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Abstract: Non-singular H-matrices represent an important research frame in analysis of many
classical problems of numerical linear algebra, as well as in applications in engineering, health,
information sciences, and social studies. As identification of H-matrices was never an easy task, a
research area was formed around some special H-matrices, characterized by checkable conditions-
inequalities expressed via matrix entries only. In this paper, we introduced new conditions for a
given matrix to be a non-singular H-matrix. We introduced a new special subclass of non-singular H-
matrices and applied new criterion to obtain results on infinity norm of the inverse matrix, errors in
linear complementarity problems, and estimation of minimal singular value. Also, results on spectra
of the Schur complement matrix were given in the form of scaled disks and in the form of intervals that
included or excluded real parts of eigenvalues. Results were interpreted in the light of mixed linear
complementarity problems. Numerical examples illustrated improvements obtained by applications of
new criteria.
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1. Introduction

Hadamard or H-matrix is proved to be of a great value in many classical problems in numerical
linear algebra. This matrix class provides a frame for extensive research on stability of dynamical
systems with emphasis on matrix spectra and spectra-related parameters. The information on
eigenvalue localization within a prescribed area in the complex plane as a sufficient condition for a
certain type of stability could be obtained from analysis of special H-matrices. Special H-matrices have
their role in dealing with linear complementarity problems when considering questions of existence and
uniqueness of solutions and in error analysis.

H-matrices are closely related to well-known Minkowski or M-matrices. A matrix A = [ai j] ∈ Cn,n
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is an H-matrix if its comparison matrix 〈A〉 = [mi j] defined by

〈A〉 = [mi j] ∈ Cn,n, mi j =

{
|aii|, i = j
−|ai j|, i , j

is an M-matrix, i.e., 〈A〉−1 ≥ 0; for more details, see [3, 14]. H-matrices are also related to P-matrices,
real square matrices with all principal minors positive. A real H-matrix with positive diagonal entries is
a P-matrix. In literature, H-matrices also appear as GS DD matrices, or generalized strictly diagonally
dominant matrices, as they represent a generalization of strictly diagonally dominant (S DD) matrices.

Motivation for the research on special H-matrices comes from the fact that diagonal dominance and
related matrix properties play an important role in matrix splitting methods and convergence analysis
of iterative procedures for solving large sparse systems of linear equations, eigenvalue localization
problems, norm for the inverse and condition number estimation, and linear complementarity problems.
As the S DD condition is very limiting, results developed for S DD matrices, such as Varah norm bound
for the inverse (see [46]) cannot be applied to wider matrix classes. Therefore, we are motivated
to consider modifications of the S DD condition and obtain new estimates applicable to new classes
of matrices.

In this paper, we obtain new bounds for the norm of the inverse that work in some cases when
well-known bounds cannot be applied. Also, for some matrices, both new bounds and some already
known bounds are applicable, and we show through numerical examples that new bounds can give
tighter results. As the condition number of a matrix is defined as

κ(A) = ||A||||A−1||,

results on norm bounds directly imply estimates for the condition number. Condition number helps us
recognize ill-conditioned problems, with high relative change in output for a relative change in input
data. Therefore, upper estimates for condition number have important applications in engineering, in
control of perturbation effects.

Another important benefit of new estimates for the inverse is the possibility to apply new results to
block H-matrices. It is important to emphasize that block H-matrices do not have to be H-matrices
in the classical sense. In these cases, bounds developed for H-matrices cannot be applied, but block
approach could still work. This is of great importance in ecological models describing interactions
between several populations (see [24]) with self-interactions in community matrices equal to zero.
Matrices with zero diagonal entries, or ‘hollow matrices’, do not belong to H-matrices in the classical
sense, but they could be block H-matrices with respect to some partition of the index set and they could
be approached using tools of H-matrix theory.

New norm estimations are further applied in linear complementarity problems. Also, we obtain
eigenvalue localization for the Schur complements of special H-matrices that can be applied in
convergence analysis in Schur-based iterative methods.

Concept of diagonal dominance and related subclasses of H-matrices are widely applied in analysis
of stability and other dynamical properties of complex real systems, in wireless sensor networks,
structural engineering, and economy.

The paper by Fiedler and Pták (see [17]) brought a characterization of H-matrices through their
scaling relation to S DD matrices. Fiedler and Pták proved that a matrix A = [ai j] ∈ Cn,n is an H-matrix
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if, and only if, there exists a diagonal non-singular matrix W such that AW is S DD. This definition
of (non-singular) H-matrices is also known as the ‘scaling characterization’, while the diagonal matrix
W (that can be chosen to have all positive diagonal entries) is called the ‘scaling matrix’. A complex
square matrix A = [ai j] ∈ Cn,n is an S DD matrix if, for all indices i ∈ N,

|aii| > ri(A) =
∑

j∈N, j,i

|ai j|.

While the S DD condition is expressed in a very elegant manner and easily checkable with low
calculation cost, identification of H-matrices was never that simple. In literature, there are various
iterative or direct criteria for recognizing special H-matrices; see [4,10,15,16,25,26,30,42]. Through
slight relaxations of the S DD condition, using different approaches, new special subclasses of H-
matrices were defined. These new conditions could be seen as different ways of ‘breaking the
S DD condition’.

Although scaling characterization connects H-matrices to S DD matrices through a very simple
diagonal scaling transformation, in most cases these scaling relations are unknown to us, as we are
not able to easily determine the scaling matrix. In [8], new criteria for identifying non-singular H-
matrices were presented based on a special form of scaling. Motivated by these results, in this paper
we introduce new criteria for identifying special H-matrices based on special scaling relation of the
new class to the class of Nekrasov matrices; see [25, 34].

It is worth mentioning that scaling methods could be interpreted in different ways and prove to be
useful in a wide range of practical applications when the purpose of scaling is to obtain prescribed
row and column sums in a nonnegative matrix see [2, 3]. In analysis of budget allocation problems,
transportation problems, Leontief input-output systems, Markov chains, and related mathematical
models of real-life systems, the concept of scaling plays an important role.

In the remainder of this section, we recall well-known criteria for identifying some special H-
matrices. In Section 2, we introduce a new subclass of H-matrices and discuss relation of the new
class to well-known matrix classes. In Section 3, we present possible applications of the new class:
Estimation of the infinity norm of the inverse, bounds for minimal singular value, error estimation for
linear complementarity problems, and preliminary eigenvalue localizations for Schur complements of
matrices in the new class. The fourth section consists of concluding remarks.

In [8], a scaling-based condition for identifying non-singular H-matrices was given as follows. Let
A = [ai j] ∈ Cn,n, n ≥ 2 be a matrix with nonzero diagonal entries. Denote

Ri(A) =
∑

k∈N\{i}

rk(A)
|akk|
|aik|, i ∈ N.

If
ri(A)r j(A) > Ri(A)R j(A) for all i, j ∈ N, i , j, (1.1)

then A is an H-matrix. In further consideration, we say that a matrix is an O-scal matrix if it satisfies
the condition (1.1). The proof of the statement that O-scal matrices are non-singular H-matrices,
given in [8], relies on the special scaling relation between O-scal matrices and well-known Ostrowski
matrices; see [41]. Recall that a matrix A = [ai j] ∈ Cn,n, n ≥ 2 is an Ostrowski matrix if

|aii||a j j| > ri(A)r j(A), for all i, j ∈ N, i , j. (1.2)
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In [8], it was proved that for an O-scal matrix A and diagonal matrix

Q = diag(qk), qk =
rk(A)
|akk|

, k = 1, . . . , n, (1.3)

the matrix AQ is an Ostrowski matrix.
Now we recall Nekrasov matrices; see [25, 34]. Consider recursively defined row sums:

h1(A) =
∑
j,1

|a1 j|,

hi(A) =

i−1∑
j=1

|ai j|
h j(A)
|a j j|

+

n∑
j=i+1

|ai j|, i = 2, 3, . . . , n.

A matrix A = [ai j] ∈ Cn,n, n ≥ 2 is a Nekrasov matrix if, for each i ∈ N, it holds that

|aii| > hi(A).

In literature, there are different propositions by different authors on how to construct a scaling matrix
for the given Nekrasov matrix. We recall a construction presented in [45].

Theorem 1.1. [45] Let A = [ai j] ∈ Cn,n be a Nekrasov matrix with all nonzero Nekrasov row sums.

Then, for a diagonal positive matrix Y = diag(yi), where yi = εi
hi(A)
|aii|

, i ∈ N, and (εi)n
i=1 is an

increasing sequence of numbers with ε1 = 1 and εi ∈

(
1,
|aii|

hi(A)

)
, i = 2, . . . , n, the matrix AY is an

S DD matrix.

In [42], Peña presented a class of matrices named S DD1 matrices via a condition that generalizes
the S DD condition by imposing on the rows that are not S DD of a weaker demand.

Definition 1.2. A matrix A = [ai j] ∈ Cn,n, n ≥ 2, is an S DD1 matrix if

|aii| > pi(A), i ∈ NA, (1.4)

where

pi(A) =
∑

j∈NA\{i}

|ai j| +
∑

j∈NA\{i}

r j(A)
|a j j|
|ai j|,

NA = {i ∈ N | |aii| ≤ ri(A)} and NA = {i ∈ N | |aii| > ri(A)}.

As S DD1 matrices were researched recently by different authors, we are going to discuss relations
of the S DD1 condition to new criteria we presented in the Section 2.

Well-known classes of Ostrowski (see [41]) or Dashnic-Zusmanovich (see [15, 16]) were defined
based on a special treatment of one index in the index set; Nekrasov matrices (see [26, 34, 44]) were
introduced via recursively defined row sums and further generalized through conditions involving
permutations of the index set (see [10]); while S DD1 matrices (see [42]) involve a new type
of row sums. All of these conditions (i.e., matrix classes) were further applied in estimations
of the norm of the inverse matrix (see [13, 18, 28, 29, 37, 38]), estimations of errors in linear
complementarity problems (see [1, 20–22, 33, 38]), eigenvalue localizations (see [47]), and analysis
of Schur complements, (see [9, 11, 12, 39]).
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2. New criteria for non-singular H-matrices

2.1. Introducing N-scal matrices

In this section, we introduce new conditions defining a subclass of non-singular H-matrices. These
new criteria are obtained as scaling modifications of the Nekrasov condition.

Given a matrix A = [ai j] ∈ Cn,n, n ≥ 2, with nonzero diagonal entries, let

H1(A) =

n∑
j=2

|a1 j|
h j(A)
|a j j|

,

Hi(A) =

i−1∑
j=1

|ai j|
H j(A)
|a j j|

+

n∑
j=i+1

|ai j|
h j(A)
|a j j|

, i = 2, . . . , n.

Definition 2.1. Given a matrix A = [ai j] ∈ Cn,n, n ≥ 2, with nonzero diagonal entries, then A is an
N-scal matrix if

hi(A) > Hi(A), for all i ∈ N.

Theorem 2.2. If a matrix A = [ai j] ∈ Cn,n, n ≥ 2, is an N-scal matrix, then A is a non-singular
H-matrix.

Proof. Let us consider the diagonal matrix X = diag(xk), with

xk =
hk(A)
|akk|

, k ∈ N.

For the diagonal matrix X defined in that way, let us prove that AX is a Nekrasov matrix. It is easy
to see that

(AX)kk = |akk|xk = |akk|
hk(A)
|akk|

= hk(A).

We now prove by induction that for all i ∈ N,

hi(AX) = Hi(A).

First, for i = 1,

h1(AX) =
∑
j,1

|a1 j|x j =
∑
j,1

|a1 j|
h j(A)
|a j j|

= H1(A).

Consider i ∈ {2, 3, . . . , n}. Assume that for all indices k ∈ {1, 2, . . . , i − 1}, it holds that

hk(AX) = Hk(A).

Then,

hi(AX) =

i−1∑
j=1

|ai j|x j
h j(AX)
|a j j|x j

+

n∑
j=i+1

|ai jx j|

=

i−1∑
j=1

|ai j|
H j(A)
|a j j|

+

n∑
j=i+1

|ai j|
h j(A)
|a j j|

= Hi(A), i = 2, 3, . . . , n.
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Therefore, A is an H-matrix.
N-scal class is derived from Nekrasov class and, just like the Nekrasov class, it is not closed under

simultaneous permutations of rows and columns, as the following example shows.

Example 2.3. Consider

A0 =


3.4 0 0 0.4
2.9 7 2.2 0
0.1 3 4.1 1.3
0 0 5.6 5.6

 .
The matrix A0 is an N-scal matrix, but for P being a counter-identical permutation, PT A0P is not

an N-scal matrix.

2.2. Relations between classes

Let us now discuss relations of the N-scal condition to other well-known criteria for identifying
H-matrices.

Example 2.4. Consider the following matrix

A1 =


1 −0.1 0 −0.5
−0.1 1 0 −0.5
−0.1 0 1 −0.5
−0.4 −1 −0.3 1

 .
The matrix A1 belongs to some of the matrix classes presented in Table 1.

Table 1. Classes that contain A1.

S DD S DD1 Ostrowski Nekrasov O−scal N−scal
- - -

√
-

√

Consider the matrix

A2 =


7 0 3 2
1 7 6 0
0 6 7 2
2 1 0 9

 .
The matrix A2 belongs to some of the matrix classes presented in Table 2.

Table 2. Classes that contain A2.

S DD S DD1 Ostrowski Nekrasov O−scal N−scal
-

√
- -

√
-
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Consider the matrix

A3 =


1 −0.5 0 0
−0.5 1 0 0
−1 −2 1 −0.5
−1 −2 −0.33 1

 .
The matrix A3 belongs to some of the matrix classes presented in Table 3.

Table 3. Classes that contain A3.

S DD S DD1 Ostrowski Nekrasov O−scal N−scal
- - - -

√ √

Consider the matrix

A4 =


3 2 0 0
1 3 0 0
0 1 3 0
0 0 0 8

 .
The matrix A4 belongs to some of the matrix classes presented in Table 4.

Table 4. Classes that contain A4.

S DD S DD1 Ostrowski Nekrasov O−scal N−scal
√ √ √ √

- -

Consider the matrix

A5 =


2 0 0 1
0 3 1 0
0 0 4 1
1 0 0 5

 .
The matrix A5 belongs to all of the matrix classes presented in Table 5.

Table 5. Classes that contain A5.

S DD S DD1 Ostrowski Nekrasov O−scal N−scal
√ √ √ √ √ √

Consider the matrix

A6 =


8 4 2 3
2 9 2 5
1 2 11 6
2 2 2 6

 .
The matrix A6 belongs to some of the matrix classes presented in Table 6.
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Table 6. Classes that contain A6.

S DD S DD1 Ostrowski Nekrasov O−scal N−scal
- - - - -

√

Remark 2.5. If we consider the matrix A3, we see that the N-scal class is not contained in any of
the following classes: S DD, S DD1, Ostrowski, Nekrasov. Considering the matrix A1, we see that the
N-scal class is not contained in O-scal.

Remark 2.6. Neither of the classes S DD, S DD1, Ostrowski, Nekrasov is contained in N-scal, as seen
from the matrix A4. Considering A2, we see that O-scal is not a subclass of N-scal.

Remark 2.7. The matrix A5 belongs to the new class N-scal and also to all of the classes S DD, S DD1,
Ostrowski, Nekrasov, O-scal, so the intersection of these classes is nonempty.

Remark 2.8. If we consider matrices A2 and A3, we see that O-scal matrices can have more than one
non-S DD row. This is not the case with Ostrowski matrices.

Remark 2.9. If we consider matrix A6, we see that it is an N-scal matrix, but it does not belong to any
of the classes S DD, S DD1, Ostrowski, Nekrasov, O-scal.

The previous remarks show that the new class N-scal stands in a general relation to each of the
classes S DD, S DD1, Ostrowski, Nekrasov, O-scal.

3. Applications of N-scal criteria

3.1. Norm of the inverse and minimal singular value estimations

In [46], a max-norm bound is given for the inverse of S DD matrices.

Theorem 3.1. [46] Given an S DD matrix A = [ai j] ∈ Cn,n, the following bound applies,

||A−1||∞ ≤
1

min
i∈N

(|aii| − ri(A))
.

This result of Varah served as a starting point for defining new norm estimations applicable to wider
classes of matrices.

Theorem 3.2. [32] Let A ∈ Cn,n, n ≥ 2, be an Ostrowski matrix. Then,

||A−1||∞ ≤ max
j,i, i, j∈N

|aii| + r j(A)
|aii||a j j| − ri(A)r j(A)

.

In [40], in a slightly different form, one can find the following result.

Theorem 3.3. Let A ∈ Cn,n, n ≥ 2, be an O-scal matrix. Then,

||A−1||∞ ≤ max
k∈N

rk(A)
|akk|

max
j,i, i, j∈N

ri(A) + R j(A)
ri(A)r j(A) − Ri(A)R j(A)

.
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Theorem 3.4. [31] Given a Nekrasov matrix A = [ai j] ∈ Cn,n, the following bound applies,

||A−1||∞ ≤ max
i∈N

zi(A)
|aii| − hi(A)

,

where
z1(A) = 1,

zi(A) =

i−1∑
j=1

|ai j|
z j(A)
|a j j|

+ 1, i = 2, . . . , n.

Based on the N-scal condition, we now define a new norm estimation as follows.

Theorem 3.5. If a matrix A = [ai j] ∈ Cn,n, n ≥ 2, is an N-scal matrix, then the following bound applies:

‖A−1‖∞ ≤ max
k∈N

hk(A)
|akk|

max
i∈N

zi(A)
hi(A) − Hi(A)

,

where
z1(A) = 1,

zi(A) =

i−1∑
j=1

|ai j|
z j(A)
|a j j|

+ 1, i = 2, . . . , n.

Proof. As A is an N-scal matrix, for X = diag(xk), with xk =
hk(A)
|akk|

, k ∈ N, we know that the matrix

B = AX is a Nekrasov matrix.
Also, B−1 = (AX)−1 = X−1A−1, i.e., A−1 = XB−1. Therefore,

||A−1||∞ = ||XB−1||∞ ≤ ||X||∞||B−1||∞ = max
k∈N

hk(A)
|akk|

||B−1||∞.

It is easy to prove that zi(B) = zi(A), for all i ∈ N, by induction.
Namely, for i = 1, it holds that z1(A) = z1(B) = 1, by definition. If we assume that z j(B) = z j(A), for
all j = 1, 2, . . . , i − 1, then

zi(B) =

i−1∑
j=1

z j(B)
|b j j|
|bi j| + 1 =

i−1∑
j=1

z j(B)
|a j j|x j

|ai j|x j + 1

=

i−1∑
j=1

z j(A)
|a j j|
|ai j| + 1 = zi(A).

Applying the upper bound for the norm of the inverse given in Theorem 3.4 to the matrix B,
we obtain

||B−1||∞ ≤ max
i∈N

zi(B)
|bii| − hi(B)

= max
i∈N

zi(A)
hi(A) − Hi(A)

.

It follows that
||A−1||∞ ≤ max

k∈N

hk(A)
|akk|

max
i∈N

zi(A)
hi(A) − Hi(A)

.
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Example 3.6. Consider the matrix

B1 =


8 0 3 5
0 4 2 4
2 5 20 0
4 4 0 20

 .
The matrix B1 belongs to the N-scal class and the norm estimation from Theorem 3.5 is

||B−1
1 ||∞ ≤ 0.776197,

while the exact value is
||B−1

1 ||∞ = 0.6187.

The matrix B1 does not belong to any of the classes S DD, Ostrowski, Nekrasov, O-scal; therefore, the
corresponding norm bounds cannot be applied.

Example 3.7. Consider

B2 =


15 0 2 0
1 15 6 13
3 3 17 0
3 4 0 7

 .
The matrix B2 belongs to the N-scal class and the norm estimation from Theorem 3.5 is

||B−1
2 ||∞ ≤ 1.013626,

while the exact value is
||B−1

2 ||∞ = 0.5708.

The matrix B2 does not belong to any of the classes S DD, Ostrowski, Nekrasov, S DD1; therefore,
the corresponding norm bounds cannot be applied. It does belong to the O-scal class and the norm
estimation from Theorem 3.3 is 1.035986.

Example 3.8. Consider

B3 =


15 0 3 1
5 9 2 7
2 3 6 0
4 4 0 10

 .
Norm bounds for the inverse for B3 are presented in Table 7.

Table 7. Norm bounds for the inverse for B3.

S DD Ostrowski Nekrasov O−scal N−scal
in the class - - -

√ √

bound for ||B−1
3 ||∞ - - - 9.788136 1.138751
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The matrix B3 belongs to classes O-scal and N-scal. Exact value for the norm of the inverse matrix is

||B−1
3 ||∞ = 0.3929.

Also, the matrix B3 belongs to the S DD1 class. Applying the norm bound given in [4, Theorem 8]
for the S DD1 class, we obtain ||B−1

3 ||∞ ≤ 4.215686. Therefore, in this case, the bound obtained for
N-scal matrices gave a more precise result than the bound for S DD1.

Example 3.9. In mathematical models in ecology, when modeling interactions between species,
stochastic matrices represent corresponding transition probabilities between stages in life cycles. If we
consider predator and prey species in juvenile or adult life stage, probabilities of transitions between
different states could be represented with the following matrix:

B4 =


0.6 0.3 0.1 0
0.2 0.7 0.1 0
0.3 0.1 0.5 0.1
0.1 0.3 0.2 0.4

 .
Coming from real systems, these matrices often possess properties related to diagonal dominance.
Here, the matrix B4 is neither S DD nor Ostrowski, but it belongs to the N-scal class and the norm
estimation from Theorem 3.5 is

||B−1
4 ||∞ ≤ 12.1099,

which is tighter than bounds obtained for Nekrasov (24.1429) or the O-scal class (18.85714).

Example 3.10. In mathematical models in structural engineering, when applying the finite element
method, matrices representing relationships between forces and displacements occur. In some cases,
these matrices can be analyzed via tools of the H-matrix theory. Consider a tridiagonal matrix
of order 10, B5 = tridiag[−6, 12,−6], having a form that often appears in modeling systems in
engineering or economics. The matrix B5 is neither S DD nor Ostrowski, but it belongs to the N-scal
class and the norm estimation from Theorem 3.5 is

||B−1
5 ||∞ ≤ 21.2084961,

which is tighter than the bound obtained for Nekrasov (85.16666).

In order to bound the smallest singular value of a special H-matrix A, let us denote

ν(A) = max
k∈N

hk(A)
|akk|

max
i∈N

zi(A)
hi(A) − Hi(A)

.

For the given matrix A ∈ Cn,n, let ||A||1, ||A||2, and ||A||∞ represent the 1-norm, 2-norm, and ∞-norm
of A, respectively. It is well-known that the following relation between the norms hold

||A||22 ≤ ||A||1||A||∞.

Applying this inequality, the lower bound for the minimal singular value of special H-matrices
is obtained.
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Theorem 3.11. Let A ∈ Cn,n, n ≥ 2 be a matrix with nonzero diagonal entries. If

hi(A) > Hi(A) and hi(AT ) > Hi(AT ),

for all i ∈ N, then

σn(A) ≥

√
1

ν(A)ν(AT )
,

where σn(A) is the smallest singular value of A.

Proof. Matrices A and AT are both N-scal matrices. From the previous theorem, we have

||A−1||∞ ≤ ν(A) and ||(AT )−1||∞ ≤ ν(AT ).

As
||A−1||1 = ||(A−1)T ||∞ = ||(AT )−1||∞ ≤ ν(AT ),

we obtain
||A−1||22 ≤ ||A

−1||1 · ||A−1||∞ ≤ ν(AT ) · ν(A),

i.e.,

σn(A) = ||A−1||−1
2 ≥

√
1

ν(A)ν(AT )
.

Remark 3.12. We can apply obtained results to other norms as well. If matrices A and AT are both
N-scal matrices, from the previous consideration, it follows that

||A−1||1 ≤ ν(AT ),

||A−1||2 ≤
√
ν(A)ν(AT ) ≤ max{ν(A), ν(AT )}.

Remark 3.13. One can consider block generalizations of H-matrices and subclasses and define infinity
norm estimation for the inverse in the block-case as well. Block H-matrices were researched in [43,47].

For A = [ai j] ∈ Cn,n and a partition π = {p j}
l
j=0, p0 = 0 < p1 < p2 < ... < pl = n of the index set

N, consider the block matrix [Ai j]l×l with the index set L = {1, 2, ..., l}.
The relation between point-wise and the block case (see [7]) implies the following estimation.
For a given A = [ai j] ∈ Cn,n and a given partition π = {p j}

l
j=0 of the index set N, if 〉A〈π is an

N-scal matrix, then
||A−1||∞ ≤ ||(〉A〈π)−1||∞ ≤ ν(〉A〈π).

Here, comparison matrix is defined in a usual manner. The matrix 〉A〈π= [pi j]l×l is given by

pi j =


(||A−1

ii ||∞)−1, i = j and det(Aii) , 0,
0, i = j and det(Aii) = 0,
−||Ai j||∞, i , j

 .
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Example 3.14. When considering a continuous-time dynamical ecological system composed of several
populations resting at a feasible equilibrium point (see [24]) self-interactions are often removed from
the community matrix, meaning that diagonal entries are equal to zero. Matrices with zero diagonal, by
the name ‘hollow matrices’, do not belong to the class of H-matrices in the classical sense; therefore,
they cannot be treated nor analyzed via bounds obtained for special classes of H-matrices. However,
the community matrix often has a certain block structure and we can apply results developed for block
H-matrices. Consider

G =



0 8 0 0 3 0 5 0
8 0 0 0 0 0 0 0
0 0 0 4 2 0 4 0
0 0 4 0 0 0 0 0
2 0 5 0 0 20 0 0
0 0 0 0 20 0 0 0
4 0 4 0 0 0 0 20
0 0 0 0 0 0 20 0


. (3.1)

This matrix is not an H-matrix, as it is hollow, but with respect to partition π = {0, 2, 4, 6, 8}, we obtain
the comparison matrix 〉G〈π, which is an N-scal matrix; therefore, we obtain

||G−1||∞ ≤ ||(〉G〈π)−1||∞ ≤ ν(〉G〈π) = 0.776197.

3.2. Error bounds for the solution of linear complementarity problem

Assume that A = [ai j] ∈ Rn,n and q ∈ Rn. The linear complementarity problem LCP(A, q) is
defined as follows. Find x ∈ Rn satisfying

x ≥ 0, Ax + q ≥ 0, (Ax + q)T x = 0,

or show that such a vector does not exist. In modern game-theory, as well as in economy and
engineering, there are certain problems that can be formulated as LCP problems. Special matrix
classes, including P-matrices, Q-matrices, and M-matrices, have always played an important role
in analysis of linear complementarity problems, whether in establishing conditions for existence and
uniqueness of the solution, or in construction of procedures for solving LCP. Necessary and sufficient
condition for LCP(A, q) to have a unique solution with respect to any q ∈ Rn is the demand on matrix
A to be a P-matrix, a real square matrix with all its principal minors positive; see [6].

For a P-matrix A, let x∗ denote the solution of the LCP(A, q) and denote r(x) = min(x, Ax + q),
D = diag(di), 0 ≤ di ≤ 1. In [5], the following estimate for the error of the solution was presented:

||x − x∗||∞ ≤ max
d∈[0,1]n

||(I − D + DA)−1||∞||r(x)||∞.

It is well-known that an H+ matrix, a real H-matrix with positive diagonal entries, is a P-matrix.
Therefore, it is convenient to apply the upper error bound for error of the solution of the given

LCP(A, q) presented in [19] that can be used in cases when we know how to construct a scaling matrix
for the given H+ matrix.
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Theorem 3.15. [19] Let A = [ai j] ∈ Rn,n be an H-matrix with aii > 0 for all i ∈ N. Let W =

diag(w1, . . . ,wn) with wi > 0, for all i = 1, . . . , n, be a diagonal scaling matrix for A, such that AW
is S DD. Then,

max
d∈[0,1]n

||(I − D + DA)−1||∞ ≤ max
{

maxi∈N wi

mini∈N βi
,

maxi∈N wi

mini∈N wi

}
,

where for each i = 1, 2, . . . , n, βi = aiiwi −
∑

i∈N\{i} |ai j|w j.

In what follows, we denote

max
{

maxi∈N wi

mini∈N βi
,

maxi∈N wi

mini∈N wi

}
=: η(A,W).

Note that the norm estimation depends both on the entries of the given matrix A and the choice of
scaling matrix W.

As we know how to construct a scaling matrix for a given N-scal matrix, we directly obtain the
following error estimation.

Theorem 3.16. Let A = [ai j] ∈ Rn,n, n ≥ 2 be an N-scal matrix with positive diagonal entries. Then,

max
d∈[0,1]n

||(I − D + DA)−1||∞ ≤ η(A,W),

where W = diag(wi) and for each i = 1, 2, . . . , n, wi = εi
Hi(A)

aii
, and (εi)n

i=1 is an increasing sequence

of numbers with ε1 = 1, εi ∈
(
1, hi(A)

Hi(A)

)
, i = 2, . . . , n.

Proof. Let A = [ai j] ∈ Rn,n, n ≥ 2, aii > 0, i = 1, . . . , n be an N-scal matrix. Then, for the diagonal
matrix X, X = diag(xi) with

xi =
hi(A)

aii
, i = 1, . . . , n,

the matrix AX is a Nekrasov matrix. Notice that Nekrasov row sums are nonzero both in A and
AX. Therefore, we can construct the scaling matrix Y for the Nekrasov matrix AX as proposed in
Theorem 1.1. This implies that the matrix AXY, with Y = diag(yi),

yi = εi
hi(AX)
(AX)ii

= εi
Hi(A)
hi(A)

, i = 1, . . . , n,

is an S DD matrix, for (εi)n
i=1 being an increasing sequence of numbers with

ε1 = 1, εi ∈

(
1,

(AX)ii

hi(AX)

)
=

(
1,

hi(A)
Hi(A)

)
, i = 2, . . . , n.

Applying Theorem 3.15 with W = XY = diag(wi), i = 1, . . . , n, where

wi = xiyi =
hi(A)

aii

Hi(A)
hi(A)

εi = εi
Hi(A)

aii
,

the proof is completed.
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Assume that A = [ai j] ∈ Cn,n is an Ostrowski matrix with positive diagonal entries, with the only
non-S DD row indexed by l. The estimation η(A,W) given in Theorem 3.15 can be applied to Ostrowski
matrix A with scaling matrix W defined as W = diag(wk),

wk =

 γ̃, k = l,

1, k ∈ N \ {l},
(3.2)

where Ĩ1 =
rl(A)
|all|

< γ̃ < min
i,l,ail,0

|aii| − ri(A) + |ail|

|ail|
= Ĩ2, and if ail = 0, for all i , l, then Ĩ2 = ∞.

The estimation η(A,W) of Theorem 3.15 can also be applied to an O-scal matrix A = [ai j] ∈ Cn,n

with positive diagonal entries, with the following choice of the scaling matrix W. Let W = diag(wi),

wi =


ri(A)

aii
γ, i = l,

ri(A)
aii

, i ∈ N \ {l},

γ ∈

(
RN

l (A)
rl(A)

, min
i,l,ail,0

ri(A)all − RN
i (A)all + |ail|rl(A)
|ail|rl(A)

)
,

l is the index of the only non-S DD row in AQ, Q = diag(qk) and qk =
rk(A)
|akk|

, k ∈ N. If there is no

such index l, we choose γ = 1.
In the following numerical examples, we compare η estimations for LCP obtained from

Theorem 3.15 with corresponding choices of scaling matrices.

Example 3.17. Consider

B =



4 0 1 0 0 2 0 0 0 1
0 2 0 0 0 1 1 0 1 0
0 0 3 1 0 1 1 0 0 0
1 1 0 4 0 0 0 0 1 0
0 0 2 0 5 0 2 1 0 0
0 0 0 0 1 6 0 0 1 1
0 0 1 1 1 0 7 0 1 0
0 1 0 0 1 1 0 8 0 1
2 2 2 0 1 0 0 1 9 0
1 0 2 0 0 0 2 0 1 10



. (3.3)

The matrix B is an N-scal matrix, so we apply Theorem 3.16 for εi = 1 + 0.0362i, i = 0, . . . , 9.
We obtain η estimation 2.729348. As B does not belong to any of the classes S DD, Ostrowski, O-scal,
Nekrasov, the corresponding bounds obtained for these classes cannot be applied. In all the examples

ε1 = 1 and εi, i = 2, . . . , n, are chosen equidistantly inside the interval
(
1, min

i=2,...,n

hi(A)
Hi(A)

)
.
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Example 3.18. Consider

C =


22 9.1 4.2 2.1
0.7 9.1 4.2 2.1
0.7 0.7 4 2
2 1 3 7

 .
The matrix C belongs to all of the classes we considered; therefore, we apply bounds developed for all
these classes and compare them. Results are presented in Table 8.

Table 8. Norm bounds for the inverse and η bounds for C.

S DD Ostrowski Nekrasov O−scal N−scal
in the class

√ √ √ √ √

bound for ||C−1||∞ 1.666667 1.368421 1.125035 1.080676 1.1319
η bound for LCP 1.666667 1.666667 1.344799 1.30413 1.226424

For this matrix, we see that the best bound for the norm of the inverse matrix is the bound from
Theorem 3.3 for the O-scal class, while the best η bound for LCP is the bound from Theorem 3.16 for
the N-scal class.

3.3. Eigenvalue localizations for the Schur complement matrix and mLCP

The Schur complement matrix can be viewed as a side product of block-Gaussian elimination. It
allows transformation of a given large dimensional system to problems of smaller dimensions.

The Schur complement of A = [ai j] ∈ Cn,n with respect to a proper subset α of the index set N is
denoted by A/α and defined to be

A/α = A(α) − A(α, α)(A(α))−1A(α, α).

Here, A(α, β) denotes the sub-matrix of A ∈ Cn,n formed by the rows indexed by α and the columns
indexed by β, while A(α, α) is abbreviated to A(α). In our considerations, we assume that A(α) is a
non-singular matrix.

Results on the Schur complement of special H-matrices including spectra localizations and closure
properties can be found in [9, 11, 12, 27, 39, 48].

Denoting by σ(A) the spectrum of matrix A, i.e., the set of all eigenvalues of the matrix A, we now
recall the famous Geršgorin theorem; see [23]. It states that for any matrix A ∈ Cn,n,

Γ(A) =
⋃
i∈N

Γi(A) ⊇ σ(A),

where the set Γi(A) = {z ∈ C||z − aii| ≤ ri(A)} is called the i-th Geršgorin disk, while Γ(A) is the
Geršgorin set.

In what follows, we apply the scaling method in order to obtain information on spectra of Schur
complements. For this purpose, the scaling will be performed in the form of a similarity transformation,
as similar matrices have the same set of eigenvalues. Notice that if W is a diagonal scaling matrix for
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the given matrix A, i.e., if AW is S DD, then the matrix W−1AW is also S DD, as scaling the rows does
not affect S DD property. Having this in mind, for a given non-singular diagonal matrix W, we denote

rW
i (A) = ri(W−1AW),

and
ΓW

i (A) = {z ∈ C||z − aii| ≤ rW
i (A)}.

We also make use of another convenient property of the Schur complement. Namely, Schur
complements agree well with multiplications with diagonal non-singular matrices, both from right
and left. More precisely, for a diagonal non-singular W, it holds that

(WA)/α = W(α)(A/α),

and also
(AW)/α = (A/α)W(α).

In [36], the authors provided information on spectra of the Schur complement of an S DD matrix
as follows.

Theorem 3.19. [36] Let A ∈ Cn,n be an S DD matrix with real diagonal entries, and let α be a proper
subset of the index set. Then, A/α and A(α) have the same number of eigenvalues whose real parts are
greater (less) than f (A) (resp., − f (A)), where

f (A) = min
j∈α

|a j j| − r j(A) + min
i∈α

|aii| − ri(A)
|aii|

∑
k∈α

|a jk|

 . (3.4)

In [35], the authors presented another interesting result on spectra of the Schur complement.
For A ∈ Cn,n, α = {i1, i2, . . . , ik} ⊆ NA, α = { j1, j2, . . . , jl} and for every eigenvalue λ of A/α, there

exists 1 ≤ t ≤ l such that

|λ − a jt jt | ≤ r jt(A). (3.5)

In other words, the eigenvalues of A/α are contained in the union of those Geršgorin disks for the
original matrix A whose indices are in α.

In further considerations, we apply this result and we obtain information on spectra of Schur
complements of N-scal matrices.

Theorem 3.20. Let A ∈ Cn,n be an N-scal matrix with real diagonal entries, and let α be a proper
subset of the index set. Then, A/α and A(α) have the same number of eigenvalues whose real parts are
greater (less) than f (W−1AW) (resp., − f (W−1AW)), where f (A) is defined as in (3.4) and W = diag(wi)
is a diagonal scaling matrix for A, with wi = εi

Hi(A)
aii
, i = 1, 2, . . . , n, where (εi)n

i=1 is an increasing

sequence of numbers with ε1 = 1, εi ∈
(
1, hi(A)

Hi(A)

)
, i = 2, . . . , n.

Proof. Since A is an N-scal matrix with real diagonal entries and W is the corresponding scaling matrix,
W−1AW is an S DD matrix with real diagonal entries. Notice that matrices (W−1AW)/α and A/α are
similar, as well as matrices (W−1AW)(α) and A(α), so their spectra coincide. Now, the statement is
proved by applying Theorem 3.19.
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The method of the proof holds for all H-matrices with real diagonal entries and their
scaling matrices.

Now, we obtain a Geršgorin-like spectra localization for the Schur complement of an N-scal matrix
using scaling matrices.

Theorem 3.21. Let A ∈ Cn,n be an N-scal matrix, let α ⊆ N, and let W = diag(wi) be a diagonal
scaling matrix for A, with wi = εi

Hi(A)
aii
, i = 1, 2, . . . , n, where (εi)n

i=1 is an increasing sequence of

numbers with ε1 = 1, εi ∈
(
1, hi(A)

Hi(A)

)
, i = 2, . . . , n. Then,

σ(A/α) ⊆
⋃
j∈α

ΓW
j (A).

Proof. It is easy to see that (W−1AW)/α is similar to A/α. Similarity implies that spectra of these
matrices coincide. Applying results from [35] to S DD matrix W−1AW, we complete the proof.

In this way, we obtain Geršgorin-like eigenvalue localization area for the Schur complement of an
N-scal matrix using only the entries of the original matrix A. Again, the method of the proof holds for
any H-matrix A and its scaling matrix W; see [12, 39].

Results on spectra of Schur complements can be interpreted in light of the mLCP.
Consider mLCP(A, B,C,D, a, b) with a non-singular matrix A. For A ∈ Rn,n, B ∈ Rm,m, C ∈ Rn,m,

D ∈ Rm,n, a ∈ Rn i b ∈ Rm, the problem can be formulated as follows. Find

u ∈ Rn, v ∈ Rm, v ≥ 0,

such that
a + Au + Cv = 0,

b + Du + Bv ≥ 0,

vT (b + Du + Bv) = 0.

For a non-singular A, the given problem can be transformed to a classical LCP(B−DA−1C, b−DA−1a).
Denote by M the block matrix

M =

[
A C
D B

]
.

Then, the matrix that appears in classical LCP is the Schur complement M/A = B − DA−1C. If the
matrix M belongs to some special class, we are able to obtain results on eigenvalues as follows.

• If M ∈ Cn+m,n+m, n + m ≥ 2 is an N-scal matrix with real diagonal entries, then M/A and B have
equal number of eigenvalues with real parts greater (less) than f (W−1MW) (− f (W−1MW)). Here,
f (M) is defined as in Theorem 3.19 and W = diag(wi) is a diagonal scaling matrix for M.

• For M ∈ Cn+m,n+m of order n + m ≥ 2 being an N-scal matrix, let W = diag(wi) be a corresponding
diagonal scaling matrix. Then,

σ(M/A) ⊆
⋃

j∈{n+1,...,n+m}

ΓW
j (M).
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Example 3.22. Consider

A =


5 2 0 1
2 4 0 1

1.5 2 5 1
0.5 0 2 5

 .
It belongs both to the S DD class and N-scal class. Let α = {1, 2}. Applying (3.5), we obtain Γ3(A) =

{z||z − 5| ≤ 4.5}, Γ4(A) = {z||z − 5| ≤ 2.5},

σ(A/α) ⊆
⋃

j∈{3,4}

Γ j(A) =: ΓS DD(A/α).

From Theorem 3.21 for N-scal matrices, with εi = 1 + 0.375i, i = 0, 1, 2, 3, we obtain ΓW
3 (A) =

{z||z − 5| ≤ 2.6335}, ΓW
4 (A) = {z||z − 5| ≤ 3.549}, and

σ(A/α) ⊆
⋃

j∈{3,4}

ΓW
j (A) =: ΓNscal(A/α).

We see that ΓNscal(A/α) (blue) gives tighter localization than ΓS DD(A/α) (pink); see Figure 1.

Figure 1. ΓS DD(A/α) and ΓNscal(A/α) for α = {1, 2}.

Example 3.23. Consider, again, the matrix B given in (3.3) and set α = {1, 2, 3, 4, 5, 6, 7}. As NB =

{1, 2, 3, 5} and α * NB, we cannot use localization from [35].
However, we obtain the spectra localization for B/α given in Figure 2 applying Theorem 3.21, with

εi = 1 + 0.0362i, i = 0, . . . , 9. Here, ΓW
8 (B) = {z||z − 8| ≤ 6.68754}, ΓW

9 (B) = {z||z − 9| ≤ 7.398684},
and ΓW

10(B) = {z||z − 10| ≤ 8.547165}.
Now, let α = {4, 6, 7, 8, 9, 10}. As α ⊆ NB, we are able to apply results for both the S DD case and

N-scal case. From (3.5) for the S DD case, we obtain

σ(B/α) ⊆
⋃

j∈{1,2,3,5}

Γ j(B) = ΓS DD(B/α),

where Γ1(B) = {z||z− 4| ≤ 4}, Γ2(B) = {z||z− 2| ≤ 3}, Γ3(B) = {z||z− 3| ≤ 3}, and Γ5(B) = {z||z− 5| ≤ 5}.
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Applying Theorem 3.21 for the N-scal class, we obtain

σ(B/α) ⊆
⋃

j∈{1,2,3,5}

ΓW
j (B) = ΓNscal(B/α),

where ΓW
1 (B) = {z||z − 4| ≤ 3.077659}, ΓW

2 (B) = {z||z − 2| ≤ 1.607273}, ΓW
3 (B) = {z||z − 3| ≤ 2.320485},

and ΓW
5 (B) = {z||z − 5| ≤ 4.128828}.

If we compare localization areas, we see that ΓNscal(B/α) (violet) is tighter than ΓS DD(B/α) (yellow);
see Figure 3.

Figure 2. ΓNscal(B/α) for α = {1, 2, 3, 4, 5, 6, 7}

Figure 3. ΓS DD(B/α) and ΓNscal(B/α) for α = {4, 6, 7, 8, 9, 10}.
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4. Conclusions

In this paper, we presented a new sufficient condition for non-singularity of matrices by the name N-
scal condition. We proved that matrices satisfying this condition belong to the H-matrix class. We
discussed the relation of the new N-scal matrix class to some well-known subclasses of non-singular H-
matrices, such as S DD, Ostrowski, S DD1, O-scal, and the Nekrasov class. Numerical examples show
that the new class stands in a general relation to each of these classes. We used new criteria to obtain
bounds for the infinity norm of the inverse matrix. Numerical examples illustrate that these bounds can
give better results in some cases than existing bounds developed for some well-known matrix classes.
Due to relations among classes, it is obvious that new estimates developed for N-scal matrices can work
in some cases when already known estimates cannot be applied. Applying scaling relations between the
new class and the well-known matrix classes, we defined error estimation for linear complementarity
problems that involve N-scal matrices. Also, Schur complements of N-scal matrices are considered.
Spectra localizations for Schur complements are obtained via diagonal scaling in the form of similarity
transformation. If the matrix in consideration is both S DD and N-scal, numerical examples show that
new localization can give tighter estimate due to the scaling method.
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12. L. Cvetković, M. Nedović, Eigenvalue localization refinements for the Schur complement, Appl.
Math. Comput., 218 (2012), 8341–8346. http://dx.doi.org/10.1016/j.amc.2012.01.058

13. P. F. Dai, J. Li, S. Zhao, Infinity norm bounds for the inverse for GS DD1 matrices using scaling
matrices, Comput. Appl. Math., 42 (2023), 121. https://dx.doi.org/10.1007/s40314-022-02165-x

14. P. F. Dai, J. C. Li, Y. T. Li, J. Bai, A general preconditioner for linear complementarity
problem with an M-matrix, J. Comput. Appl. Math., 317 (2017), 100–112.
https://doi.org/10.1016/j.cam.2016.11.034

15. L. S. Dashnic, M. S. Zusmanovich, O nekotoryh kriteriyah regulyarnosti matric i lokalizacii ih
spectra, Zh. Vychisl. Matem. I Matem. Fiz., 5 (1970), 1092–1097.

16. L. S. Dashnic, M. S. Zusmanovich, K voprosu o lokalizacii harakteristicheskih chisel matricy, Zh.
Vychisl. Matem. I Matem. Fiz., 10 (1970), 1321–1327.

17. M. Fiedler, V. Pták, Generalized norms of matrices and the location of the spectrum, Czech. Math.
J., 12 (1962), 558–571. http://dx.doi.org/10.21136/CMJ.1962.100540

18. L. Gao, X. M. Gu, X. Jia, C. Q. Li, Upper triangulation-based infinity norm bounds for the
inverse of Nekrasov matrices with applications, Numer. Algorithms, 97 (2024), 1453–1479.
https://dx.doi.org/10.1007/s11075-024-01758-3

19. M. G. Esnaola, J. M. Peña, A comparison of error bounds for linear
complementarity problems of H-matrices, Linear Algebra Appl., 433 (2010), 956–964.
https://dx.doi.org/10.1016/j.laa.2010.04.024

AIMS Mathematics Volume 10, Issue 3, 5071–5094.

https://dx.doi.org/https://dx.doi.org/10.1016/C2013-0-10361-3
https://dx.doi.org/https://dx.doi.org/10.3934/math.2022493
https://dx.doi.org/https://dx.doi.org/10.1007/s10107-005-0645-9
https://dx.doi.org/https://dx.doi.org/10.1137/1.9780898719000
https://dx.doi.org/https://doi.org/10.1016/j.amc.2014.06.035
https://dx.doi.org/https://dx.doi.org/10.1016/j.cam.2004.10.017
https://dx.doi.org/http://dx.doi.org/10.1016/j.amc.2007.09.001
https://dx.doi.org/http://dx.doi.org/10.1515/math-2015-0012
https://dx.doi.org/http://dx.doi.org/10.1016/j.amc.2008.11.040
https://dx.doi.org/http://dx.doi.org/10.1016/j.amc.2012.01.058
https://dx.doi.org/https://dx.doi.org/10.1007/s40314-022-02165-x
https://dx.doi.org/https://doi.org/10.1016/j.cam.2016.11.034
https://dx.doi.org/http://dx.doi.org/10.21136/CMJ.1962.100540
https://dx.doi.org/https://dx.doi.org/10.1007/s11075-024-01758-3
https://dx.doi.org/https://dx.doi.org/10.1016/j.laa.2010.04.024


5093

20. M. G. Esnaola, J. M. Peña, Error bounds for linear complementarity problems of Nekrasov
matrices, Numer. Algorithms, 67 (2014), 655–667. https://dx.doi.org/10.1007/s11075-013-9815-7

21. M. G. Esnaola, J. M. Peña, On the asymptotic optimality of error bounds for
some linear complementarity problems, Numer. Algorithms, 80 (2019), 521–532.
https://dx.doi.org/10.1007/s11075-018-0495-1

22. M. G. Esnaola, J. M. Peña, B-Nekrasov matrices and error bounds for
linear complementarity problems, Numer. Algorithms, 72 (2016), 435–445.
https://dx.doi.org/10.1007/s11075-015-0054-y
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