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Abstract: The pipe roughness coefficient is a crucial parameter in oil field water injection networks,
directly affecting the accuracy of hydraulic calculations and operational optimization. This paper
proposed a mathematical model to calibrate the pipe roughness coefficient under a single operating
condition, using matrix singular value decomposition to convert the problem into a positive definite
quadratic programming model. The interior-point method was employed to solve this problem,
yielding a global optimal solution. Simulation results on an actual network showed that the proposed
method reduced the average error of the roughness coefficient by 4.9%, from 7.08% to 2.18%,
demonstrating its effectiveness.
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1. Introduction

In the later stages of oil field development, water injection for enhanced oil recovery becomes
a critical extraction method [1–3]. The purpose of the oil field water injection pipeline network is
to distribute water from injection stations to various injection wells according to production needs,
meeting the flow rate and pressure requirements of different wells. Oil field water injection systems
typically cover areas of tens of square kilometers, and their power consumption generally accounts
for about 40% of the total electricity consumption of the oil field [4, 5]. Therefore, establishing and
solving an energy consumption optimization model for the water injection system can reduce electricity
consumption while meeting production requirements.

In solving the energy consumption optimization model for the water injection system, the
calculation of node pressure is closely related to parameters such as pipe roughness and diameter.
Currently, the selection of these parameters is based on the values at the time of pipeline installation.
However, since the oil field water injection network is a high-pressure pipeline system with relatively
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small diameters, and the water transported is treated oily wastewater, the corrosion of these pipes is
more severe compared to other networks, and the pipelines have been in place for a long period.
Therefore, the pipe roughness coefficient and diameter may have changed significantly from their
values at the time of installation, leading to considerable errors when using the installation data for
simulation and optimization [6, 7]. Thus, it is necessary to conduct correction studies on the pipe
roughness coefficient and diameter for the oil field water injection network.

Extensive research has been conducted on parameter estimation for oil field water injection
networks as water distribution pipeline systems. Three primary methods have been proposed [8, 9]:

(1) Trial and Error Method: This method requires multiple manual repetitions of judgment and
adjustment, resulting in very slow convergence and no guarantee of achieving the desired results
(see [10, 11]).

(2) Explicit Calibration Method: This method involves solving a series of extended steady-state
hydraulic equations. However, it requires the number of calibration parameters to match the number
of observational (field measurement) data, which is difficult to achieve in practice [12].

(3) Implicit Calibration Method: This method establishes an implicit model based on optimization
techniques. It primarily estimates calibration parameters by using optimization algorithms combined
with hydraulic simulation models to minimize the difference between observed and simulated results.
This method is currently the primary approach and has been widely studied [13, 14] due to its
effectiveness in handling complex hydraulic systems. The calibration variables for these models
include parameters such as nodal demand and pipe roughness [15]. Typically, the objective function
of the model is the error between measured and simulated pressures. Various optimization methods
have been employed to solve the related optimization models; however, these algorithms cannot
guarantee obtaining the global optimal solution [16–20]. Although optimization techniques using
genetic algorithms (GA) for model calibration have been proposed to achieve the global optimal
solution [21–25], these methods also cannot ensure obtaining the global optimal solution.

The problem of correcting the pipe roughness coefficient in oil field water injection networks shares
similarities with that in urban water supply networks, but there are also notable differences. In oil field
water injection networks, the corrosive effects of oily wastewater have significantly altered the pipe
roughness coefficient and diameter compared to their values at the time of installation. However, due
to objective production constraints, it is challenging to obtain multi-condition data for oil field water
injection networks. Currently, there is relatively limited research on correcting the pipe roughness
coefficient in these networks.

Wang et al. [26] applied methods from urban water supply network roughness coefficient
correction to inverse research on oil field water injection pipeline roughness coefficients. She
proposed methods based on graph theory, sensitivity analysis, neural networks, and particle swarm
optimization. However, graph theory and neural network methods can only handle small, ideal
networks and exhibit low accuracy in practical applications.

Wang et al. [27] investigated the issue of inaccurate empirical roughness coefficient values in oil
field water injection networks. These inaccuracies can severely impact the operational efficiency of
the network. They used orthogonal experiments and sensitivity analysis to identify and analyze pipe
combinations that require precise adjustments to the friction coefficient. An improved method was
demonstrated, calculating these factors through node equations to ensure more accurate and efficient
operation of the water injection system. However, these methods may have limitations and might not
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fully reflect real-world conditions, as other, more complex factors or interactions might not have been
considered.

Ren et al. [28] proposed a mathematical model for correcting the pipe roughness coefficient in oil
field water injection networks. They used particle swarm optimization and simulated annealing
algorithms for iterative optimization of the multivariable, multiparameter roughness coefficient
correction problem. However, despite establishing an optimization model, obtaining satisfactory
results is challenging due to the existence of multiple global optimal solutions.

Neither traditional optimization algorithms nor intelligent optimization algorithms can guarantee
finding the global optimal solution to the optimization problem. More importantly, due to the
underdetermined nature of the node equations, the established optimization model has multiple global
optimal solutions [29], making the correction results of such models inaccurate.

The contribution of this paper is the presentation of a mathematical model for correcting pipe
roughness coefficient under a single operating condition, along with an efficient numerical method for
solving this model. Additionally, the established model has a unique solution.

This paper first presents a mathematical model for correcting the pipe roughness coefficient under
a single operating condition, with changes in pipe diameter being attributed to changes in roughness,
thereby reducing the number of parameters for hydraulic model calibration without affecting the
hydraulic calculations of the pipeline network. The mathematical model is solved using
single-condition data, reducing the dependence on multi-condition data, which is common in
traditional pipe roughness coefficient correction optimization algorithms. Additionally, the model
considers the roughness coefficient values at the time of pipe installation and limits the range of
roughness coefficients within the model, making it more realistic. Second, by using matrix singular
value decomposition [30, 31], the optimization model’s solution is transformed into a positive definite
quadratic programming problem. Since the solution to a positive definite quadratic programming
problem exists and is unique, it is demonstrated that the solution to the mathematical model also
exists and is unique. Finally, the interior-point method is used to solve the model, ultimately obtaining
the global optimal solution of the optimization model.

This study uses several key symbols and parameters which are defined in Table 1.

Table 1. Nomenclature.
Symbol Description Unit
Qi flow at node i m3/h
qi j pipe flow m3/h
H j pressure at the node m
hi j head loss m
li j length of the pipeline m
di j diameter of the pipeline m
Ci j Hazen-Williams coefficient -
C Hazen-Williams vector -
q pipe flow vector -
Q pressure vector -
A a matrix to be decomposed -
U an orthogonal matrix containing the left singular vectors of A -
Σr a diagonal matrix with the singular values of A on its diagonal -
V an orthogonal matrix containing the right singular vectors of A -
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2. Materials and methods

2.1. Hydraulic models

The oil field water injection system consists of injection stations, distribution rooms, injection
wells, and the connecting pipeline network, forming a complex and extensive fluid network.
Typically, the number of nodes in the pipeline network can reach thousands, requiring extensive
computations to solve the nodal pressure equations. To reduce the dimensionality of the system
equations while retaining the essential characteristics of the original system, simplification strategies
are employed. The simplified water injection network consists of main injection lines, injection
stations, and pipeline intersections, forming a looped network [32].

According to the principle of mass conservation, for any given node, the inflow to the node equals
the outflow from the node, thus satisfying the node flow balance. The mathematical expression is as
follows [12]: ∑

j

qi j + Qi = 0, i = 1, 2, · · · , n (2.1)

where, the index i refers to the node number in the pipeline network, where i = 1, 2, · · · , n. The index
j represents the node that is part of the same pipeline segment as node i. Qi represents the flow at node
i, with inflow being negative and outflow positive. qi j denotes the pipe flow from node i to node j,
with its sign determined by the pressure difference between two nodes. When the pressure at node i is
greater than that at node j, qi j is positive; when the pressure at node i is less than that at node j, qi j is
negative.

The pressure drop equation in pipeline hydraulic calculations represents the relationship between
pipeline flow and head loss, which can be expressed by the exponential formula below [12]:

hi j = Hi − H j = si j

∣∣∣qi j

∣∣∣n−1
qi j, (2.2)

where, Hi and H j are the pressures at the two nodes i and j of the pipeline; si j is the coefficient term;
and

n = 1.852 ∼ 2

varies depending on the formula used. This paper adopts the Hazen-Williams formula, which is widely
used in pipeline network calculations, and its form is as follows [12]:

hi j =
10.677li j

C1.852
i j d4.87

i j

∣∣∣qi j

∣∣∣0.852
qi j, (2.3)

where, hi j represents the head loss in the pipeline between nodes i and j, measured in meters (m); li j

is the length of the pipeline, measured in meters (m); di j is the diameter of the pipeline, measured
in meters (m); and Ci j is the Hazen-Williams coefficient, which is the roughness coefficient to be
calibrated in this paper; The numerical values 1.852 and 4.87 are constants from the Hazen-Williams
equation, derived from experimental data.

2.2. Pipe roughness coefficient correction

The direct problem of hydraulic calculation for pipeline networks is defined as follows: given the
flow rates at each node, pipe lengths, pipe diameters, and a reference point pressure in the network,
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and assuming the roughness coefficients of each pipe are known. In this case, the pressures at each
node can be determined by simultaneously solving the pressure drop equations and the node flow
balance equations. Subsequently, these node pressures can be used to solve the energy consumption
optimization model for the water injection system [33, 34].

Currently, the pipe diameters and roughness coefficients employed in hydraulic calculations for oil
field water injection networks primarily rely on data from the time of pipeline installation. However,
over time, some pipes may experience corrosion, scaling, and other issues, leading to changes in their
diameter and roughness coefficients. This can introduce significant errors when using the installation
data for simulation calculations and optimization. Therefore, it is necessary to correct the pipe
diameters and roughness coefficients.

Conventional methods typically involve solving an optimization problem using multi-condition
data, and the established models theoretically lack a unique solution, making it difficult to obtain a
global optimal solution [35, 36]. Therefore, this paper explores the development of an optimization
model for correcting pipe roughness coefficients using single-condition data. To reduce the number of
correction parameters, in the Hazen-Williams formula (2.3), we retain the pipe segment diameter as
the value from the time of installation, attributing its changes to the roughness coefficient. Thus, only
the pipe roughness coefficient needs to be corrected, simplifying the calculation process without
altering the results of the hydraulic simulation. Therefore, the correction problem addressed in this
paper is as follows: under single-condition data, given the known pressures at each node, how to use
the pressure drop equations and the Hazen-Williams formula to solve for the pipe roughness
coefficients.

3. Model for correcting pipe roughness coefficients and numerical solution

The approach adopted in this paper significantly diverges from the conventional methodologies in
the field. This process is divided into two steps rather than directly solving for the pipe roughness
coefficients. First, the flow rate for each pipe is determined under the current operating conditions.
Then, given the known pressures at both ends of the pipe, the pipe roughness coefficient is determined
using Eq (2.3).

3.1. Determining the pipe flow optimization model

Assume the pipeline network consists of nodes, with pressure values denoted as H1,H2, · · · ,Hn.
The network comprises m pipelines, with roughness coefficients denoted as C1,C2, · · · ,Cm for each
pipeline and let

C = (C1,C2, · · · ,Cm)T .

In a looped pipeline network, the number of nodes n is less than the number of pipelines m. Since∑
Qi = 0,

the node continuity equations are denoted as:∑
j

qi j + Qi = 0, i = 1, 2, · · · , n. (3.1)
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There exists at least one equation in this system that can be linearly represented by the remaining
equations. It is necessary to remove one redundant equation. Without loss of generality, by removing
the last equation, the new continuity equations are [37]:∑

j

qi j + Qi = 0, i = 1, 2, · · · , n − 1. (3.2)

Suppose the two nodes at the ends of the k-th pipeline are numbered sequentially as i and j, and let

qk = qi j.

It follows that
q ji = −qk.

The system of continuity Eq (3.2), where q1, q2, · · · , qm are the unknowns, consists of m equations.
For the sake of clarity and convenience in presentation, we will express Eq (3.2) in matrix-vector

form. Define

q = (q1, q2, · · · , qm)T ,

Q = (−Q1,−Q2, · · · ,−Qn−1)T ,

and A as the coefficient matrix. Obviously, the order of A is (n − 1) × m. With this setup, the Eq (3.2)
can be written in matrix-vector form as:

Aq = Q. (3.3)

We denote the known initial values of the roughness coefficients at the time of pipeline installation as

C0 = (C0
1,C

0
2, · · · ,C

0
m)T .

Next, we will study how to utilize the system of Eq (3.3), and in combination with the initial roughness
coefficient values C0 and the range of roughness values

Cmin ≤ C ≤ Cmax,

to establish an optimization model for solving the pipeline flow rates.
Taking the initial roughness coefficient C0 as the pipeline roughness coefficient during the

calculation, we can utilize the node pressure equations to determine the pressure at each node. Based
on the calculated node pressures, we can use the pressure-drop Eq (2.3) to calculate the corresponding
initial values q0 of pipeline flow rates.

Generally, pipeline roughness coefficients have a range of values [c1, c2]. Define

Cmin = (c1, c1, · · · , c1)

and
Cmax = (c2, c2, · · · , c2).

Regarding the pipeline roughness coefficients, there is a constraint

Cmin ≤ C ≤ Cmax.
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Thus, by using the method described above to determine q0, we can obtain the pipeline flow rates qmin

and qmax corresponding to Cmin and Cmax, ultimately deriving the constraint conditions for pipeline
flow rates as follows

qmin ≤ q ≤ qmax. (3.4)

The pipeline flow model established in this paper aims to find q that satisfies the Eq (3.3), the
constraint condition (3.4), and minimizes ∥q−q0∥2. Therefore, the mathematical model for the pipeline
roughness coefficient inversion is:

min
q
∥q − q0∥2 s.t.

Aq = Q,
qmin ≤ q ≤ qmax.

(3.5)

Since Eq (3.3) has a solution, and the rank of matrix A is less than the number of unknowns,
Eq (3.3) has infinitely many solutions, and it has the same solution as min ∥Q − Aq∥22. Therefore, the
mathematical model of the problem can be transformed into: finding q such that:

min
q
∥q − q0∥2 s.t.

minq ∥Q − Aq∥22,
qmin ≤ q ≤ qmax.

(3.6)

Define

q′ = q − q0,

Q′ = Q − Aq0,

q′min = qmin − q0

and
q′max = qmax − q0.

The final mathematical model is to find q′ such that:

min
q′
∥q′∥2 s.t.

minq′ ∥Q′ − Aq′∥22,
q′min ≤ q′ ≤ q′max.

(3.7)

If we solve for q′, then
q = q′ + q0.

3.2. Numerical solution algorithm for pipeline flow model

The matrix A is decomposed using singular value decomposition as:

A = U
(
Σr 0
0 0

)
VT . (3.8)

Then,

UT AV =
(
Σr 0
0 0

)
, (3.9)
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where U is an orthogonal matrix of order n − 1, V is an orthogonal matrix of order m, and Σr is a
diagonal matrix of r order. Therefore, we have:

∥Q′ − Aq′∥22 = ∥U
T (Q′ − Aq′)∥22

= ∥UT Q′ − (UT AV)(VT q′)∥22

=

∥∥∥∥∥∥
(
c1

c2

)
−

(
Σr 0
0 0

) (
y1

y2

)∥∥∥∥∥∥2

2

=

∥∥∥∥∥∥
(
c1 − Σry1

c2

)∥∥∥∥∥∥2

2

= ∥c1 − Σry1∥
2
2 + ∥c2∥

2
2 ,

(3.10)

where c1 is a vector composed of the first r elements of vector UT Q′, and c2 is a vector composed of
the last n − r − 1 elements of vector UT Q′. Based on the above decomposition, it is evident that when

y1 = Σ
−1
r c1,

and y2 is chosen arbitrarily, the resulting

q′ = V(y1, y2)T

is guaranteed to be a solution for minimizing ∥Q′ − Aq′∥22.
Further research is needed to explore how to find y2 such that the corresponding q′ can satisfy as

follows:
min

q′
∥q′∥2 s.t. q′min ≤ q′ ≤ q′max. (3.11)

Let W denote the first r columns of matrix V, and let M denote the last m − r columns. Then

V = (W,M),

thus,

q′ = V
(
y1

y2

)
= (W,M)

(
y1

y2

)
=Wy1 +My2.

(3.12)

Therefore, the constraint is as follows:

q′min ≤Wy1 +My2

≤ q′max.
(3.13)

That is

q′min −Wy1 ≤My2

≤ q′max −Wy1.
(3.14)
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In summary, let
y1 = Σ

−1
r c1,

then y2 satisfies as follows:

min ∥y2∥
2
2 s.t. q′min −Wy1 ≤My2 ≤ q′max −Wy1. (3.15)

Then, the corresponding
q′ = V(y1, y2)T

is the solution to problem (3.7). Since Eq (3.15) is a positive definite quadratic programming problem
with linear inequality constraints, it has a unique solution and the solving process is relatively simple.
Since the objective function is strictly convex and the constraints are linear, the problem is a convex
optimization problem, which theoretically guarantees the existence of a unique global optimal
solution [38–40]. In this paper, we employ the well-established interior-point method, which is
widely recognized for its good convergence and stability properties. For positive definite quadratic
programming problems, where the objective function is strictly convex and the constraints are linear,
the interior-point method ensures global convergence to the optimal solution. After obtaining the
solution y2 of Eq (3.11), the solution to problem (3.7) is obtained as

q′ = V
(
Σ−1

r c1

y2

)
. (3.16)

3.3. Calibration of pipeline roughness coefficient

After obtaining the solution q′ for the pipeline flow optimization model, the actual pipeline flow

q = q′ + q0

can be determined. When the pressures at all pipeline nodes are known, si j is determined by the
following formula:

si j =
∣∣∣Hi − H j

∣∣∣ /|qi j|
1.852. (3.17)

Upon determining si j, the roughness coefficient Ci j for each pipeline can be calculated based on the
following equation:

si j =
10.677li j

C1.852
i j d4.87

i j

. (3.18)

Therefore, the calculation procedure for correcting the pipeline roughness coefficient under a single
operating condition is as follows:

Step 1: Utilize the known data to determine the coefficient matrix A.

Step 2: Utilize the known node pressures and initial roughness coefficient C0 to determine the flow
rate q0.

Step 3: Utilize the known node pressures, pressure drop equations, and the range of roughness
coefficients to determine q′min and q′max.

Step 4: Obtain the solution q′ to problem (3.7).
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Step 5: Set
q = q′ + q0.

Step 6: Determine the value of si j using Eq (3.17).
Step 7: Determine the roughness coefficient Ci j for each pipeline using Eq (3.18).
If the pressures at some nodes are unknown, the initial roughness coefficient can be used to estimate

the node pressures. The estimated pressures can then replace the unknown node pressures, making
the pressures at all nodes known. Subsequently, the roughness coefficients for the pipelines can be
determined using the method outlined above. It should be noted that if the pressures at some nodes are
unknown, the estimation accuracy may decrease.

4. Case study calculation

Case study: This is a simplified real-world water injection network consisting of 7 injection
stations, 98 nodes, 131 pipelines, and 34 loops. Nodes 17, 34, 42, 48, 66, 79, and 83 represent the
locations of the injection stations. A simplified diagram of the water injection network is shown in
Figure 1.

Figure 1. Simplified diagram of the pipeline network.

For detailed pipeline parameters, node parameters, and initial roughness coefficients used in the
network design, see Tables A.1–A.3 in the Appendix. Since the true roughness coefficients of the
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pipelines are unknown, we modified the initial roughness coefficients of some pipelines to simulate
the actual conditions of the network. These modified coefficients were regarded as the true roughness
coefficients for the purpose of this study, serving as a benchmark to evaluate the performance of our
proposed calibration method.

Table 2 shows the details of the roughness coefficients: the first column represents the node
numbers, the second column shows the initial pipe roughness coefficients, and the third column
represents the modified roughness coefficients, which are considered the actual roughness coefficients
used in the study. Hydraulic simulations were then conducted using these modified coefficients to
calculate the node pressures. The obtained node pressures were used as known values, and the
proposed method was applied to calibrate the pipe roughness coefficients. Finally, by comparing the
calibrated roughness coefficients with the true roughness coefficients, the effectiveness and accuracy
of the method were assessed.

Table 2. Changes in roughness coefficients.

Pipe ID Initial roughness Actual roughness Pipe ID Initial roughness Actual roughness

15 80 75 80 115 100

17 80 74 81 115 105

32 90 85 82 115 110

33 90 86 83 115 105

42 100 95 94 100 95

46 90 84 95 100 95

47 90 85 96 100 90

67 110 100 99 100 93

68 110 105 128 105 100

69 110 100 129 105 95

According to Table 2, the roughness coefficients of 20 pipelines in the network were adjusted.
Using the new roughness coefficients and the basic data of the network, we solved the nodal pressure
equations to obtain the pressure values at each node.

With all node pressures known, we determined the roughness coefficient of each pipeline segment.
Using the initial roughness coefficients, known node pressures, pipeline segment radii, lengths, and
node flow data, the roughness coefficients of the pipeline segments were calculated using the correction
method proposed in this paper, and the roughness coefficient correction results were obtained (see
Table 3). The first column of Table 3 represents the node numbers, the second column shows the
initial roughness coefficients, the third column represents the true roughness coefficients, and the fourth
column shows the roughness coefficients calculated using the method proposed in this paper.

The calculation results indicate that if the actual roughness coefficient of a pipeline is equal to the
initial roughness coefficient, the roughness coefficient obtained using the proposed method equals the
actual roughness coefficient. Therefore, the correction results for the pipeline segments where the
actual roughness coefficient differs from the initial roughness coefficient are presented.
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Table 3. Roughness coefficient correction results.

Pipe ID Initial roughness Actual roughness Corrected roughness

15 80 75 75

17 80 74 77

32 90 85 88

33 90 86 86

42 100 95 93

46 90 84 82

47 90 85 87

67 110 100 102

68 110 105 102

69 110 100 103

80 115 100 105

81 115 105 105

82 115 110 108

83 115 105 108

94 100 95 97

95 100 95 92

96 100 90 92

99 100 93 95

128 105 100 100

129 105 95 99

After the calculation, the average error between the initial roughness coefficients and the actual
roughness coefficients is 7.08%, while the average error between the roughness coefficients using the
proposed method and the actual roughness coefficients is 2.18%, representing a reduction of 4.9%.
When solving the hydraulic calculations and operational optimization problems, both of which require
the use of roughness values, the roughness coefficients obtained by the proposed method yields better
results compared to using the initial roughness coefficients.

5. Discussion

(1) This paper establishes a constrained least squares mathematical model for calibrating the pipe
roughness coefficients in oil field water injection networks under a single operating condition and
proposes a global optimal solution method to address the rank-deficient least squares problem with
constraints. Using this method, satisfactory results were obtained by simulating the calibration of the
roughness coefficients for a large real-world pipeline network. The average error between the calibrated
roughness coefficients and the actual roughness coefficients is 2.18%. The remaining error is due to
the fact that the theoretical solution of the model established under a single operating condition does
not necessarily guarantee the actual solution, which is a limitation of using single-condition data for
roughness coefficient inversion.
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If the proposed method is applied to multi-condition data, each additional condition would add
another least squares constraint, significantly increasing the dimensionality of the mathematical
model. This would lead to a substantial computational load when performing singular value
decomposition. The key issue here is to design an effective block-diagonal matrix singular value
decomposition algorithm. This is a crucial challenge for future research. If an efficient block-diagonal
matrix singular value decomposition can be implemented, the proposed method could be extended to
multi-condition data, potentially improving the accuracy of the pipe roughness coefficient further.

(2) This paper does not compare with other roughness coefficient correction methods, as other
models typically require multi-condition data, which is not easily obtainable for oil field water
injection systems. This paper primarily focuses on developing a mathematical model for calibrating
pipe roughness under a single operating condition and exploring how to efficiently solve the model.
Currently, mainstream methods are mainly focused on developing and solving calibration models for
pipe roughness under multi-operating conditions. However, when handling single-condition data,
existing methods theoretically lead to a multi-solution optimization problem, making them unsuitable
for single-condition data.

(3) The method proposed in this paper requires all node pressures to be known. If some node
pressures are unknown, the initial roughness coefficients can be used to estimate node pressures once,
and the estimated pressures can replace the unknown values. Thus, all node pressures become known,
although some pressures will be approximations rather than measured values. The method can then
be used to correct the roughness coefficients, though the accuracy may decrease. Alternatively, fuzzy
optimization techniques can be explored to handle situations where some node pressures are unknown.

6. Conclusions

This paper establishes a mathematical model for correcting the pipe roughness coefficient in oil
field water injection networks under a single operating condition. The solution to the mathematical
model is unique, and by using matrix singular value decomposition, the original problem is
transformed into a positive definite quadratic programming problem with linear inequality constraints,
thereby obtaining the global optimal solution. In comparison with conventional optimization methods
for determining the roughness coefficient, this method requires only one matrix singular value
decomposition and solving a positive definite quadratic programming problem, thereby increasing
computation efficiency. Simulation of roughness coefficient correction for a large real network shows
that the average error between the corrected roughness coefficients and the actual roughness
coefficients is 2.18%, while the average error between the initial roughness coefficients and the actual
roughness coefficients is 7.08%, representing a reduction of 4.9%. This demonstrates the model’s
validity and the effectiveness of the calculation method.
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data collection for water distribution networks, J. Hydraul. Eng., 127 (2001), 270–279.
https://doi.org/10.1061/(ASCE)0733-9429(2001)127:4(270)

11. Z. Y. Wu, T. Walski, R. Mankowski, G. Herrin, R. Gurrieri, M. Tryby, Calibrating water distribution
model via genetic algorithms, Proceedings of the AWWA Information Management and Technology
Conference, 2002.

AIMS Mathematics Volume 10, Issue 3, 5052–5070.

https://dx.doi.org/https://doi.org/10.3390/w15071342
https://dx.doi.org/https://doi.org/10.1016/j.energy.2021.121961
https://dx.doi.org/https://doi.org/10.3390/en15041444
https://dx.doi.org/https://doi.org/10.1016/j.oceaneng.2016.06.022
https://dx.doi.org/https://doi.org/10.1016/j.petrol.2016.01.008
https://dx.doi.org/https://doi.org/10.1080/15730620802613380
https://dx.doi.org/https://doi.org/10.21203/rs.3.rs-3094623/v1
https://dx.doi.org/https://doi.org/10.1061/(ASCE)0733-9429(2001)127:4(270)


5066

12. A. Zanfei, A. Menapace, S. Santopietro, M. Righetti, Calibration procedure for water
distribution systems: comparison among hydraulic models, Water, 12 (2020), 141.
https://doi.org/10.3390/w12051421

13. B. Wu, C. Hua, G. Ren, Y. Lu, Y. Chen, The downhole parameter prediction method is based
on a multi-layer water injection model and historical data-based model parameter identification,
Heliyon, 9 (2023), e20443. https://doi.org/10.1016/j.heliyon.2023.e20443

14. D. Kang, K. Lansey, Real-time demand estimation and confidence limit
analysis for water distribution systems, J. Hydraul. Eng., 135 (2009), 825–837.
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000086

15. J. A. Liggett, L. C. Chen, Inverse transient analysis in pipe networks, J. Hydraul. Eng., 120 (1994),
934–955. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:8(934)

16. K. E. Lansey, C. M. Basnet, Parameter estimation for water distribution networks, J. Water Resour.
Plan. Manag., 117 (1991), 126–144. https://doi.org/10.1061/(ASCE)0733-9496(1991)117:1(126)

17. F. Caldarola, M. Maiolo, A mathematical investigation on the invariance problem of some hydraulic
indices, Appl. Math. Comput., 409 (2020), 125726. https://doi.org/10.1016/j.amc.2020.125726

18. S. D. Gupta, B. P. G. Parys, E. K. Ryu, Branch-and-bound performance estimation programming: a
unified methodology for constructing optimal optimization methods, Math. Program., 204 (2022),
567–639. https://doi.org/10.1007/s10107-023-01973-1

19. R. Andreani, A. Ramos, L. Secchin, Improving the global convergence of inexact restoration
methods for constrained optimization problems, SIAM J. Optim., 34 (2024), 3429–3455.
https://doi.org/10.1137/22m1493811

20. L. Mathesen, G. Pedrielli, S. Ng, Z. Zabinsky, Stochastic optimization with adaptive restart:
a framework for integrated local and global learning, J. Global Optim., 79 (2021), 87–110.
https://doi.org/10.1007/s10898-020-00937-5

21. D. A. Savic, G. A. Walters, Genetic algorithms for least-cost design of water distribution networks,
J. Water Resour. Plan. Manag., 123 (1997), 446–455. https://doi.org/10.1061/(ASCE)0733-
9496(1997)123:2(67)

22. G. C. Dandy, A. R. Simpson, L. J. Murphy, An improved genetic algorithm for pipe network
optimization, Water Resour. Res., 32 (1996), 449–458. https://doi.org/10.1029/95WR02917
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Appendix

Table A.1. Pipeline network parameters.
Pipe ID Length (m) Diameter (m) Pipe ID Length (m) Diameter (m)
1 624 0.14 67 2232 0.142
2 1162 0.19 68 508 0.187
3 2686 0.19 69 1798 0.1
4 1982 0.19 70 470 0.19
5 1588 0.19 71 2884 0.1
6 466 0.19 72 562 0.19
7 664 0.14 73 1854 0.1
8 2218 0.14 74 1200 0.14
9 538 0.14 75 1504 0.14
10 1952 0.1 76 1300 0.19
11 3016 0.19 77 1410 0.14
12 840 0.14 78 656 0.19
13 2800 0.19 79 1110 0.14
14 518 0.21 80 2904 0.14
15 1286 0.14 81 850 0.19
16 1020 0.14 82 878 0.1
17 666 0.14 83 1542 0.19
18 1000 0.1 84 1522 0.14
19 468 0.14 85 1320 0.1
20 3306 0.14 86 432 0.19
21 1500 0.142 87 1360 0.1
22 2808 0.096 88 1602 0.19
23 1146 0.187 89 2644 0.187
24 3260 0.096 90 598 0.142
25 1106 0.14 91 520 0.187
26 1268 0.19 92 1474 0.142
27 400 0.1 93 566 0.187
28 896 0.1 94 744 0.142
29 804 0.14 95 1208 0.142
30 780 0.1 96 1280 0.233
31 662 0.21 97 980 0.142
32 1400 0.19 98 2414 0.096
33 1576 0.14 99 824 0.142
34 2888 0.14 100 2662 0.096
35 672 0.19 101 970 0.142
36 2204 0.14 102 1714 0.142
37 662 0.14 103 802 0.187
38 2050 0.1 104 296 0.187
39 470 0.19 105 1748 0.142
40 1406 0.14 106 2908 0.142
41 1240 0.14 107 1478 0.187
42 340 0.08 108 402 0.187
43 530 0.19 109 700 0.187
44 1290 0.1 110 2878 0.142
45 1130 0.1 111 656 0.187
46 742 0.19 112 2502 0.187
47 306 0.21 113 1400 0.187
48 1580 0.14 114 554 0.205
49 998 0.19 115 300 0.205
50 1006 0.14 116 1182 0.096
51 700 0.19 117 880 0.096
52 2556 0.14 118 1080 0.096
53 434 0.21 119 1600 0.187
54 2690 0.14 120 1600 0.187
55 631 0.19 121 1200 0.187
56 2974 0.1 122 2000 0.142
57 560 0.19 123 1600 0.187
58 1766 0.1 124 1600 0.187
59 2244 0.14 125 500 0.187
60 1400 0.1 126 1600 0.209
61 758 0.21 127 2100 0.187
62 824 0.19 128 1100 0.187
63 1468 0.1 129 1600 0.209
64 366 0.21 130 1500 0.187
65 2750 0.142 131 1600 0.187
66 1516 0.687

AIMS Mathematics Volume 10, Issue 3, 5052–5070.



5069

Table A.2. Node parameters of the pipe network.
Node Node property Node discharge Node Node property Node discharge
ID (0 for pump station) (m3 · h−1) ID (0 for pump station) (m3 · h−1)
1 1 20.53 50 1 30.4
2 1 26.25 51 1 35.07
3 1 36.38 52 1 50.4
4 1 35.86 53 1 30.4
5 1 35.2 54 1 40.66
6 1 35.07 55 1 31.45
7 1 40 56 1 45
8 1 31.19 57 1 30.79
9 1 31.32 58 1 35.99
10 1 26.78 59 1 35.07
11 1 20.66 60 1 20
12 1 35.07 61 1 35.2
13 1 40.13 62 1 35.2
14 1 20 63 1 50
15 1 35.07 64 1 25.2
16 1 20.26 65 1 35.2
17 0 -49.6 66 0 -371.6
18 1 45.59 67 1 20.26
19 1 40.66 68 1 40.13
20 1 40.66 69 1 20.13
21 1 45.59 70 1 40.13
22 1 30.13 71 1 25.2
23 1 30.13 72 1 25.2
24 1 35.46 73 1 25.2
25 1 20.26 74 1 35.73
26 1 30.13 75 1 34
27 1 25.2 76 1 26
28 1 30.13 77 1 40.13
29 1 30.4 78 1 25.2
30 1 35.46 79 0 -462.1
31 1 30 80 1 25.33
32 1 55.73 81 1 30.4
33 1 50.66 82 1 32
34 0 -571.29 83 0 -418.3
35 1 25.33 84 1 35.59
36 1 35.2 85 1 35.46
37 1 25.33 86 1 25.2
38 1 40.53 87 1 40
39 1 30.13 88 1 32
40 1 25.33 89 1 35.46
41 1 45.59 90 1 25.07
42 0 -300 91 1 20.13
43 1 50.66 92 1 25
44 1 45 93 1 35
45 1 40.26 94 1 35
46 1 26.12 95 1 25
47 1 31.06 96 1 45
48 0 -372.9 97 1 25
49 1 30.4 98 1 25
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Table A.3. Initial pipe roughness coefficients.
Pipe ID Roughness coefficient Pipe ID Roughness coefficient Pipe ID Roughness coefficient
1 80 45 90 89 115
2 80 46 90 90 115
3 80 47 90 91 115
4 80 48 90 92 115
5 80 49 90 93 115
6 80 50 90 94 95
7 100 51 90 95 95
8 100 52 90 96 95
9 100 53 100 97 95
10 80 54 100 98 115
11 80 55 100 99 115
12 80 56 100 100 115
13 100 57 90 101 115
14 80 58 90 102 105
15 80 59 100 103 105
16 80 60 100 104 95
17 80 61 100 105 95
18 80 62 110 106 95
19 80 63 110 107 105
20 80 64 110 108 105
21 100 65 110 109 105
22 100 66 110 110 95
23 100 67 110 111 95
24 80 68 110 112 95
25 80 69 110 113 95
26 80 70 110 114 95
27 80 71 110 115 95
28 100 72 110 116 105
29 100 73 115 117 105
30 90 74 115 118 105
31 90 75 115 119 95
32 90 76 115 120 95
33 90 77 115 121 95
34 90 78 115 122 95
35 90 79 115 123 105
36 90 80 115 124 95
37 90 81 115 125 95
38 90 82 115 126 95
39 90 83 115 127 95
40 90 84 115 128 105
41 90 85 115 129 105
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