Research article

Double composed metric-like spaces via some fixed point theorems

  • Received: 21 July 2024 Revised: 04 September 2024 Accepted: 12 September 2024 Published: 20 September 2024
  • MSC : 47H10, 54E50, 54H25

  • The manuscript introduces the concept of a double-composed metric-like space, which is an extension of the notion of a double-composed metric space. In this new space, the self-distance is not necessarily zero, but if the distance metric equals zero, it must be for identical points of distance. Furthermore, this paper presents several results related to this novel concept in the literature, with a particular focus on Hardy–Rogers type contractions. It establishes fixed point theorems accompanied by some illustrative examples that elucidate the findings. Finally, this research provides an application to nonlinear integral equation to substantiate our theorems.

    Citation: Anas A. Hijab, Laith K. Shaakir, Sarah Aljohani, Nabil Mlaiki. Double composed metric-like spaces via some fixed point theorems[J]. AIMS Mathematics, 2024, 9(10): 27205-27219. doi: 10.3934/math.20241322

    Related Papers:

  • The manuscript introduces the concept of a double-composed metric-like space, which is an extension of the notion of a double-composed metric space. In this new space, the self-distance is not necessarily zero, but if the distance metric equals zero, it must be for identical points of distance. Furthermore, this paper presents several results related to this novel concept in the literature, with a particular focus on Hardy–Rogers type contractions. It establishes fixed point theorems accompanied by some illustrative examples that elucidate the findings. Finally, this research provides an application to nonlinear integral equation to substantiate our theorems.



    加载中


    [1] S. Banach, On operations in abstract assemblies and their application to integral equations, Fund. Math., 3 (1922), 133–181.
    [2] A. Bakhtinl, The contraction mapping principle in almost metric spaces, Funct. Anal. Gos. Ped. Inst. Unianowsk, 30 (1989), 26–37.
    [3] S. Czerwik, Contraction mappings in $ b $-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1 (1993), 5–11.
    [4] P. Hitzler, A. K. Seda, Dislocated topologies, J. Electr. Eng., 51 (2000), 3–7.
    [5] A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl., 2012 (2012), 204. https://doi.org/10.1186/1687-1812-2012-204 doi: 10.1186/1687-1812-2012-204
    [6] M. A. Alghamdi, N. Hussain, P. Salimi, Fixed point and coupled fixed point theorems on $b$-metric-like spaces, J. Inequal. Appl., 2013 (2013), 402. https://doi.org/10.1186/1029-242X-2013-402 doi: 10.1186/1029-242X-2013-402
    [7] Z. D. Mitrović, S. Radenović, The Banach and Reich contractions in $b_v (s)$-metric spaces, Fixed Point Theory Appl., 19 (2017), 3087–3095. https://doi.org/10.1007/s11784-017-0469-2 doi: 10.1007/s11784-017-0469-2
    [8] Z. Mitrović, H. Işık, S. Radenović, The new results in extended b-metric spaces and applications, Int. J. Nonlinear Anal. Appl., 11 (2020), 473–482. http://dx.doi.org/10.22075/ijnaa.2019.18239.1998 doi: 10.22075/ijnaa.2019.18239.1998
    [9] J. R. R. Roshan, V. Parvaneh, Z. Kadelburg, New fixed point results in $b$-rectangular metric spaces, Nonlinear Anal.-Model., 21 (2016), 614–634. https://doi.org/10.15388/NA.2016.5.4 doi: 10.15388/NA.2016.5.4
    [10] C. Chen, J. Dong, C. Zhu, Some fixed point theorems in $b$-metric-like spaces, Fixed Point Theory Appl., 2015 (2015), 122. https://doi.org/10.1186/s13663-015-0369-3 doi: 10.1186/s13663-015-0369-3
    [11] K. Zoto, M. Gardasević-Filipović, I. Vardhami, Z. Mitrović, S. Radenović, General new results on $(\phi, F)$-contractions in $b$-metric-like-spaces, Axioms, 12 (2023), 672. https://doi.org/10.3390/axioms12070672 doi: 10.3390/axioms12070672
    [12] N. Hussain, Z. Kadelburg, S. Radenović, F. Al-Solamy, Comparison functions and fixed point results in partial metric spaces, Abstr. Appl. Anal., 2012 (2012), 605781. https://doi.org/10.1155/2012/605781 doi: 10.1155/2012/605781
    [13] T. Kamran, M. Samreen, Q. UL Ain, A generalization of $b$-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019
    [14] N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6 (2018), 194. https://doi.org/10.3390/math6100194 doi: 10.3390/math6100194
    [15] T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double controlled metric type spaces and some fixed point results, Mathematics, 6 (2018), 320. https://doi.org/10.3390/math6120320 doi: 10.3390/math6120320
    [16] N. Mlaiki, Double controlled metric-like spaces, J. Inequal. Appl., 2020 (2020), 189. https://doi.org/10.1186/s13660-020-02456-z doi: 10.1186/s13660-020-02456-z
    [17] A. Karami, S. Sedghi, Z. D. Mitrović, Solving existence problems via contractions in expanded $b$-metric spaces, J. Anal., 30 (2022), 895–907. https://doi.org/10.1007/s41478-021-00376-9 doi: 10.1007/s41478-021-00376-9
    [18] I. Ayoob, N. Z. Chuan, N. Mlaiki, Double-composed metric spaces, Mathematics, 11 (2023), 1866. https://doi.org/10.3390/math11081866 doi: 10.3390/math11081866
    [19] I. Ayoob, N. Z. Chuan, N. Mlaiki, Hardy–Rogers type contraction in double-controlled metric-like spaces, AIMS Math., 8 (2023), 13623–13636. https://doi.org/10.3934/math.2023691 doi: 10.3934/math.2023691
    [20] F. M. Azmi, Generalized contraction mappings in double-controlled metric type space and related fixed point theorems, J. Inequal. Appl., 2023 (2023), 87. https://doi.org/10.1186/s13660-023-02999-x doi: 10.1186/s13660-023-02999-x
    [21] A. A. Hijab, L. K. Shaakir, S. Aljohani, N. Mlaiki, Fredholm integral equation in composed-cone metric spaces, Bound. Value Probl., 2024 (2024), 64. https://doi.org/10.1186/s13661-024-01876-w doi: 10.1186/s13661-024-01876-w
    [22] W. Shatanawi, N. Mlaiki, D. Rizk, E. Onunwor, Fredholm-type integral equation in controlled metric-like spaces, Adv. Differ. Equ., 2021 (2021), 358. https://doi.org/10.1186/s13662-021-03516-4 doi: 10.1186/s13662-021-03516-4
    [23] H. Aydi, M. Barakat, A. Felhi, H. Isik, On $\phi$-contraction type couplings in partial metric spaces, Journal of Mathematical Analysis, 8 (2017), 78–89.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(441) PDF downloads(38) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog