The pipe roughness coefficient is a crucial parameter in oil field water injection networks, directly affecting the accuracy of hydraulic calculations and operational optimization. This paper proposed a mathematical model to calibrate the pipe roughness coefficient under a single operating condition, using matrix singular value decomposition to convert the problem into a positive definite quadratic programming model. The interior-point method was employed to solve this problem, yielding a global optimal solution. Simulation results on an actual network showed that the proposed method reduced the average error of the roughness coefficient by 4.9%, from 7.08% to 2.18%, demonstrating its effectiveness.
Citation: Yuxue Wang, Songyu Bai. Pipe roughness calibration in oil field water injection system[J]. AIMS Mathematics, 2025, 10(3): 5052-5070. doi: 10.3934/math.2025231
The pipe roughness coefficient is a crucial parameter in oil field water injection networks, directly affecting the accuracy of hydraulic calculations and operational optimization. This paper proposed a mathematical model to calibrate the pipe roughness coefficient under a single operating condition, using matrix singular value decomposition to convert the problem into a positive definite quadratic programming model. The interior-point method was employed to solve this problem, yielding a global optimal solution. Simulation results on an actual network showed that the proposed method reduced the average error of the roughness coefficient by 4.9%, from 7.08% to 2.18%, demonstrating its effectiveness.
[1] | A. Amiri, A. K. Manshad, Assessment the effect of water injection on improving oil recovery in X field, Int. J. Sci. Stud., 5 (2017), 173–181. |
[2] | A. A. Isaev, R. Takhautdinov, I. M. Yunusov, M. G. Novikov, V. I. Malykhin, Enhanced oil recovery techniques to develop mature oilfields, Proceedings of the SPE Annual Caspian Technical Conference, 2022. |
[3] |
L. Xue, P. Liu, Y. Zhang, Status and prospect of improved oil recovery technology of high water cut, Water, 15 (2023), 1342. https://doi.org/10.3390/w15071342 doi: 10.3390/w15071342
![]() |
[4] |
Y. Bai, J. Hou, Y. Liu, D. Y. Zhao, S. Bing, W. Xiao, et al., Energy-consumption calculation and optimization method of integrated system of injection-reservoir-production in high water-cut reservoir, Energy, 239 (2022), 121961. https://doi.org/10.1016/j.energy.2021.121961 doi: 10.1016/j.energy.2021.121961
![]() |
[5] |
Y. Wang, J. Wen, R. Zhang, S. Gao, Y. Ren, Optimization control of oilfield waterflooding systems based on different zone and pressure, Energies, 15 (2022), 1444. https://doi.org/10.3390/en15041444 doi: 10.3390/en15041444
![]() |
[6] |
H. Pouraria, J. K. Seo, J. K. Paik, A numerical study on water wetting associated with the internal corrosion of oil pipelines, Ocean Eng., 122 (2016), 105–117. https://doi.org/10.1016/j.oceaneng.2016.06.022 doi: 10.1016/j.oceaneng.2016.06.022
![]() |
[7] |
L. de A. Bernardo, I. Andreolli, M. W. Tocantins, A. R. Santos, Roughness analysis within flexible water injection pipes in petroleum production projects, J. Pet. Sci. Eng., 140 (2016), 64–72. https://doi.org/10.1016/j.petrol.2016.01.008 doi: 10.1016/j.petrol.2016.01.008
![]() |
[8] |
D. A. Savic, Z. S. Kapelan, P. M. R. Jonkergouw, Quo vadis water distribution model calibration? Urban Water J., 6 (2009), 3–22. https://doi.org/10.1080/15730620802613380 doi: 10.1080/15730620802613380
![]() |
[9] |
C. C. Shiu, C. C. Chung, T. Chiang, Improved EPANET hydraulic model with optimized roughness coefficient using genetic algorithm, Water Resour. Manage., 38 (2024), 323–341. https://doi.org/10.21203/rs.3.rs-3094623/v1 doi: 10.21203/rs.3.rs-3094623/v1
![]() |
[10] |
K. Lansey, W. El-Shorbagy, I. Ahmed, J. Araújo, C. T. Haan, Calibration assessment and data collection for water distribution networks, J. Hydraul. Eng., 127 (2001), 270–279. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:4(270) doi: 10.1061/(ASCE)0733-9429(2001)127:4(270)
![]() |
[11] | Z. Y. Wu, T. Walski, R. Mankowski, G. Herrin, R. Gurrieri, M. Tryby, Calibrating water distribution model via genetic algorithms, Proceedings of the AWWA Information Management and Technology Conference, 2002. |
[12] |
A. Zanfei, A. Menapace, S. Santopietro, M. Righetti, Calibration procedure for water distribution systems: comparison among hydraulic models, Water, 12 (2020), 141. https://doi.org/10.3390/w12051421 doi: 10.3390/w12051421
![]() |
[13] |
B. Wu, C. Hua, G. Ren, Y. Lu, Y. Chen, The downhole parameter prediction method is based on a multi-layer water injection model and historical data-based model parameter identification, Heliyon, 9 (2023), e20443. https://doi.org/10.1016/j.heliyon.2023.e20443 doi: 10.1016/j.heliyon.2023.e20443
![]() |
[14] |
D. Kang, K. Lansey, Real-time demand estimation and confidence limit analysis for water distribution systems, J. Hydraul. Eng., 135 (2009), 825–837. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000086 doi: 10.1061/(ASCE)HY.1943-7900.0000086
![]() |
[15] |
J. A. Liggett, L. C. Chen, Inverse transient analysis in pipe networks, J. Hydraul. Eng., 120 (1994), 934–955. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:8(934) doi: 10.1061/(ASCE)0733-9429(1994)120:8(934)
![]() |
[16] |
K. E. Lansey, C. M. Basnet, Parameter estimation for water distribution networks, J. Water Resour. Plan. Manag., 117 (1991), 126–144. https://doi.org/10.1061/(ASCE)0733-9496(1991)117:1(126) doi: 10.1061/(ASCE)0733-9496(1991)117:1(126)
![]() |
[17] |
F. Caldarola, M. Maiolo, A mathematical investigation on the invariance problem of some hydraulic indices, Appl. Math. Comput., 409 (2020), 125726. https://doi.org/10.1016/j.amc.2020.125726 doi: 10.1016/j.amc.2020.125726
![]() |
[18] |
S. D. Gupta, B. P. G. Parys, E. K. Ryu, Branch-and-bound performance estimation programming: a unified methodology for constructing optimal optimization methods, Math. Program., 204 (2022), 567–639. https://doi.org/10.1007/s10107-023-01973-1 doi: 10.1007/s10107-023-01973-1
![]() |
[19] |
R. Andreani, A. Ramos, L. Secchin, Improving the global convergence of inexact restoration methods for constrained optimization problems, SIAM J. Optim., 34 (2024), 3429–3455. https://doi.org/10.1137/22m1493811 doi: 10.1137/22m1493811
![]() |
[20] |
L. Mathesen, G. Pedrielli, S. Ng, Z. Zabinsky, Stochastic optimization with adaptive restart: a framework for integrated local and global learning, J. Global Optim., 79 (2021), 87–110. https://doi.org/10.1007/s10898-020-00937-5 doi: 10.1007/s10898-020-00937-5
![]() |
[21] |
D. A. Savic, G. A. Walters, Genetic algorithms for least-cost design of water distribution networks, J. Water Resour. Plan. Manag., 123 (1997), 446–455. https://doi.org/10.1061/(ASCE)0733-9496(1997)123:2(67) doi: 10.1061/(ASCE)0733-9496(1997)123:2(67)
![]() |
[22] |
G. C. Dandy, A. R. Simpson, L. J. Murphy, An improved genetic algorithm for pipe network optimization, Water Resour. Res., 32 (1996), 449–458. https://doi.org/10.1029/95WR02917 doi: 10.1029/95WR02917
![]() |
[23] |
J. P. Vítkovský, A. R. Simpson, M. F. Lambert, Leak detection and calibration using transients and genetic algorithms, J. Water Resour. Plan. Manag., 126 (2000), 262–265. https://doi.org/10.1061/(ASCE)0733-9496(2000)126:4(262) doi: 10.1061/(ASCE)0733-9496(2000)126:4(262)
![]() |
[24] | T. Duc Minh, T. H. Le, A mathematical programming model and genetic algorithm-heuristic approach for the unequal-area facility layout problems: a study emphasis on the detailed layout problems, 2023. https://doi.org/10.2139/ssrn.4615505 |
[25] |
B. A. Hassan, T. A. Rashid, Operational framework for recent advances in backtracking search optimisation algorithm: a systematic review and performance evaluation, Appl. Math. Comput., 370 (2020), 124919. https://doi.org/10.1016/j.amc.2019.124919 doi: 10.1016/j.amc.2019.124919
![]() |
[26] | Y. Wang, Research on the inversion method of pipe friction coefficient in oilfield water injection system, Master's Thesis, Daqing Petroleum Institute, 2008. |
[27] |
S. Wang, D. Ma, Z. C. Yu, X. J. Zhang, Friction factors of oilfield water injection network-research on solving approach, Adv. Mater. Res., 765 (2013), 920–923. https://doi.org/10.4028/www.scientific.net/AMR.765-767.920 doi: 10.4028/www.scientific.net/AMR.765-767.920
![]() |
[28] |
Y. Ren, G. Zhang, K. Sun, M. Jiang, S. Gao, Friction coefficient inversion calculation based on quasi-Newton method and particle swarm optimization, J. Phys., 1624 (2020), 042007. https://doi.org/10.1088/1742-6596/1624/4/042007 doi: 10.1088/1742-6596/1624/4/042007
![]() |
[29] |
A. Waldron, F. Pecci, I. Stoianov, Regularization of an inverse problem for parameter estimation in water distribution networks, J. Water Resour. Plan. Manag., 146 (2020), 04020076. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001218 doi: 10.1061/(ASCE)WR.1943-5452.0001218
![]() |
[30] |
I. Kempf, P. J. Goulart, S. R. Duncan, A higher-order generalized singular value decomposition for rank-deficient matrices, SIAM J. Matrix Anal. Appl., 44 (2023), 1047–1072. https://doi.org/10.1137/21M1443881 doi: 10.1137/21M1443881
![]() |
[31] |
Y. W. Wen, K. Li, H. Chen, Accelerated matrix completion algorithm using continuation strategy and randomized SVD, J. Comput. Appl. Math., 429 (2023), 115215. https://doi.org/10.1016/j.cam.2023.115215 doi: 10.1016/j.cam.2023.115215
![]() |
[32] | Y. Zhang, X. Li, H. Wang, Z. Liu, Optimization and simplification technology of maturing oilfields gathering and transportation system and water injection system, Proceedings of the International Petroleum Technology Conference, 2020. |
[33] |
J. Marques, M. Cunha, J. Sousa, D. Savić, Robust optimization methodologies for water supply systems design, Drinking Water Eng. Sci., 5 (2012), 31–37. https://doi.org/10.5194/DWES-5-31-2012 doi: 10.5194/DWES-5-31-2012
![]() |
[34] |
X. J. Guan, L. X. Wei, J. J. Yang, Optimization of operation plan for water injection system in oilfield using hybrid genetic algorithm, Acta Pet. Sin., 26 (2005), 114–117. https://doi.org/10.7623/syxb200503026 doi: 10.7623/syxb200503026
![]() |
[35] |
Q. Zhao, W. Wu, A. R. Simpson, A. Willis, Simpler is better–calibration of pipe roughness in water distribution systems, Water, 14 (2022), 3276. https://doi.org/10.3390/w14203276 doi: 10.3390/w14203276
![]() |
[36] |
D. Nerantzis, F. Pecci, I. Stoianov, Optimal control of water distribution networks without storage, Eur. J. Oper. Res., 284 (2020), 345–354. https://doi.org/10.1016/j.ejor.2019.12.011 doi: 10.1016/j.ejor.2019.12.011
![]() |
[37] |
I. Sarbu, Nodal analysis of urban water distribution networks, Water Resour. Manage., 28 (2014), 3143–3159. https://doi.org/10.1007/s11269-014-0660-9 doi: 10.1007/s11269-014-0660-9
![]() |
[38] |
X. Qian, L. Z. Liao, J. Sun, A strategy of global convergence for the affine scaling algorithm for convex semidefinite programming, Math. Program., 179 (2020), 1–19. https://doi.org/10.1007/s10107-018-1314-0 doi: 10.1007/s10107-018-1314-0
![]() |
[39] |
M. P. Laiu, A. L. Tits, An infeasible-start framework for convex quadratic optimization, with application to constraint-reduced interior-point and other methods, Math. Program., 195 (2022), 327–366. https://doi.org/10.1007/s10107-021-01692-5 doi: 10.1007/s10107-021-01692-5
![]() |
[40] |
F. E. Curtis, D. P. Robinson, B. Zhou, Sequential quadratic optimization for stochastic optimization with deterministic nonlinear inequality and equality constraints, SIAM J. Optim., 34 (2024), 3592–3622. https://doi.org/10.1137/23M1556149 doi: 10.1137/23M1556149
![]() |