Research article

New scaling criteria for $ H $-matrices and applications

  • Received: 19 October 2024 Revised: 30 November 2024 Accepted: 05 December 2024 Published: 06 March 2025
  • MSC : 15A18, 15B99

  • Non-singular $ H $-matrices represent an important research frame in analysis of many classical problems of numerical linear algebra, as well as in applications in engineering, health, information sciences, and social studies. As identification of $ H $-matrices was never an easy task, a research area was formed around some special $ H $-matrices, characterized by checkable conditions-inequalities expressed via matrix entries only. In this paper, we introduced new conditions for a given matrix to be a non-singular $ H $-matrix. We introduced a new special subclass of non-singular $ H $-matrices and applied new criterion to obtain results on infinity norm of the inverse matrix, errors in linear complementarity problems, and estimation of minimal singular value. Also, results on spectra of the Schur complement matrix were given in the form of scaled disks and in the form of intervals that included or excluded real parts of eigenvalues. Results were interpreted in the light of mixed linear complementarity problems. Numerical examples illustrated improvements obtained by applications of new criteria.

    Citation: Maja Nedović, Dunja Arsić. New scaling criteria for $ H $-matrices and applications[J]. AIMS Mathematics, 2025, 10(3): 5071-5094. doi: 10.3934/math.2025232

    Related Papers:

  • Non-singular $ H $-matrices represent an important research frame in analysis of many classical problems of numerical linear algebra, as well as in applications in engineering, health, information sciences, and social studies. As identification of $ H $-matrices was never an easy task, a research area was formed around some special $ H $-matrices, characterized by checkable conditions-inequalities expressed via matrix entries only. In this paper, we introduced new conditions for a given matrix to be a non-singular $ H $-matrix. We introduced a new special subclass of non-singular $ H $-matrices and applied new criterion to obtain results on infinity norm of the inverse matrix, errors in linear complementarity problems, and estimation of minimal singular value. Also, results on spectra of the Schur complement matrix were given in the form of scaled disks and in the form of intervals that included or excluded real parts of eigenvalues. Results were interpreted in the light of mixed linear complementarity problems. Numerical examples illustrated improvements obtained by applications of new criteria.



    加载中


    [1] D. Arsić, M. Nedović, On $\Pi$-Nekrasov matrices, Filomat, 37 (2023), 4335–4350. https://dx.doi.org/10.2298/FIL2313335A doi: 10.2298/FIL2313335A
    [2] R. B. Bapat, T. E. S. Raghavan, Nonnegative matrices and applications, Cambridge University Press, 1997. https://dx.doi.org/10.1017/CBO9780511529979
    [3] A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Classics in Applied Mathematics, SIAM, Philadelphia, 1994. https://dx.doi.org/10.1016/C2013-0-10361-3
    [4] X. Chen, Y. Li, L. Liu, Y. Wang, Infinity norm upper bound for the inverse of $SDD_1$ matrices, AIMS Math., 7 (2022), 8847–8860. https://dx.doi.org/10.3934/math.2022493 doi: 10.3934/math.2022493
    [5] X. J. Chen, S. H. Xiang, Computation of error bounds for $P$-matrix linear complementarity problems, Math. Program., 106 (2006), 513–525. https://dx.doi.org/10.1007/s10107-005-0645-9 doi: 10.1007/s10107-005-0645-9
    [6] R. W. Cottle, J. S. Pang, R. E. Stone, The linear complementarity problem, Academic, Boston, 1992. https://dx.doi.org/10.1137/1.9780898719000
    [7] L. Cvetković, K. Doroslovački, Max norm estimation for the inverse of block matrices, Appl. Math. Comput., 242 (2014), 694–706. https://doi.org/10.1016/j.amc.2014.06.035 doi: 10.1016/j.amc.2014.06.035
    [8] L. Cvetković, V. Kostić, New criteria for identifying $H$-matrices, J. Comput. Appl. Math., 180 (2005), 265–278. https://dx.doi.org/10.1016/j.cam.2004.10.017 doi: 10.1016/j.cam.2004.10.017
    [9] L. Cvetković, V. Kostić, M. Kovačević, T. Szulc, Further results on $H$-matrices and their Schur complements, Appl. Math. Comput., 198 (2008), 506–510. http://dx.doi.org/10.1016/j.amc.2007.09.001 doi: 10.1016/j.amc.2007.09.001
    [10] L. Cvetković, V. Kostić, M. Nedović, Generalizations of Nekrasov matrices and applications, Open Math., 13 (2015), 1–10. http://dx.doi.org/10.1515/math-2015-0012 doi: 10.1515/math-2015-0012
    [11] L. Cvetković, M. Nedović, Special $H$-matrices and their Schur and diagonal-Schur complements, Appl. Math. Comput., 208 (2009), 225–230. http://dx.doi.org/10.1016/j.amc.2008.11.040 doi: 10.1016/j.amc.2008.11.040
    [12] L. Cvetković, M. Nedović, Eigenvalue localization refinements for the Schur complement, Appl. Math. Comput., 218 (2012), 8341–8346. http://dx.doi.org/10.1016/j.amc.2012.01.058 doi: 10.1016/j.amc.2012.01.058
    [13] P. F. Dai, J. Li, S. Zhao, Infinity norm bounds for the inverse for $GSDD_1$ matrices using scaling matrices, Comput. Appl. Math., 42 (2023), 121. https://dx.doi.org/10.1007/s40314-022-02165-x doi: 10.1007/s40314-022-02165-x
    [14] P. F. Dai, J. C. Li, Y. T. Li, J. Bai, A general preconditioner for linear complementarity problem with an $M$-matrix, J. Comput. Appl. Math., 317 (2017), 100–112. https://doi.org/10.1016/j.cam.2016.11.034 doi: 10.1016/j.cam.2016.11.034
    [15] L. S. Dashnic, M. S. Zusmanovich, O nekotoryh kriteriyah regulyarnosti matric i lokalizacii ih spectra, Zh. Vychisl. Matem. I Matem. Fiz., 5 (1970), 1092–1097.
    [16] L. S. Dashnic, M. S. Zusmanovich, K voprosu o lokalizacii harakteristicheskih chisel matricy, Zh. Vychisl. Matem. I Matem. Fiz., 10 (1970), 1321–1327.
    [17] M. Fiedler, V. Pták, Generalized norms of matrices and the location of the spectrum, Czech. Math. J., 12 (1962), 558–571. http://dx.doi.org/10.21136/CMJ.1962.100540 doi: 10.21136/CMJ.1962.100540
    [18] L. Gao, X. M. Gu, X. Jia, C. Q. Li, Upper triangulation-based infinity norm bounds for the inverse of Nekrasov matrices with applications, Numer. Algorithms, 97 (2024), 1453–1479. https://dx.doi.org/10.1007/s11075-024-01758-3 doi: 10.1007/s11075-024-01758-3
    [19] M. G. Esnaola, J. M. Peña, A comparison of error bounds for linear complementarity problems of $H$-matrices, Linear Algebra Appl., 433 (2010), 956–964. https://dx.doi.org/10.1016/j.laa.2010.04.024 doi: 10.1016/j.laa.2010.04.024
    [20] M. G. Esnaola, J. M. Peña, Error bounds for linear complementarity problems of Nekrasov matrices, Numer. Algorithms, 67 (2014), 655–667. https://dx.doi.org/10.1007/s11075-013-9815-7 doi: 10.1007/s11075-013-9815-7
    [21] M. G. Esnaola, J. M. Peña, On the asymptotic optimality of error bounds for some linear complementarity problems, Numer. Algorithms, 80 (2019), 521–532. https://dx.doi.org/10.1007/s11075-018-0495-1 doi: 10.1007/s11075-018-0495-1
    [22] M. G. Esnaola, J. M. Peña, $B$-Nekrasov matrices and error bounds for linear complementarity problems, Numer. Algorithms, 72 (2016), 435–445. https://dx.doi.org/10.1007/s11075-015-0054-y doi: 10.1007/s11075-015-0054-y
    [23] S. Geršgorin, Uber die Abgrenzung der eigenwerte einer matrix, Izv. Akad. Nauk SSSR Ser. Mat., 1 (1931), 749–754.
    [24] J. Grilli, T. Rogers, S. Allesina, Modularity and stability in ecological communities, Nat. Commun., 7 (2016), 12031. https://dx.doi.org/10.1038/ncomms12031 doi: 10.1038/ncomms12031
    [25] V. V. Gudkov, On a certain test for nonsingularity of matrices, Latvian Math. Yearbook, 1965,385–390.
    [26] A. S. Householder, On a condition for the nonsingularity of a matrix, Math. Comput., 26 (1972), 119–120.
    [27] K. D. Ikramov, M. Y. Ibragimov, The Nekrasov property is hereditary for Gaussian elimination, ZAMM, 77 (1997), 394–396. https://dx.doi.org/10.1002/zamm.19970770522 doi: 10.1002/zamm.19970770522
    [28] L. Y. Kolotilina, Bounds for the infinity norm of the inverse for certain $M$- and $H$-matrices, Linear Algebra Appl., 430 (2009), 692–702. https://dx.doi.org/10.1016/j.laa.2008.09.005 doi: 10.1016/j.laa.2008.09.005
    [29] L. Y. Kolotilina, Bounds for the inverses of generalized Nekrasov matrices, J. Math. Sci., 207 (2015), 786–794. https://dx.doi.org/10.1007/s10958-015-2401-x doi: 10.1007/s10958-015-2401-x
    [30] L. Y. Kolotilina, Diagonal dominance characterization of $PM$- and $PH$-matrices, J. Math. Sci., 165 (2010), 556–561. https://dx.doi.org/10.1007/s10958-010-9825-0 doi: 10.1007/s10958-010-9825-0
    [31] L. Y. Kolotilina, On bounding inverse to Nekrasov matrices in the infinity norm, J. Math. Sci., 199 (2014), 432–437. https://dx.doi.org/10.1007/s10958-014-1870-7 doi: 10.1007/s10958-014-1870-7
    [32] V. Kostić, L. Cvetković, D. L. Cvetković, C. Q. Li, Pseudospectra localizations and their applications, Numer. Linear Algebra, 23 (2016), 356–372. https://dx.doi.org/10.1002/nla.2028 doi: 10.1002/nla.2028
    [33] C. Q. Li, P. F. Dai, Y. T. Li, New error bounds for linear complementarity problems of Nekrasov matrices and $B$-Nekrasov matrices, Numer. Algorithms, 74 (2017), 997–1009. https://dx.doi.org/10.48550/arXiv.1606.06838 doi: 10.48550/arXiv.1606.06838
    [34] W. Li, On Nekrasov matrices, Linear Algebra Appl., 281 (1998), 87–96. https://dx.doi.org/10.1016/S0024-3795(98)10031-9 doi: 10.1016/S0024-3795(98)10031-9
    [35] J. Liu, Y. Huang, J. Zhang, The dominant degree and the disc theorem for the Schur complement of matrix, Appl. Math. Comput., 215 (2010), 4055–4066. https://dx.doi.org/10.1016/j.amc.2009.12.063 doi: 10.1016/j.amc.2009.12.063
    [36] J. Z. Liu, F. Z. Zhang, Disc separation of the Schur complements of diagonally dominant matrices and determinantal bounds, SIAM J. Matrix Anal. Appl., 27 (2005), 665–674. https://dx.doi.org/10.1137/040620369 doi: 10.1137/040620369
    [37] M. Nedović, Norm bounds for the inverse for generalized Nekrasov matrices in point-wise and block case, Filomat, 35 (2021), 2705–2714. https://dx.doi.org/10.2298/FIL2108705N doi: 10.2298/FIL2108705N
    [38] M. Nedović, L. Cvetković, Norm bounds for the inverse and error bounds for linear complementarity problems for $\{P1, P2\}$-Nekrasov matrices, Filomat, 35 (2021), 239–250. https://dx.doi.org/10.2298/FIL2101239N doi: 10.2298/FIL2101239N
    [39] M. Nedović, L. Cvetković, The Schur complement of $PH$-matrices, Appl. Math. Comput., 362 (2019), 124541. https://dx.doi.org/10.1016/j.amc.2019.06.055 doi: 10.1016/j.amc.2019.06.055
    [40] M. Nedović, S. Milićević, A new lower bound for the smallest singular value of a special class of matrices, The 8th Conference on Mathematics in Engineering: Theory and Applications, Novi Sad, May 26–28th, 2023.
    [41] A. M. Ostrowski, Über die Determinanten mit überwiegender Hauptdiagonale, Comment. Math. Helv., 10 (1937), 69–96. http://dx.doi.org/10.1007/BF01214284 doi: 10.1007/BF01214284
    [42] J. M. Peña, Diagonal dominance, Shur complements and some classes of $H$-matrices and $P$-matrices, Adv. Comput. Math., 35 (2011), 357–373. https://dx.doi.org/10.1007/s10444-010-9160-5 doi: 10.1007/s10444-010-9160-5
    [43] F. Robert, Blocs $H$-matrices et convergence des methodes iteratives classiques par blocs, Linear Algebra Appl., 2 (1969), 223–265. https://dx.doi.org/10.1016/0024-3795(69)90029-9 doi: 10.1016/0024-3795(69)90029-9
    [44] T. Szulc, Some remarks on a theorem of Gudkov, Linear Algebra Appl., 225 (1995), 221–235. https://dx.doi.org/10.1016/0024-3795(95)00343-P doi: 10.1016/0024-3795(95)00343-P
    [45] T. Szulc, L. Cvetković, M. Nedović, Scaling technique for Partition-Nekrasov matrices, Appl. Math. Comput., 271 (2015), 201–208. https://dx.doi.org/10.1016/j.amc.2015.08.136 doi: 10.1016/j.amc.2015.08.136
    [46] J. M. Varah, A lower bound for the smallest singular value of a matrix, Linear Algebra Appl., 11 (1975), 3–5. https://dx.doi.org/10.1016/0024-3795(75)90112-3 doi: 10.1016/0024-3795(75)90112-3
    [47] R. S. Varga, Geršgorin and his circles, Springer Series in Computational Mathematics, 36 (2004). https://dx.doi.org/10.1007/978-3-642-17798-9
    [48] F. Zhang, The Schur complement and its applications, New York: Springer, 2005. https://dx.doi.org/10.1007/b105056
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(59) PDF downloads(12) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog