Research article Special Issues

Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system

  • Received: 01 March 2024 Revised: 13 April 2024 Accepted: 22 April 2024 Published: 08 May 2024
  • MSC : 34A08, 34B15, 45G15

  • This study aimed to investigate the existence, uniqueness, and Ulam-Hyers stability of solutions in a nonlinear coupled system of Hilfer-Hadamard sequential fractional integrodifferential equations, which were further enhanced by nonlocal coupled Hadamard fractional integrodifferential multipoint boundary conditions. The desired conclusions were obtained by using well-known fixed-point theorems. It was emphasized that the fixed-point technique was useful in determining the existence and uniqueness of solutions to boundary value problems. In addition, we examined the solution's Ulam-Hyers stability for the suggested system. The resulting results were further demonstrated and validated using demonstration instances.

    Citation: Subramanian Muthaiah, Manigandan Murugesan, Muath Awadalla, Bundit Unyong, Ria H. Egami. Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system[J]. AIMS Mathematics, 2024, 9(6): 16203-16233. doi: 10.3934/math.2024784

    Related Papers:

  • This study aimed to investigate the existence, uniqueness, and Ulam-Hyers stability of solutions in a nonlinear coupled system of Hilfer-Hadamard sequential fractional integrodifferential equations, which were further enhanced by nonlocal coupled Hadamard fractional integrodifferential multipoint boundary conditions. The desired conclusions were obtained by using well-known fixed-point theorems. It was emphasized that the fixed-point technique was useful in determining the existence and uniqueness of solutions to boundary value problems. In addition, we examined the solution's Ulam-Hyers stability for the suggested system. The resulting results were further demonstrated and validated using demonstration instances.



    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 204 (2006), 1–5234.
    [2] J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027
    [3] I. Podlubny, Fractional differential equations, Elsevier, 198 (1999), 1–340.
    [4] D. Valerio, J. T. Machado, V. Kiryakova, Some pioneers of the applications of fractional calculus, Fract. Calculus Appl. Anal., 17 (2014), 552–578. https://doi.org/10.2478/s13540-014-0185-1 doi: 10.2478/s13540-014-0185-1
    [5] R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000. https://doi.org/10.1142/3779
    [6] R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, Chem. Phys., 284 (2002), 399–408. https://doi.org/10.1016/S0301-0104(02)00670-5 doi: 10.1016/S0301-0104(02)00670-5
    [7] R. Hilfer, Y. Luchko, Z. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives, Fract. Calc. Appl. Anal., 12 (2009), 299–318.
    [8] A. Boutiara, A. Alzabut, A. G. M. Selvam, D. Vignesh, Analysis and applications of sequential hybrid $\psi$-Hilfer fractional differential equations and inclusions in Banach algebra, Qual. Theory Dyn. Syst., 22 (2023), 12. https://doi.org/10.1007/s12346-022-00710-x doi: 10.1007/s12346-022-00710-x
    [9] A. Boutiara, M. Benbachir, J. Alzabut, M. E. Samei, Monotone iterative and upper-lower solution techniques for solving the nonlinear $\psi$-Caputo fractional boundary value problem, Fractal Fract., 5 (2021), 194. https://doi.org/10.3390/fractalfract5040194 doi: 10.3390/fractalfract5040194
    [10] I. Suwan, I. Abdo, T. Abdeljawad, M. Mater, A. Boutiara, M. Almalahi, Existence theorems for Psi-fractional hybrid systems with periodic boundary conditions, AIMS Mathematics, 7 (2021), 171–186. https://doi.org/10.3934/math.2022010 doi: 10.3934/math.2022010
    [11] K. Tablennehas, Z. Dahmani, A three sequential fractional differential problem of Duffing type, Appl. Math. E-Notes, 21 (2021), 587–598.
    [12] M. Rakah, Y. Gouari, R. W. Ibrahim, Z. Dahmani, H. Kahtan, Unique solutions, stability and travelling waves for some generalized fractional differential problems, Appl. Math. Sci. Eng., 31 (2023), 2232092. https://doi.org/10.1080/27690911.2023.2232092 doi: 10.1080/27690911.2023.2232092
    [13] Y. Hafssa, Z. Dahmani, Solvability for a sequential system of random fractional differential equations of Hermite type, J. Interdiscip. Math., 25 (2022), 1643–1663. https://doi.org/10.1080/09720502.2021.1968580 doi: 10.1080/09720502.2021.1968580
    [14] A. Alsaedi, A. Assolami, B. Ahmad, Existence results for nonlocal Hilfer-type integral-multipoint boundary value problems with mixed nonlinearities, Filomat, 36 (2022), 4751–4766. https://doi.org/10.2298/FIL2214751A doi: 10.2298/FIL2214751A
    [15] S. Theswan, S. K. Ntouyas, B. Ahmad, J. Tariboon, Existence results for nonlinear coupled Hilfer fractional differential equations with nonlocal Riemann-Liouville and Hadamard-type iterated integral boundary conditions, Symmetry, 14 (2022), 1948. https://doi.org/10.3390/sym14091948 doi: 10.3390/sym14091948
    [16] S. K. Ntouyas, B. Ahmad, J. Tariboon, Coupled systems of nonlinear proportional fractional differential equations of the Hilfer-type with multi-point and integro-multi-strip boundary conditions, Foundations, 3 (2023), 241–259. https://doi.org/10.3390/foundations3020020 doi: 10.3390/foundations3020020
    [17] S. S. Redhwan, S. L. Shaikh, M. S. Abdo, W. Shatanawi, K. Abodayeh, et al., Investigating a generalized Hilfer-type fractional differential equation with two-point and integral boundary conditions, AIMS Mathematics, 7 (2022), 1856–1872. http://dx.doi.org/10.3934/math.2022107 doi: 10.3934/math.2022107
    [18] T. Abdeljawad, P. O. Mohammed, H. M. Srivastava, E. Al-Sarairah, A. Kashuri, K. Nonlaopon, Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application, AIMS Mathematics, 8 (2023), 3469–3483. http://dx.doi.org/10.3934/math.2023177 doi: 10.3934/math.2023177
    [19] R. P. Agarwal, A. Assolami, A. Alsaedi, A. Ahmad, Existence results and Ulam-Hyers stability for a fully coupled system of nonlinear sequential Hilfer fractional differential equations and integro-multistrip-multipoint boundary conditions, Qual. Theory Dyn. Syst., 21 (2022), 125. https://doi.org/10.1007/s12346-022-00650-6 doi: 10.1007/s12346-022-00650-6
    [20] A. Salim, B. Ahmad, M. Benchohra, J. E. Lazreg, Boundary value problem for hybrid generalized Hilfer fractional differential equations, J. Differ. Equ. Appl., 14 (2022), 379–391.
    [21] J. Hadamard, Essai sur l'étude des fonctions données par leur développement de Taylor, J. Math. Pures Appl., 8 (1892), 101–186.
    [22] M. Subramanian, J. Alzabut, D. Baleanu, M. E. Samei, A. Zada, Existence, uniqueness and stability analysis of a coupled fractional-order differential systems involving Hadamard derivatives and associated with multi-point boundary conditions, Adv. Differ. Equ., 2021 (2021), 267. https://doi.org/10.1186/s13662-021-03414-9 doi: 10.1186/s13662-021-03414-9
    [23] S. Muthaiah, M. Murugesan, N. G. Thangaraj, Existence of solutions for nonlocal boundary value problem of Hadamard fractional differential equations, Adv. Theory Nonlinear Anal. Appl., 3 (2019), 162–173. https://doi.org/10.31197/atnaa.579701 doi: 10.31197/atnaa.579701
    [24] M. Subramanian, T. N. Gopal, Analysis of boundary value problem with multi-point conditions involving Caputo-Hadamard fractional derivative, Proyecciones, 39 (2020), 1555–1575. http://dx.doi.org/10.22199/issn.0717-6279-2020-06-0093 doi: 10.22199/issn.0717-6279-2020-06-0093
    [25] A. Tudorache, R. Luca, Positive solutions for a system of Hadamard fractional boundary value problems on an infinite interval, Axioms, 12 (2023), 793. https://doi.org/10.3390/axioms12080793 doi: 10.3390/axioms12080793
    [26] S. Hristova, A. Benkerrouche, M. S. Souid, A. Hakem, Boundary value problems of Hadamard fractional differential equations of variable order, Symmetry, 13 (2021), 896. https://doi.org/10.3390/sym13050896 doi: 10.3390/sym13050896
    [27] M. Murugesan, S. Muthaiah, J. Alzabut, T. N. Gopal, Existence and H-U stability of a tripled system of sequential fractional differential equations with multipoint boundary conditions, Bound. Value Probl., 2023 (2023), 56. https://doi.org/10.1186/s13661-023-01744-z doi: 10.1186/s13661-023-01744-z
    [28] M. Awadalla, M. Subramanian, P. Madheshwaran, K. Abuasbeh, Post-Pandemic Sector-based investment model using generalized Liouville-Caputo type, Symmetry, 15 (2023), 789. https://doi.org/10.3390/sym15040789 doi: 10.3390/sym15040789
    [29] M. Awadalla, M. Subramanian, K. Abuasbeh, Existence and Ulam-Hyers stability results for a system of coupled generalized Liouville-Caputo fractional Langevin equations with multipoint boundary conditions, Symmetry, 15 (2023), 198. https://doi.org/10.3390/sym15010198 doi: 10.3390/sym15010198
    [30] M. Subramanian, S. Aljoudi, Existence and Ulam-Hyers stability analysis for coupled differential equations of fractional-order with nonlocal generalized conditions via generalized Liouville-Caputo derivative, Fractal Fract., 6 (2022), 629. https://doi.org/10.3390/fractalfract6110629 doi: 10.3390/fractalfract6110629
    [31] M. Subramanian, M. Manigandan, A. Zada, T. N. Gopal, Existence and Hyers-Ulam stability of solutions for nonlinear three fractional sequential differential equations with nonlocal boundary conditions, Int. J. Nonlinear Sci. Numer. Simul., 24 (2023), 3071–3099. https://doi.org/10.1515/ijnsns-2022-0152 doi: 10.1515/ijnsns-2022-0152
    [32] Abbas, S. Benchohra, M. Lagreg, J. E. Alsaedi, A. Zhou, Y. Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type, Adv. Differ. Equ., 2017, 1–14. https://doi.org/10.1186/s13662-017-1231-1
    [33] C. Promsakon, S. K. Ntouyas, J. Tariboon, Hilfer-Hadamard nonlocal integro-multipoint fractional boundary value problems, Adv. Fract. Funct. Anal., 2021 (2021), 8031524.
    [34] B. Ahmad, S. K. Ntouyas, Hilfer-Hadamard fractional boundary value problems with nonlocal mixed boundary conditions, Fractal Fract., 5 (2021), 195. https://doi.org/10.3390/fractalfract5040195 doi: 10.3390/fractalfract5040195
    [35] S. Abbas, M. Benchohra, A. Petrusel, Coupled Hilfer and Hadamard fractional differential systems in generalized Banach spaces, Fixed Point Theory, 23 (2022), 21–34.
    [36] A. Tudorache, R. Luca, Systems of Hilfer-Hadamard fractional differential equations with nonlocal coupled boundary conditions, Fractal Fract., 7 (2023), 816. https://doi.org/10.3390/fractalfract7110816 doi: 10.3390/fractalfract7110816
    [37] B. Ahmad, S. Aljoudi, Investigation of a coupled system of Hilfer-Hadamard fractional differential equations with nonlocal coupled Hadamard fractional integral boundary conditions, Fractal Fract., 7 (2023), 178. https://doi.org/10.3390/fractalfract7020178 doi: 10.3390/fractalfract7020178
    [38] W. Saengthong, E. Thailert, S. K. Ntouyas, Existence and uniqueness of solutions for system of Hilfer-Hadamard sequential fractional differential equations with two point boundary conditions, Adv. Differ. Equ., 2019 (2019), 525. https://doi.org/10.1186/s13662-019-2459-8 doi: 10.1186/s13662-019-2459-8
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(554) PDF downloads(52) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog