Research article

Estimates of bounds on the weighted Simpson type inequality and their applications

  • Received: 30 April 2020 Accepted: 19 May 2020 Published: 26 May 2020
  • MSC : 26D10, 26D15, 41A55

  • Based on the established integral identity, some bounds involving the weighted Simpson type inequality are obtained where the first derivative of considered mappings is (m, h)-preinvex, boundedness or Lipschitzian. As applications, certain generalized inequalities in connection with weighted Simpson type quadrature formula, continuous random variables and F-divergence measures are investigated, respectively.

    Citation: Chunyan Luo, Yuping Yu, Tingsong Du. Estimates of bounds on the weighted Simpson type inequality and their applications[J]. AIMS Mathematics, 2020, 5(5): 4644-4661. doi: 10.3934/math.2020298

    Related Papers:

  • Based on the established integral identity, some bounds involving the weighted Simpson type inequality are obtained where the first derivative of considered mappings is (m, h)-preinvex, boundedness or Lipschitzian. As applications, certain generalized inequalities in connection with weighted Simpson type quadrature formula, continuous random variables and F-divergence measures are investigated, respectively.


    加载中


    [1] T. Antczak, Mean value in invexity analysis, Nonlinear Anal., 60 (2005), 1473-1484. doi: 10.1016/j.na.2004.11.005
    [2] M. U. Awan, M. A. Noor, M. V. Mihai, et al. Some new bounds for Simpson's rule involving special functions via harmonic h-convexity, J. Nonlinear Sci. Appl., 10 (2017), 1755-1766. doi: 10.22436/jnsa.010.04.37
    [3] J. H. Chen and X. J. Huang, Some new inequalities of Simpson's type for s-convex functions via fractional integrals, Filomat, 31 (2017), 4989-4997. doi: 10.2298/FIL1715989C
    [4] T. S. Du, J. G. Liao, Y. J. Li, Properties and integral inequalities of Hadamard-Simpson type for the generalized (s, m)-preinvex functions, J. Nonlinear Sci. Appl., 9 (2016), 3112-3126. doi: 10.22436/jnsa.009.05.102
    [5] T. S. Du, Y. J. Li, Z. Q. Yang, A generalization of Simpson's inequality via differentiable mapping using extended (s, m)-convex functions, Appl. Math. Comput., 293 (2017), 358-369.
    [6] T. S. Du, M. U. Awan, A. Kashuri, et al. Some k-fractional extensions of the trapezium inequalities through generalized relative semi-(m, h)-preinvexity, Appl. Anal., 2019 (2019), 1-21.
    [7] F. Ertuǧral, M. Z. Sarikaya, Simpson type integral inequalities for generalized fractional integral, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 113 (2019), 3115-3124.
    [8] K.-C. Hsu, S.-R. Hwang, K.-L. Tseng, Some extended Simpson-type inequalities and applications, Bull. Iranian Math. Soc., 43 (2017), 409-425.
    [9] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48 (1994), 100-111. doi: 10.1007/BF01837981
    [10] S. Hussain, S. Qaisar, Generalizations of Simpson's type inequalities through preinvexity and prequasiinvexity, Punjab Univ. J. Math. (Lahore), 46 (2014), 1-9.
    [11] M. Iqbal, S. Qaisar, S. Hussain, On Simpson's type inequalities utilizing fractional integrals, J. Comput. Anal. Appl., 23 (2017), 1137-1145.
    [12] M. A. Latif, M. Shoaib, Hermite-Hadamard type integral inequalities for differentiable m-preinvex and (α, m)-preinvex functions, J. Egypt. Math. Soc., 23 (2015), 236-241. doi: 10.1016/j.joems.2014.06.006
    [13] M. A. Latif, S. S. Dragomir, E. Momoniat, Some weighted integral inequalities for differentiable h-preinvex functions, Georgian Math. J., 25 (2018), 441-450. doi: 10.1515/gmj-2016-0081
    [14] Y. J. Li, T. S. Du, B. Yu, Some new integral inequalities of Hadamard-Simpson type for extended (s, m)-preinvex functions, Ital. J. Pure Appl. Math., 36 (2016), 583-600.
    [15] W. J. Liu, Some Simpson type inequalities for h-convex and (α, m)-convex functions, J. Comput. Anal. Appl., 16 (2014), 1005-1012.
    [16] M. Matłoka, Weighted Simpson type inequalities for h-convex functions, J. Nonlinear Sci. Appl., 10 (2017), 5770-5780. doi: 10.22436/jnsa.010.11.15
    [17] M. A. Noor, K. I. Noor, M. U. Awan, Simpson-type inequalities for geometrically relative convex functions, Ukrainian Math. J., 70 (2018), 1145-1154. doi: 10.1007/s11253-018-1558-0
    [18] M. Z. Sarikaya, E. Set, M. E. Özdemir, On new inequalities of Simpson's type for s-convex functions, Comput. Math. Appl., 60 (2010), 2191-2199. doi: 10.1016/j.camwa.2010.07.033
    [19] E. Set, A. O. Akdemir, M. E. Özdemir, Simpson type integral inequalities for convex functions via Riemann-Liouville integrals, Filomat, 31 (2017), 4415-4420. doi: 10.2298/FIL1714415S
    [20] E. Set, M. E. Özdemir, M. Z. Sarikaya, On new inequalities of Simpson's type for quasi-convex functions with applications, Tamkang J. Math., 43 (2012), 357-364. doi: 10.5556/j.tkjm.43.2012.616
    [21] H. Shioya, T. Da-Te, A generalization of Lin divergence and the derivation of a new information divergence, Electronics and Communications in Japan (Part III: Fundamental Electronic Science), 78 (1995), 34-40. doi: 10.1002/ecjb.4420780904
    [22] Y. Shuang, F. Qi, Some integral inequalities for s-convex functions, Gazi Univ. J. Sci., 31 (2018), 1192-1200.
    [23] S. Varošanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303-311. doi: 10.1016/j.jmaa.2006.02.086
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3102) PDF downloads(282) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog