝛼 ∈ (0,1] and [𝐺(𝑎)]𝛼, [𝐺(𝑏)]𝛼)) ∈ 𝐶𝐵(Ω) such that  
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𝐻 ([𝐺(𝑎)]𝛼, [𝐺(𝑏)]𝛼) ≤  𝜌𝑑 (𝑎, 𝑏) 

for 0 <  𝜌 <  1. Then 𝐺 has an FP in Ω. 

Corollary 2.6. Let (Ω, 𝑑) be a complete MS and 𝐺: Ω → 𝐹(Ω) be an FM. Suppose for all 𝑎, 𝑏 ∈ Ω  

there exists 𝛼 ∈ (0,1] and [𝐺(𝑎)]𝛼, [𝐺(𝑏)]𝛼)) ∈ 𝐶𝐵(Ω) such that  

𝐻 ([𝐺(𝑎)]𝛼, [𝐺(𝑏)]𝛼) ≤  𝛽[𝑑(𝑎, [𝐺(𝑎)]𝛼) + 𝑑(𝑏, [𝐺(𝑏)]𝛼)] 

for 0 < 2𝛽 <  1. Then 𝐺 has an FP in Ω. 

Corollary 2.7. Let (Ω, 𝑑) be a complete MS and 𝐺: Ω → 𝐹(Ω) be an FM. Suppose for all 𝑎, 𝑏 ∈ Ω  

there exist 𝛼 ∈ (0,1] and [𝐺(𝑎)]𝛼, [𝐺(𝑏)]𝛼)∈ 𝐶𝐵(Ω) such that  

𝐻 ([𝐺(𝑎)]𝛼, [𝐺(𝑏)]𝛼) ≤  𝛾[𝑑(𝑎, [𝐺(𝑏)]𝛼) + 𝑑(𝑏, [𝐺(𝑎)]𝛼)] 
for 0 < 2𝛾 <  1. Then 𝐺 has an FP in Ω. 

2.2. Application 

As an application of the fuzzy fixed point result of the previous section we obtain fixed points of 

multivalued mappings (see, [30]). 

Theorem. Let (Ω, 𝑑) be a complete MS and 𝐴: Ω → 𝐶𝐵(Ω) be a multi-valued mapping. Suppose 

for all 𝑎, 𝑏 ∈ Ω 𝐴(𝑎) and 𝐴(𝑏) be non-empty closed and bounded subsets of Ω such that  

𝐻 (𝐴(𝑎), 𝐴(𝑏)) ≤  𝜌𝑑 (𝑎, 𝑏) + 𝛽[𝑑(𝑎, 𝐴(𝑎)) + 𝑑(𝑏, 𝐴(𝑏))] + 𝛾[𝑑(𝑎, 𝐴(𝑏)) + 𝑑(𝑏, 𝐴(𝑎))] 

for 𝜌, 𝛽, 𝛾 > 0 and 𝜌 + 2𝛽 + 2𝛾 <  1. Then 𝐺 has a FP in Ω i.e., there exists 𝑢 ∈ Ω such that 𝑢 ∈
𝐴(𝑢). 
Proof. Consider an arbitrary mapping 𝑆: Ω ⟶ (0, 1] and a fuzzy mapping 𝐺: Ω →  𝐹(Ω) defined by 

𝐺(𝑥)(𝑡) = {
𝑆𝑥          𝑡 ∈ 𝐴𝑥
0            𝑡 ∉ 𝐴𝑥.

 

Then for 𝑥 ∈  Ω, 

[𝐺𝑥]𝛼 = {𝑡: 𝐺(𝑥)(𝑡) ≥ 𝛼} = 𝐴𝑥. 

Therefore, Theorem 2.1 can be applied to obtain 𝑢 ∈ Ω such that 𝑢 ∈ [𝐺𝑢∗]𝛼=𝐴𝑢∗. 
Corollary. ([30]) Let (Ω, 𝑑)  be a complete MS and 𝐴: Ω → 𝐶𝐵(Ω)  be a multi-valued mapping. 

Suppose for all 𝑎, 𝑏 ∈ Ω 𝐴(𝑎) and 𝐴(𝑏) be non-empty closed and bounded subsets of Ω such that  

𝐻 (𝐴(𝑎), 𝐴(𝑏)) ≤  𝜌𝑑 (𝑎, 𝑏) 

for 𝜌 > 0 and 𝜌 <  1. Then 𝐺 has an FP in Ω i.e., there exists 𝑢 ∈ Ω such that 𝑢 ∈ 𝐴(𝑢). 
Proof. By setting 𝛽 = 0 and 𝛾 = 0 in above theorem, we can find the required result. 

3. Fuzzy fixed points of fuzzy mappings in fuzzy metric spaces 

This section deals with the existence theorems for fixed point of fuzzy mappings satisfying 

Nadler’s type contractions in complete fuzzy metric space. An example and applications are 

incorporated to demonstrate the obtained results. 

Theorem 3.1. Let (Ω, 𝐹,∗)  be a complete FMS and 𝑆: Ω:→ 𝐹(Ω)  be an FM satisfying these 

conditions: 

                     𝑎) 𝑙𝑖𝑚
𝜆→∞

𝐹(𝑖, 𝑗, 𝜆) = 1,          (3.1) 

b) 𝐻𝐹([𝑆𝑖]𝛼(𝑖), [𝑆𝑗]𝛼(𝑗), 𝑘𝜆) ≥ µ(𝑖, 𝑗, 𝜆),      (3.2) 
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where, 

𝜇(𝑖, 𝑗, 𝜆) = 𝑚𝑖𝑛 {
(𝐹(𝑗, [𝑆𝑗]𝛼(𝑗), 𝜆)[1 + 𝐹(𝑖, [𝑆𝑖]𝛼(𝑖), 𝜆)]

[1 + 𝐹(𝑖, 𝑗, 𝜆 )]
, 𝐹(𝑖, 𝑗, 𝜆)} 

for all 𝑖, 𝑗 ∈ Ω, 𝛼 ∈ (0, 1] and 𝜅 ∈ (0,1) such that [𝑆𝑖]𝛼(𝑖) and [𝑆𝑗]𝛼(𝑗) are compact subsets of Ω. 

Then, 𝑆 has an FP. 

Proof. Let 𝑖0 be any point in Ω. We construct a sequence {𝑖𝑛} of points in Ω as follows: 

For 𝑖1 ∈ Ω, consider that 𝑖1 ∈ [𝑆𝑖0]𝛼(𝑖0), by using Lemma 5, we can choose 𝑖2 ∈ [𝑆𝑖1]𝛼(𝑖1) such that 

𝐹(𝑖1, 𝑖2, 𝜆) ≥ 𝐻𝐹([𝑆𝑖0]𝛼(𝑖0), [𝑆𝑖1]𝛼(𝑖1), 𝜆), for all 𝜆 > 0. 

By induction we can write 𝑖𝑛+1 ∈ [𝑆𝑖𝑛]𝛼(𝑖𝑛), for all 𝑛 ∈ ℕ, satisfying 

𝐹(𝑖𝑛, 𝑖𝑛+1, 𝜆) ≥ 𝐻𝐹([𝑆𝑖𝑛−1]𝛼(𝑖𝑛−1), [𝑆𝑖𝑛]𝛼(𝑖𝑛), 𝜆), for all 𝜆 > 0. 

Now, 

𝐹(𝑖2, 𝑖3, 𝜆) ≥ 𝐻𝐹([𝑆𝑖1]𝛼(𝑖1), [𝑆𝑖2]𝛼(𝑖2), 𝜆). 

By using inequality (3.2) we get  

𝐹(𝑖2, 𝑖3, 𝜆) ≥ µ (𝑖1, 𝑖2,
𝜆

𝜅
),        (3.3) 

where, 

µ (𝑖1, 𝑖2,
𝜆

𝜅
) = 𝑚𝑖 𝑛 { 

𝐹 (𝑖2, [𝑆𝑖2]𝛼(𝑖2),
 𝜆
𝜅) [1 + 𝐹 (𝑖1, [𝑆𝑖1]𝛼(𝑖1),

𝜆
𝜅)]

[1 + [𝐹 (𝑖1, 𝑖2,
𝜆
𝜅 )]

, 𝐹 (𝑖1, 𝑖2,
𝜆

𝜅
)}, 

µ (𝑖1, 𝑖2,
𝜆

𝜅
) = 𝑚𝑖 𝑛 { 

𝐹 (𝑖2, 𝑖3,
𝜆
𝜅 ) [1 + 𝐹 (𝑖1, 𝑖2,

𝜆
𝜅 )]

[1 + [𝐹 (𝑥1, 𝑥2,
𝑡
𝑘
 )]

, 𝐹 (𝑖1, 𝑖2,
𝜆

𝜅
)} 

= 𝑚𝑖𝑛 {𝐹 (𝑖2, 𝑖3,
𝜆

𝜅
  ) , 𝐹 (𝑖1, 𝑖2,

𝜆

𝜅
)}. 

If 𝐹 (𝑖1, 𝑖2,
𝜆

𝜅
) ≥ 𝐹 (𝑖2, 𝑖3,

𝜆

𝜅
) then, by (3.3), we have  

𝐹(𝑖2, 𝑖3, 𝜆) ≥ 𝐹 (𝑖2, 𝑖3,
𝜆

𝜅
) . 

So, by the Lemma 6 nothing left to prove. Now, if we have 

𝐹(𝑖2, 𝑖3,
𝜆

𝜅
) ≥ 𝐹 (𝑖1, 𝑖2,

𝜆

𝜅
) , 

then, again by Lemma 5, we have 𝐹(𝑖2, 𝑖3, 𝜆) ≥ 𝐹(𝑖1, 𝑖2,
𝜆

𝜅
) 

𝐹(𝑖2, 𝑖3, 𝜆) ≥ 𝐻𝐹([𝑆𝑖0]𝛼(𝑖0), [𝑆𝑖1]𝛼(𝑖1),
𝜆

𝜅
) 

𝐹(𝑖2, 𝑖3, 𝜆) ≥ µ (𝑖0, 𝑖1,
𝜆

 𝜅2
),        (3.4) 

where, 
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µ (𝑖0, 𝑖1,
𝜆

𝜅2
) = 𝑚𝑖𝑛 {

𝐹 (𝑖1, [𝑆𝑖1]𝛼(𝑖1),
 𝜆
𝜅2
) [1 + 𝐹 (𝑖0, [𝑆𝑖0]𝛼(𝑖0),

𝜆
𝜅2
)]

[1 + [𝐹 (𝑖0, 𝑖,
𝑡
𝑘2
 )]

, 𝐹 (𝑖0, 𝑖1,
𝜆

𝜅2
)}, 

µ (𝑖0, 𝑖1,
𝜆

𝜅2
) = 𝑚𝑖𝑛 {

𝐹 (𝑖1, 𝑖2,
 𝜆
𝜅2
) [1 + 𝐹 (𝑖0, 𝑖1,

𝜆
𝜅2
)]

[1 + [𝐹 (𝑖0, 𝑖1,
𝑡
𝑘2
 )]

, 𝐹 (𝑖0, 𝑖1,
𝜆

𝜅2
)}, 

= 𝑚𝑖𝑛 {𝐹 (𝑖1, 𝑖2,
𝜆

𝜅2
) , 𝐹 (𝑖0, 𝑖1,

𝜆

𝜅2
)}. 

If, 

𝐹 (𝑖0, 𝑖1,
𝜆

𝜅2
) ≥ 𝐹(𝑖1, 𝑖2,

𝜆

𝜅2
), 

then, again by Lemma 6, nothing left to prove. If, 

𝐹 (𝑖1, 𝑖2,
𝜆

𝜅2
) ≥ 𝐹 (𝑖0, 𝑖1,

𝜆

𝜅2
) , 

then, by (3.4) we have 

𝐹(𝑖2, 𝑖3, 𝑡) ≥ 𝐹 (𝑖0, 𝑖1,
𝜆

𝜅2
) . 

Consequently, 

𝐹(𝑖𝑛, 𝑖𝑛+1, 𝜆) ≥ 𝐹 (𝑖0, 𝑖1,
𝜆

𝜅𝑛
).        (3.5) 

Now, for 𝑚 > 𝑛, that is 𝑚 = 𝑛 + 𝑝 we have 

𝐹(𝑖𝑛, 𝑖𝑛+𝑝, 𝜆) ≥ 𝐹 (𝑖𝑛, 𝑖𝑛+1,
𝜆

𝑝
) ∗ … ∗ 𝐹 (𝑥𝑛+𝑝−1, 𝑥𝑛+𝑝,

𝜆

𝑝
) , (𝑝 − 𝑡𝑖𝑚𝑒𝑠) 

by using (3.5), we get 

 𝐹(𝑖𝑛, 𝑖𝑛+𝑝, 𝜆) ≥ 𝐹(𝑖0, 𝑖1,
𝜆

𝑝𝜅𝑛
) ∗···∗ 𝐹(𝑖0, 𝑖1,

𝜆

𝑝𝜅𝑛+𝑝−1
). 

Now, taking 𝑙𝑖𝑚
𝑛→∞

and using (3.1) we have, 

𝑙𝑖𝑚
𝑛→∞

𝐹(𝑖𝑛, 𝑖𝑛+𝑝, 𝜆) = 1. 

Hence, {𝑖𝑛} is a Cauchy sequence in Ω. So, by completeness there exists 𝑧 ∈  Ω such that 𝑖𝑛 → 𝑧. 

Now, we claim that 𝑧 is an FP of 𝑆.  

Consider, 

𝐹(𝑧, [𝑆𝑧]𝛼(𝑧), 𝜆) ≥ 𝐹(𝑧, 𝑖𝑛+1, (1 − 𝑘)𝜆) ∗ 𝐹(𝑖𝑛+1, [𝑆𝑧]𝛼(𝑧), 𝜅𝜆), 

𝐹(𝑧, [𝑆𝑧]𝛼(𝑧), 𝜆) ≥  𝐹(𝑧, 𝑖𝑛+1, (1 − 𝑘)𝜆) ∗ 𝐻𝐹([𝑆𝑖𝑛]𝛼(𝑖𝑛), [𝑆𝑧]𝛼(𝑧), 𝜅𝜆), 

𝐹(𝑧, [𝑆𝑧]𝛼(𝑧), 𝜆) ≥ 𝐹(𝑧, 𝑖𝑛+1, (1 − 𝑘)𝜆) ∗ µ(𝑖𝑛, 𝑧, 𝜆),     (3.6) 
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where  

𝜇(𝑖𝑛, 𝑧, 𝜆) = 𝑚𝑖𝑛 {
(𝐹(𝑧, [𝑆𝑧]𝛼(𝑧), 𝜆)[1 + 𝐹(𝑖𝑛, [𝑆𝑖𝑛]𝛼(𝑖𝑛), 𝜆]

[1 + 𝐹(𝑖𝑛, 𝑧, 𝜆)]
, 𝐹(𝑖𝑛, 𝑧, 𝜆)} , 

𝜇(𝑖𝑛, 𝑧, 𝜆) = 𝑚𝑖𝑛 {
(𝐹(𝑧, [𝑆𝑧]𝛼(𝑧), 𝜆)[1 + 𝐹(𝑖𝑛, 𝑖𝑛+1, 𝜆)  ]

[1 + 𝐹(𝑖𝑛, 𝑧, 𝜆)]
, 𝐹(𝑖𝑛, 𝑧, 𝜆)}. 

Taking 𝑙𝑖𝑚
𝑛→∞

 in above inequality, we get 

µ(𝑧, 𝑧, 𝜆 ) = 𝑚𝑖𝑛{𝐹(𝑧, [𝑆𝑧]𝛼(𝑧), 𝜆),1}. 

If, 

𝐹(𝑧, [𝑆𝑧]𝛼(𝑧), 𝜆) ≥ 1, 

then, we get 𝑧 is the fuzzy fixed point for S. If 

𝐹(𝑧, [𝑆𝑧]𝛼(𝑧), 𝜆) < 1, 

then, by using (3.6) we have, 

𝐹(𝑧, [𝑆𝑧]𝛼(𝑧), 𝜆) ≥ 𝐹(𝑧, 𝑖𝑛+1, (1 − 𝑘)𝜆) ∗ 𝐹(𝑧, [𝑆𝑧]𝛼(𝑧), 𝜆). 

Now, taking 
𝑙𝑖𝑚
𝑛→∞

, we get 𝑧 ∈ [𝑆𝑧]𝛼(𝑧). Hence 𝑧 is a fuzzy FP of 𝑆.  

Example. Let (Ω, 𝑑) be a bounded MS with 𝑑 (𝑖, 𝑗) < 𝜆 and Ω = [1, 3] (for all 𝑖, 𝑗 ∈ Ω, where 𝜆 

is fixed constant in (0,∞))  and 𝐺: ℝ+  → (𝜆,∞)  be an increasing continuous function defined 

as 𝐺(𝜆) = 𝜆 + 2. 

Define a function 𝐹: Ω 2 × (0,∞) → [0, 1] as 

𝐹 (𝑖, 𝑗, 𝜆) = 1 −
𝑑(𝑖,𝑗)

𝐺(𝜆)
 for all 𝑖, 𝑗 ∈ Ω and 𝜆 > 0. 

Then (Ω, 𝐹,∗) is a complete fuzzy metric space, where ∗ is a Lukasiewicz t-norm.  

Define a fuzzy map 𝑆: Ω → 𝐹(Ω)  as 

𝑆(𝑖)(𝑡) = {

1

2
 ,

1

3
,

0,

    

1 ≤ 𝑡 ≤
3

2
3

2
< 𝑡 < 2

2 ≤ 𝑡 ≤ 3

. 

Now for 𝛼 = 
1

2
, 

[𝑆𝑖]1
2
= {𝑡: 𝑆𝑖(𝑡) ≥

1

2
} = [1,

3

2
] 

[𝑆𝑗]1
2
= {𝑡: 𝑆𝑗(𝑡) ≥

1

2
} = [1,

3

2
]. 

It is to be noted that 

𝑙𝑖𝑚
𝜆→∞

𝐹(𝑖, 𝑗, 𝜆) = 1 −
𝑑(𝑖, 𝑗)

𝐺(𝜆)
= 1 

and 
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𝐻𝐹 ([𝑆𝑖]1
2

, [𝑆𝑗]1
2

, 𝑘𝜆) = 𝑚𝑖𝑛{ inf
𝑖∈[𝑆𝑖]1

2

( sup
𝑗∈[𝑆𝑗]1

2

𝐹(𝑖, 𝑗, 𝑘𝜆)) , inf
𝑗∈[𝑆𝑗]1

2

( sup
𝑖∈[𝑆𝑖]1

2

𝐹(𝑖, 𝑗, 𝑘𝜆))}=0 

for all [𝑆𝑖]1
2

, [𝑆𝑗]1
2

 ∈ Ќ (Ω), 𝑘 = 
1

2
 and 𝜆 > 0. 

We also find  

𝜇(𝑖, 𝑗, 𝜆) = 𝑚𝑖𝑛 {
(𝐹(𝑗,[𝑆𝑗]1

2

,𝜆)[1+𝐹(𝑖,[𝑆𝑖]1
2

,𝜆)]

[1+𝐹(𝑖,𝑗,𝜆 )]
, 𝐹(𝑖, 𝑗, 𝜆 )} = 0. 

Thus, all the conditions of Theorem 3.1 are satisfied. So 𝑆 has a fuzzy fixed point in fuzzy metric space. 

Corollary 3.2. Let (Ω, 𝐹,∗) be a FMS and 𝑆: Ω:→ 𝐹(Ω) be an FM satisfying these conditions: 

                    (𝑎) 𝑙𝑖𝑚
𝜆→∞

𝐹(𝑖, 𝑗, 𝜆) = 1, 

(b) 𝐻𝐹([𝑆𝑖]𝛼(𝑖), [𝑆𝑗]𝛼(𝑗), 𝑘𝜆) ≥ 𝐹(𝑖, 𝑗, 𝜆) 

for all 𝑖, 𝑗 ∈ Ω, 𝛼 ∈ (0, 1] and 𝜅 ∈ (0,1) such that [𝑆𝑖]𝛼(𝑖) and [𝑆𝑗]𝛼(𝑗) are compact subsets of Ω. 

Then, 𝑆 has an FP.  

Definition 3.3. Let us define, 

Γ = {𝜔 ∶ [0,1] → [0,1]} 

is a collection of all continuous function such that 𝜔(1)  = 1,𝜔(0) = 0 , 𝜔(𝜐)  > 𝜐  for all  0 <
𝜐 < 1.  

Theorem 3.4. Let (Ω, 𝐹,∗) be a complete FMS and 𝑆: Ω → 𝐹(Ω) be an FM satisfying these conditions: 

                     a) 
𝑙𝑖𝑚
𝜆→∞

𝐹(𝑝, 𝑞, 𝜆) = 1, 

b) 𝐻𝐹([𝑆𝑝]𝛼(𝑝), [𝑆𝑞]𝛼(𝑞), 𝜅𝜆) ≥ 𝜔{µ(𝑝, 𝑞, 𝜆)}, 

where, 

𝜇(𝑝, 𝑞, 𝜆) = 𝑚𝑖𝑛 {
(𝐹(𝑞, [𝑆𝑞]𝛼(𝑞),𝜆)[1 + 𝐹(𝑝, [𝑆𝑝]𝛼(𝑝),𝜆)]

[1 + 𝐹(𝑝, 𝑞, 𝜆 )]
, 𝐹(𝑝, 𝑞, 𝜆)} 

for all 𝑝, 𝑞 ∈ Ω, 𝛼 ∈ (0, 1], 𝜅 ∈ (0, 1) and 𝜔 ∈ Γ  such that [𝑆𝑝]𝛼(𝑝)  and [𝑆𝑞]𝛼(𝑞)   are compact 

subsets of Ω. Then, 𝑆 has an FP. 

Proof. Using Definition 3.3, we get 𝜔(𝜐) > 𝜐 for all 0 < 𝜐 < 1. 

Thus,  

𝐻𝐹([𝑆𝑝]𝛼(𝑝), [𝑆𝑞]𝛼(𝑞), 𝜅𝜆) ≥ 𝜔{µ(𝑝, 𝑞, 𝜆)} ≥ µ(𝑝, 𝑞, 𝜆). 

Now, using Theorem 3.1, we get the desired result. 

Corollary 3.5. Let (Ω, 𝐹,∗)  be a complete FMS and 𝑆: Ω → 𝐹(Ω)  be an FM satisfying these 

conditions: 

                       a) 
𝑙𝑖𝑚
𝜆→∞

𝐹(𝑝, 𝑞, 𝜆) = 1, 

b) 𝐻𝐹([𝑆𝑝]𝛼(𝑝), [𝑆𝑞]𝛼(𝑞), 𝜅𝜆) ≥ 𝜔𝐹(𝑝, 𝑞, 𝜆) 

for all 𝑝, 𝑞 ∈ Ω, 𝛼 ∈ (0, 1], 𝜅 ∈ (0, 1) and 𝜔 ∈ Γ  such that [𝑆𝑝]𝛼(𝑝)  and [𝑆𝑞]𝛼(𝑞)  are compact 

subsets of Ω. Then, 𝑆 has an FP. 
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Applications: 

Let us define a function 𝜗: [0,∞) → [0,∞) as 

𝜗(𝜆) = ∫ 𝜌(𝜆)𝑑𝜆  ∀ 𝜆 > 0
𝜆

0

, 

be a non-decreasing and continuous function. Moreover for each 𝛿 > 0, 𝜌(𝛿) > 0.  Also 𝜌(𝜆 ) =
0 if and only if 𝜆 = 0. 

Theorem 3.6. Let (Ω, 𝐹,∗) be a complete FMS and 𝑆: Ω → 𝐹(Ω) be an FM satisfying these conditions: 

                   a) 
𝑙𝑖𝑚
𝜆→∞

𝐹(𝑝, 𝑞, 𝜆) = 1, 

b) ∫ 𝜌(𝜆)𝑑𝜆
𝐻𝐹([𝑆𝑝]𝜶(𝑝),[𝑆𝑞]𝛼(𝑞),𝜅𝜆) 

0
 ≥ ∫ 𝜌(𝜆)𝑑𝜆

µ(𝑝,𝑞,𝜆)

0
, 

where, 

𝜇(𝑝, 𝑞, 𝜆) = 𝑚𝑖𝑛 {
(𝐹(𝑞, [𝑆𝑞]𝛼(𝑞),𝜆)[1 + 𝐹(𝑝, [𝑆𝑝]𝛼(𝑝), 𝜆)]

[1 + 𝐹(𝑝, 𝑞, 𝜆)]
, 𝐹(𝑝, 𝑞, 𝜆)} 

for all 𝑝, 𝑞 ∈ Ω, 𝜌(𝜆) ∈ [0,∞), 𝛼 ∈ (0, 1] and 𝜅 ∈ (0, 1)  such that [𝑆𝑝]𝛼(𝑝)  and [𝑆𝑞]𝛼(𝑞)  are 

compact subsets of Ω. Then 𝑆 has an FP. 

Proof. Let us take 𝜌(𝜆) = 1 and using Theorem 3.1, we get the desired result.  

Theorem 3.7. Let (Ω, 𝐹,∗)  be a complete FMS and 𝑆: Ω → 𝐹(Ω)  be an FM satisfying these 

conditions:  

𝑎) 𝑙𝑖𝑚
𝜆→∞

𝐹(𝑝, 𝑞, 𝜆) = 1, 

b) ∫ 𝜌(𝜆)𝑑𝜆
𝐻𝐹([𝑆𝑝]𝛼(𝑝),   [𝑆𝑞]𝛼(𝑞),𝜅𝜆) 

0
≥ 𝜔 {∫ 𝜌(𝜆)𝑑𝜆

µ(𝑝,𝑞,𝜆)

0
}, 

where, 

𝜇(𝑝, 𝑞, 𝜆) = 𝑚𝑖𝑛 {
(𝐹(𝑞, [𝑆𝑞]𝛼(𝑞),𝜆)[1 + 𝐹(𝑝, [𝑆𝑝]𝛼(𝑝), 𝜆)]

[1 + 𝐹(𝑝, 𝑞, 𝜆 )]
, 𝐹(𝑝, 𝑞, 𝜆)} 

for all 𝑝, 𝑞 ∈ Ω, 𝜌(𝜆) ∈ [0,∞), 𝜔 ∈ Γ , 𝛼 ∈  (0, 1]  and 𝑘 ∈ (0, 1)  such that [𝑆𝑥]𝛼(𝑥)  and [𝑆𝑦]𝛼(𝑦) 

are compact subsets of Ω. Then 𝑆 has an FP.  

Proof. Using Definition 3.3, we get 𝜔(𝜐) > 𝜐 for all 0 < 𝜐 < 1. 

Taking 𝜌(𝜆) = 1 and using Theorem 3.4, we get the desired result. 

4. Conclusions 

In order to demonstrate the existence and uniqueness of solutions to distinct mathematical models, 

fixed point theorems are crucial tools. Results that identify fixed points of self and nonself nonlinear 

operators in a metric space are widely published in the last 40 years. Among various developments of 

fuzzy sets theory, a progressive development has been made to find the fuzzy analogues of fixed point 

results of the classical fixed point theorems.  In this research, we employ two generalized contractive 

conditions, i.e., Ćirić  type contraction and Nadler's type contraction incorporating rational 

expressions in the setting of metric and fuzzy metric spaces respectively to study fuzzy fixed point 

theorems for fuzzy set valued mappings. Completion is compulsory for both spaces in order to ensure 

the existence of fuzzy fixed points. Examples and applications that emphasis and support our obtained 
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results are integrated. From the pertinent literature, there are additional previous conclusions that are 

provided as corollaries. Since Fuzzy mappings are generalized form of multi-valued mappings, so in this 

way many fixed point results exist in the relevant literature have been generalized by our obtained results. 

5. Possible future developments 

We conclude this paper by indicating, in the form of open questions, some directions for further 

investigation and work. 

(1) Can the condition of  𝜌 + 2𝛽 + 2𝛾 < 1 in Theorem 2.1 be relaxed? 

(2) If the answer to 1 is yes, then what hypotheses is needed to guarantee the existence of fixed point of G?  

(3) Whether the condition 𝐻𝐹([𝑆𝑖]𝛼(𝑖), [𝑆𝑗]𝛼(𝑗), 𝑘𝜆) ≤ µ(𝑖, 𝑗, 𝜆),  in Theorem 3.1 can be applied to 

ensure the existence of fixed point. 

(4) Can the concept offered in this article be extended to more than one mappings? 
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