Research article

A new error bound for linear complementarity problems involving Bmatrices

  • Received: 20 October 2022 Revised: 20 February 2023 Accepted: 26 February 2023 Published: 07 August 2023
  • MSC : 65G50, 90C31, 90C33

  • In this paper, a new error bound for the linear complementarity problems of Bmatrices which is a subclass of the Pmatrices is presented. Theoretical analysis and numerical example illustrate that the new error bound improves some existing results.

    Citation: Hongmin Mo, Yingxue Dong. A new error bound for linear complementarity problems involving Bmatrices[J]. AIMS Mathematics, 2023, 8(10): 23889-23899. doi: 10.3934/math.20231218

    Related Papers:

    [1] Siting Yu, Jingjing Peng, Zengao Tang, Zhenyun Peng . Iterative methods to solve the constrained Sylvester equation. AIMS Mathematics, 2023, 8(9): 21531-21553. doi: 10.3934/math.20231097
    [2] Nunthakarn Boonruangkan, Pattrawut Chansangiam . Convergence analysis of a gradient iterative algorithm with optimal convergence factor for a generalized Sylvester-transpose matrix equation. AIMS Mathematics, 2021, 6(8): 8477-8496. doi: 10.3934/math.2021492
    [3] Jin-Song Xiong . Generalized accelerated AOR splitting iterative method for generalized saddle point problems. AIMS Mathematics, 2022, 7(5): 7625-7641. doi: 10.3934/math.2022428
    [4] Jiaxin Lan, Jingpin Huang, Yun Wang . An E-extra iteration method for solving reduced biquaternion matrix equation AX+XB=C. AIMS Mathematics, 2024, 9(7): 17578-17589. doi: 10.3934/math.2024854
    [5] Kanjanaporn Tansri, Pattrawut Chansangiam . Gradient-descent iterative algorithm for solving exact and weighted least-squares solutions of rectangular linear systems. AIMS Mathematics, 2023, 8(5): 11781-11798. doi: 10.3934/math.2023596
    [6] Yinlan Chen, Min Zeng, Ranran Fan, Yongxin Yuan . The solutions of two classes of dual matrix equations. AIMS Mathematics, 2023, 8(10): 23016-23031. doi: 10.3934/math.20231171
    [7] Wenxiu Guo, Xiaoping Lu, Hua Zheng . A two-step iteration method for solving vertical nonlinear complementarity problems. AIMS Mathematics, 2024, 9(6): 14358-14375. doi: 10.3934/math.2024698
    [8] Wen-Ning Sun, Mei Qin . On maximum residual block Kaczmarz method for solving large consistent linear systems. AIMS Mathematics, 2024, 9(12): 33843-33860. doi: 10.3934/math.20241614
    [9] Kanjanaporn Tansri, Sarawanee Choomklang, Pattrawut Chansangiam . Conjugate gradient algorithm for consistent generalized Sylvester-transpose matrix equations. AIMS Mathematics, 2022, 7(4): 5386-5407. doi: 10.3934/math.2022299
    [10] Yang Cao, Quan Shi, Sen-Lai Zhu . A relaxed generalized Newton iteration method for generalized absolute value equations. AIMS Mathematics, 2021, 6(2): 1258-1275. doi: 10.3934/math.2021078
  • In this paper, a new error bound for the linear complementarity problems of Bmatrices which is a subclass of the Pmatrices is presented. Theoretical analysis and numerical example illustrate that the new error bound improves some existing results.



    Fractional calculus deals with the equations which involve integrals and derivatives of fractional orders. The history of fractional calculus begins from the history of calculus. The role of fractional integral operators is very vital in the applications of this subject in other fields. Several well known phenomenas and their solutions are presented in fractional calculus which can not be studied in ordinary calculus. Inequalities are useful tools in mathematical modelling of real world problems, they also appear as constraints to initial/boundary value problems. Fractional integral/derivative inequalities are of great importance in the study of fractional differential models and fractional dynamical systems. In recent years study of fractional integral/derivative inequalities accelerate very fastly. Many well known classical inequalities have been generalized by using classical and newly defined integral operators in fractional calculus. For some recent work on fractional integral inequalities we refer the readers to [1,2,3,4,5,6] and references therein.

    Our goal in this paper is to apply generalize Riemann-Liouville fractional integrals using a monotonically increasing function. The Hadamard inequalities are proved for these integral operators using strongly (α,m)-convex functions. Also error bounds of well known Hadamard inequalities are obtained by using two fractional integral identities. In connection with the results of this paper, we give generalizations and refinements of some well known results added recently in the literature of mathematical inequalities.

    Next, we like to give some definitions and established results which are necessary and directly associated with the findings of this paper.

    Definition 1. [7] A function f:[0,+)R is said to be strongly (α,m)-convex function with modulus c0, where (α,m)[0,1]2, if

    f(xt+m(1t)y)tαf(x)+m(1tα)f(y)cmtα(1tα)|yx|2, (1.1)

    holds x,y[0,+) and t[0,1].

    The well-known Hadamard inequality is a very nice geometrical interpretation of convex functions defined on the real line, it is stated as follows:

    Theorem 1. The following inequality holds:

    f(x+y2)1yxyxf(v)dvf(x)+f(y)2, (1.2)

    for convex function f:IR, where I is an interval and x,yI, x<y.

    The definition of Riemann-Liouville fractional integrals is given as follows:

    Definition 2. Let fL1[a,b]. Then left-sided and right-sided Riemann-Liouville fractional integrals of a function f of order μ where (μ)>0 are defined by

    Iμa+f(x)=1Γ(μ)xa(xt)μ1f(t)dt,x>a, (1.3)

    and

    Iμbf(x)=1Γ(μ)bx(tx)μ1f(t)dt,x<b. (1.4)

    The following theorems provide two Riemann-Liouville fractional versions of the Hadamard inequality for convex functions.

    Theorem 2. [8] Let f:[a,b]R be a positive function with 0a<b and fL1[a,b]. If f is a convex function on [a,b], then the following fractional integral inequality holds:

    f(a+b2)Γ(μ+1)2(ba)μ[Iμa+f(b)+Iμbf(a)]f(a)+f(b)2, (1.5)

    with μ>0.

    Theorem 3. [9] Under the assumption of Theorem 2, the following fractional integral inequality holds:

    f(a+b2)2μ1Γ(μ+1)(ba)μ[Iμ(a+b2)+f(b)+Iμ(a+b2)f(a)]f(a)+f(b)2, (1.6)

    with μ>0.

    Theorem 4. [8] Let f:[a,b]R be a differentiable mapping on (a,b) with a<b. If |f| is convex on [a,b], then the following fractional integral inequality holds:

    |f(a)+f(b)2Γ(μ+1)2(ba)μ[Iμa+f(b)+Iμbf(a)]|ba2(μ+1)(112μ)[|f(a)|+|f(b)|]. (1.7)

    The k-analogue of Riemann-Liouville fractional integrals is defined as follows:

    Definition 3. [10] Let fL1[a,b]. Then k-fractional Riemann-Liouville integrals of order μ where (μ)>0, k>0, are defined by

    kIμa+f(x)=1kΓk(μ)xa(xt)μk1f(t)dt,x>a, (1.8)

    and

    kIμbf(x)=1kΓk(μ)bx(tx)μk1f(t)dt,x<b, (1.9)

    where Γk(.) is defined as [11]

    Γk(μ)=0tμ1etkkdt.

    The k-fractional versions of Hadamard type inequalities (1.5)–(1.7) are given in the following theorems.

    Theorem 5. [12] Let f:[a,b]R be a positive function with 0a<b. If f is a convex function on [a,b], then the following inequalities for k-fractional integrals hold:

    f(a+b2)Γk(μ+k)2(ba)μk[kIμa+f(b)+kIμbf(a)]f(a)+f(b)2. (1.10)

    Theorem 6. [13] Under the assumption of Theorem 5, the following fractional integral inequality holds:

    f(a+b2)2μk1Γk(μ+k)(ba)μk[kIμ(a+b2)+f(b)+kIμ(a+b2)f(a)]f(a)+f(b)2. (1.11)

    Theorem 7. [12] Let f:[a,b]R be a differentiable mapping on (a,b) with 0a<b. If |f| is convex on [a,b], then the following inequality for k-fractional integrals holds:

    |f(a)+f(b)2Γk(μ+k)2(ba)μk[kIμa+f(b)+kIμbf(a)]|ba2(μk+1)(112μk)[|f(a)|+|f(b)|]. (1.12)

    In the following, we give the definition of generalized Riemann-Liouville fractional integrals by a monotonically increasing function.

    Definition 4. [14] Let fL1[a,b]. Also let ψ be an increasing and positive monotone function on (a,b], having a continuous derivative ψ on (a,b). The left-sided and right-sided fractional integrals of a function f with respect to another function ψ on [a,b] of order μ where (μ)>0 are defined by

    Iμ,ψa+f(x)=1Γ(μ)xaψ(t)(ψ(x)ψ(t))μ1f(t)dt,x>a, (1.13)

    and

    Iμ,ψbf(x)=1Γ(μ)bxψ(t)(ψ(t)ψ(x))μ1f(t)dt,x<b. (1.14)

    The k-analogue of generalized Riemann-Liouville fractional integrals is defined as follows:

    Definition 5 [4] Let fL1[a,b]. Also let ψ be an increasing and positive monotone function on (a,b], having a continuous derivative ψ on (a,b). The left-sided and right-sided fractional integrals of a function f with respect to another function ψ on [a,b] of order μ where (μ)>0, k>0, are defined by

    kIμ,ψa+f(x)=1kΓk(μ)xaψ(t)(ψ(x)ψ(t))μk1f(t)dt,x>a, (1.15)

    and

    kIμ,ψbf(x)=1kΓk(μ)bxψ(t)(ψ(t)ψ(x))μk1f(t)dt,x<b. (1.16)

    For more details of above defined fractional integrals, we refer the readers to see [15,16].

    Rest of the paper is organized as follows: In Section 2, we find Hadamard type inequalities for generalized Riemann-Liouville fractional integrals with the help of strongly (α,m)-convex functions. The consequences of these inequalities are listed in remarks. Also some new fractional integral inequalities for convex functions, strongly convex functions and strongly m-convex functions are deduced in the form of corollaries. In Section 3, the error bounds of Hadamard type fractional inequalities are established via two fractional integral identities.

    Theorem 8. Let f:[a,b]R be a positive function with 0a<mb and fL1[a,b]. Also suppose that f is strongly (α,m)-convex function on [a,b] with modulus c0, ψ is positive strictly increasing function having continuous derivative ψ on (a,b). If [a,b]Range(ψ), k>0 and (α,m)(0,1]2, then the following k-fractional integral inequality holds:

    f(a+mb2)+cm(2α1)22α(μ+k)(μ+2k)[μ(μ+k)(ba)2+2k2(ammb)2+2μk(ba)(ammb)]Γk(μ+k)2α(mba)μk[kIμ,ψψ1(a)+(fψ)(ψ1(mb))+(2α1)mμk+1kIμ,ψψ1(b)(fψ)(ψ1(am))][f(a)+m(2α1)f(b)]μ2α(μ+kα)+mkαμ(f(b)+m(2α1)f(am2))2α(μ2+μαk)cmkαμ[(ba)2+m(2α1)(bam2)2]2α(μ+αk)(μ+2αk), (2.1)

    with μ>0.

    Proof. Since f is strongly (α,m)-convex function, for x,y[a,b] we have

    f(x+my2)f(x)+m(2α1)f(y)2αcm(2α1)|yx|222α. (2.2)

    By setting x=at+m(1t)b, y=am(1t)+bt and integrating the resulting inequality after multiplying with tμk1, we get

    kμf(a+mb2)12α[10f(at+m(1t)b)tμk1dt+m(2α1)10f(am(1t)+bt)tμk1dt]cm(2α1)22αμ(μ+k)(μ+2k)[μk(μ+k)(ba)2+2k3(ammb)2+2k2μ(ba)(ammb)]. (2.3)

    Now, let u[a,b] such that ψ(u)=at+m(1t)b, that is, t=mbψ(u)mba and let v[a,b] such that ψ(v)=am(1t)+bt, that is, t=ψ(v)ambam in (2.3), then multiplying μk after applying Definition 5, we get the following inequality:

    f(a+mb2)Γk(μ+k)2α(mba)μk[kIμ,ψψ1(a)+(fψ)(ψ1(mb))+mμk+1(2α1)kIμ,ψψ1(b)(fψ)(ψ1(am))]cm(2α1)22α(μ+k)(μ+2k)[μ(ba)2+2k2(ammb)2+2μk(ba)(ammb)]. (2.4)

    Hence by rearranging the terms, the first inequality is established. On the other hand, f is strongly (α,m)-convex function, for t[0,1], we have the following inequality:

    f(at+m(1t)b)+m(2α1)f(am(1t)+bt)tα[f(a)+m(2α1)f(b)]+m(1tα)[f(b)+m(2α1)f(am2)]cmtα(1tα)[(ba)2+m(2α1)(bam2)2]. (2.5)

    Multiplying inequality (2.5) with tμk1 on both sides and then integrating over the interval [0,1], we get

    10tμk1f(ta+m(1t)b)dt+m(2α1)10tμk1f(am(1t)+tb)dt(f(a)+m(2α1)f(b))(kμ+kα)+m(f(b)+m(2α1)f(am2))k2αμ2+μαkcmαk2[(ba)2+m(2α1)(bam2)2](μ+αk)(μ+2αk). (2.6)

    Again taking ψ(u)=at+m(1t)b that is t=mbψ(u)mba and ψ(v)=am(1t)+bt that is t=ψ(v)ambam in (2.6), then by applying Definition 5, the second inequality can be obtained.

    Remark 1. Under the assumption of Theorem 8, by fixing parameters one can achieve the following outcomes:

    (i) If α=m=1 in (2.1), then the inequality stated in [17,Theorem 9] can be obtained.

    (ii) If α=m=1, ψ=I and c=0 in (2.1), then Theorem 5 can be obtained.

    (iii) If α=k=m=1, ψ=I and c=0 in (2.1), then Theorem 2 can be obtained.

    (iv) If α=k=m=1 and ψ=I in (2.1), then the inequality stated in [18,Theorem 2.1] can be obtained.

    (v) If α=μ=k=m=1, ψ=I and c=0 in (2.1), then the Hadamard inequality can be obtained.

    (vi) If α=m=1 and c=0 in (2.1), then the inequality stated in [19,Theorem 1] can be obtained.

    (vii) If α=m=k=1 and c=0 in (2.1), then the inequality stated in [20,Theorem 2.1] can be obtained.

    (viii) If α=k=1 and ψ=I in (2.1), then the inequality stated in [21,Theorem 6] can be obtained.

    (ix) If α=μ=m=k=1 and ψ=I in (2.1), then the inequality stated in [22,Theorem 6] can be obtained.

    (x) If α=k=1, ψ=I and c=0 in (2.1), then the inequality stated in [23,Theorem 2.1] can be obtained.

    (xi) If k=1 and ψ=I in (2.1), then the inequality stated in [24,Theorem 4] can be obtained.

    Corollary 1. Under the assumption of Theorem 8 with c=0 in (2.1), the following fractional integral inequality holds:

    f(a+mb2)Γk(μ+k)2α(mba)μk[kIμ,ψψ1(a)+(fψ)(ψ1(mb))+(2α1)mμk+1kIμ,ψψ1(b)(fψ)(ψ1(am))][f(a)+m(2α1)f(b)]μ2α(μ+kα)+mμαk(f(b)+m(2α1)f(am2))2α(μ2+μαk).

    Corollary 2. Under the assumption of Theorem 8 with k=1 in (2.1), the following fractional integral inequality holds:

    f(a+mb2)+cmμ(2α1)22αμ(μ+1)(μ+2)[μ(μ+1)(ba)2+2(ammb)2+2μ(ba)(ammb)]Γ(μ+1)2α(mba)μ[Iμ,ψψ1(a)+(fψ)(ψ1(mb))+(2α1)mμ+1Iμ,ψψ1(b)(fψ)(ψ1(am))][f(a)+m(2α1)f(b)]μ2α(μ+α)+m(f(b)+m(2α1)f(am2))αμ2α(μ2+μα)cmαμ[(ba)2+m(2α1)(bam2)2]2α(μ+α)(μ+2α).

    Corollary 3. Under the assumption of Theorem 8 with ψ=I in (2.1), the following fractional integral inequality holds:

    f(a+mb2)+cm(2α1)22α(μ+k)(μ+2k)[μ(μ+k)(ba)2+2k2(ammb)2+2μk(ba)(ammb)]Γk(μ+k)2α(mba)μk[kIμa+f(mb)+(2α1)mμk+1kIμbf(am)][f(a)+m(2α1)f(b)]μ2α(μ+kα)+mkαμ(f(b)+m(2α1)f(am2))2α(μ2+μαk)cmkαμ[(ba)2+m(2α1)(bam2)2]2α(μ+αk)(μ+2αk).

    Theorem 9. Under the assumption of Theorem 8, the following k-fractional integral inequality holds:

    f(a+mb2)+cmμ(2α1)22α+2(μ+2k)[μ(μ+k)(ba)2+(ammb)2(μ2+5kμ+8k2)+2μ(μ+3k)(ba)×(ammb)]2μkαΓk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1(2α1)kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]μ[f(a)+m(2α1)f(b)]22α(αk+μ)+m(2α(μ+αk)μ)22α(μ+αk)(f(b)+m(2α1)f(am2))cmμ[2α(μ+2αk)(μ+αk)]23α(μ+αk)(μ+2αk)((ba)2+m(bam2)2), (2.7)

    with μ>0.

    Proof. Let x=at2+m(2t2)b, y=am(2t2)+bt2 in (2.2) and integrating the resulting inequality over [0,1] after multiplying with tμk1, we get

    kμf(a+mb2)12α[10f(at2+m(2t2)b)tμk1dt+m(2α1)10f(am(2t2)+bt2)tμk1dt]cm(2α1)22α+2(μ+2k)[μ(μ+k)(ba)2k+k(ammb)2(μ2+5kμ+8k2)+2μ(ba)(ammb)(μ+3k)k]. (2.8)

    Let u[a,b], so that ψ(u)=at2+m(2t2)b, that is, t=2(mbψ(u))mba and v[a,b], so that ψ(v)=am(2t2)+bt2, that is, t=2(ψ(v)am)bam in (2.8), then by applying Definition 5, we get

    f(a+mb2)2μkΓk(μ+k)2α(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1(2α1)kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]cmμ(2α1)22α4(μ+2k)[μ(μ+k)(ba)2+(ammb)2(μ2+5kμ+8k2)+2μ(ba)(ammb)(μ+3k)]. (2.9)

    Hence by rearranging terms, the first inequality is established. Since f is strongly (α,m)-convex function with modulus c0, for t[0,1], we have following inequality

    f(at2+m(2t2)b)+m(2α1)f(am(2t2)+bt2)(t2)α[f(a)+m(2α1)f(b)]+m(2αtα2α)[f(b)+m(2α1)f(am2)]cmtα(2αtα)[(ba)2+m(bam2)2]22α. (2.10)

    Multiplying (2.10) with tμk1 on both sides and integrating over [0,1], we get

    10f(at2+m(2t2)b)tμk1dt+m(2α1)10f(am(2t2)+bt2)tμk1dtk[f(a)+m(2α1)f(b)]2α(αk+μ)+mk(2α(μ+αk)μ)2αμ(μ+αk)(f(b)+m(2α1)f(am2))cmk(2α(μ+2αk)(μ+αk))22α((ba)2+m(bam2)2). (2.11)

    Again taking ψ(u)=at2+m(2t2)b, that is, t=2(mbψ(v))mba and so that ψ(v)=am(2t2)+bt2, that is, t=2(ψ(v)am)bam in (2.11), then by applying Definition 5, the second inequality can be obtained.

    Remark 2. Under the assumption of Theorem 9, one can achieve the following outcomes:

    (i) If α=m=1 in (2.7), then the inequality stated in [17,Theorem 10] can be obtained.

    (ii) If α=m=k=1, ψ=I and c=0 in (2.7), then Theorem 3 can be obtained.

    (iii) If α=μ=m=k=1, ψ=I and c=0 in (2.7), then Hadamard inequality can be obtained.

    (iv) If α=m=1, ψ=I and c=0 in (2.7), then the inequality stated in [13,Theorem 2.1] can be obtained.

    (v) If α=m=1 and c=0 in (2.7), then the inequality stated in [17,corrollary 5] can be obtained.

    (vi) If α=k=1 and ψ=I in (2.7), then the inequality stated in [21,Theorem 7] can be obtained.

    (vii) If k=1 and ψ=I in (2.7), then the inequality stated in [24,Theorem 5] can be obtained.

    (viii) If α=m=k=1 and c=0 in (2.7), then the inequality stated in [25,Lemma 1] can be obtained.

    Corollary 4. Under the assumption of Theorem 9 with c=0 in (2.7), the following fractional integral inequality holds:

    f(a+mb2)2μkαΓk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1(2α1)kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]μ[f(a)+m(2α1)f(b)]22α(αk+μ)+m(2α(μ+αk)μ)22α(μ+αk)(f(b)+m(2α1)f(am2)).

    Corollary 5. Under the assumption of Theorem 9 with k=1 in (2.7), the following fractional integral inequality holds:

    f(a+mb2)+cmμ(2α1)22α+2(μ+1)(μ+2)[μ(μ+1)(ba)2+(ammb)2(μ2+5μ+8)+2μ(μ+3)(ba)(ammb)]2μαΓ(μ+1)(mba)μ[Iμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμ+1(2α1)Iμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]μ[f(a)+m(2α1)f(b)]22α(α+μ)+m[2α(μ+α)μ]22α(μ+α)(f(b)+m(2α1)f(am2))cmμ(2α(μ+2α)(μ+α))23α(μ+α)(μ+2α)×[(ba)2+m(bam2)2].

    Corollary 6. Under the assumption of Theorem 9 with ψ=I in (2.7), the following fractional integral inequality holds:

    f(a+mb2)+cmμ(2α1)22α+2(μ+2k)[μ(μ+k)(ba)2+(ammb)2(μ2+5kμ+8k2)+2μ(ba)(μ+3k)(ammb)]2μkαΓk(μ+k)(mba)μk[kIμ(a+mb2)+f(mb))+mμk+1(2α1)kIμ(a+mb2m)f(am)]μ[f(a)+m(2α1)f(b)]22α(αk+μ)+m(2α(μ+αk)μ)22α(μ+αk)(f(b)+m(2α1)f(am2))cmμ[2α(μ+2αk)(μ+αk)]23α(μ+αk)(μ+2αk)((ba)2+m(bam2)2).

    In this section, we find the error estimations of Hadamard type fractional inequalities for strongly (α,m)-convex functions by using (1.15) and (1.16) that gives the refinements of already proved estimations. The following lemma is useful to prove the next results.

    Lemma 1. Let a<b and f:[a,b]R be a differentiable mapping on (a,b). Also, suppose that fL[a,b], ψ is positive strictly increasing function, having a continuous derivative ψ on (a,b). If [a,b]Range(ψ), k>0, then the following identity holds for generalized fractional integral operators:

    f(a)+f(b)2Γk(μ+k)2(ba)μk[kIμ,ψψ1(a)+(fψ)(ψ1(b))+kIμ,ψψ1(b)(fψ)(ψ1(a)]=ba210[(1t)μktμk]f(ta+(1t)b)dt. (3.1)

    Proof. We cosider the right hand side of (3.1) as follows:

    10((1t)αktμk)f(ta+(1t)b)dt=10(1t)μk1f(ta+(1t)b)dt10tμk1f(ta+(1t)b)dt=I1I2 (3.2)

    Integrating by parts we get

    I1=10(1t)μk1f(ta+(1t)b)dt=f(b)baμk(ba)10(1t)μk1f(ta+(1t)b)dt

    We have v[a,b] such that ψ(v)=ta+(1t)b, with this substitution one can have

    I1=f(b)baμk(ba)ψ1(b)ψ1(a)(ψ(v)aba)μk1(fψ(v))baψ(v)dv=f(b)baΓk(μ+k)(ba)μk+1Iμ,ψψ1(b)(fψ)(ψ1(a)). (3.3)

    Similarly one can get after a little computation

    I2=f(a)ba+Γk(μ+k)(ba)μk+1Iμ,ψψ1(a)+(fψ)(ψ1(b)). (3.4)

    Using (3.3) and (3.4) in (3.2), (3.1) can be obtained.

    Remark 3. (i) If k=1 and ψ=I in (3.1), then the equality stated in [8,Lemma 2] can be obtained.

    (ii) For μ=k=1 and ψ=I in (3.1), then the equality stated in [28,Lemma 2.1] can be obtained.

    Theorem 10. Let f:[a,b]R be a differentiable mapping on (a,b) with 0a<b. Also suppose that |f| is strongly (α,m)-convex with modulus c0, ψ is positive strictly increasing function having continuous derivative ψ on (a,b). If [a,b]Range(ψ), k>0 and (α,m)(0,1]2, then the following k-fractional integral inequality holds:

    |f(a)+f(b)2Γk(μ+k)2(ba)μk[kIμ,ψψ1(a)+(fψ)(ψ1(b))+kIμ,ψψ1(b)(fψ)(ψ1(a))]|ba2[|f(a)|(2B(12;α+1,μk+1)+1(12)α+μkα+μk+1B(α+1,μk+1))+m|f(bm)|×(2(1(12)μk)μk+1+(12)1+μk+αμk+1+α2B(12;α+1,μk+1)1(12)1+μk+αμk+1+α+B(α+1,μk+1))cm(bma)22(2B(12;α+1,μk+1)2α4α2˜F1(1+2α,μk,2(1+α);12)+1(12)μk+αμk+1+αB(α+1,μk+1)1(12)μk+2αμk+1+2α+B(2α+1,μk+1))], (3.5)

    with μ>0 and 2˜F1(1+2α,μk,2(1+α);12) is regularized hypergeometric function.

    Proof. By Lemma 1, it follows that

    |f(a)+f(b)2Γk(μ+k)2(ba)μk[kIμ,ψψ1(a)+(fψ)(ψ1(b))+kIμ,ψψ1(b)(fψ)(ψ1(b)]|ba210|(1t)μktμk||f(ta+(1t)b|)dt. (3.6)

    Since |f| is strongly (α,m)-convex function on [a,b] and t[0,1], we have

    |f(ta+(1t)b)|tα|f(a)|+m(1tα)|f(bm)|cmtα(1tα)(bma)2. (3.7)

    Therefore (3.6) implies the following inequality

    |f(a)+f(b)2Γk(μ+k)2(ba)μk[kIμ,ψψ1(a)+(fψ)(ψ1(b))+kIμ,ψψ1(b)(fψ)(ψ1(b)]|ba210|(1t)μktμk|(tα|f(a)|+m(1tα)|f(bm)|cmtα(1tα)(bma)2]dtba2[|f(a)|(120tα((1t)μktμk)dt+112tα(tμk(1t)μk)dt)+m|f(bm)|(120(1tα)((1t)μktμk)dt+112(1tα)(tμk(1t)μk)dt)cm(bma)2(120tα(1tα)((1t)μktμk)dt+112tα(1tα)(tμk(1t)μk)dt)]. (3.8)

    In the following, we compute integrals appearing on the right side of the above inequality

    120tα((1t)μktμk)dt+112tα(tμk(1t)μk)dt=2B(12;α+1,μk+1)+1(12)α+μkα+μk+1B(α+1,μk+1). (3.9)
    120(1tα)((1t)μktμk)dt+112(1tα)(tμk(1t)μk)dt.=2(1(12)μk)μk+1+(12)1+μk+αμk+1+α2B(12;α+1,μk+1)1(12)1+μk+αμk+1+α+B(α+1,μk+1). (3.10)
    112tα(1tα)((1t)μktμk)dt+112tα(1tα)(tμk(1t)μk)dt=2B(12;α+1,μk+1)(12)1+μk+αμk+1+α2α4α2˜F1(1+2α,μk,2(1+α);12)+(12)1+μk+2αμk+1+2α+1(12)1+μk+αμk+1+αB(α+1,μk+1)1(12)1+μk+2αμk+1+2α+B(2α+1,μk+1). (3.11)

    Using (3.9), (3.10) and (3.11) in (3.8), we get the required inequality (3.5).

    Remark 4. Under the assumption of Theorem 10, one can achieve the following outcomes:

    (i) If α=m=1 in (3.5), then the inequality stated in [17,Theorem 11] can be obtained.

    (ii) If α=m=1 and c=0 in (3.5), then the inequality stated in [17,Corollary 10] can be obtained.

    (iii) If α=m=1, ψ=I and c=0 in (3.5), then Theorem 7 can be obtained.

    (iv) If α=m=k=1, ψ=I and c=0 in (3.5), then Theorem 4 can be obtained.

    (v) If α=k=1 and ψ=I in (3.5), then the inequality stated in [21,Theorem 8] can be obtained.

    (vi) If α=μ=m=k=1 and ψ=I in (3.5), then the inequality stated in [26,Corollary 6] can be obtained.

    Corollary 7. Under the assumption of Theorem 10 with c=0 in (3.5), the following inequality holds:

    |f(a)+f(b)2Γk(μ+k)2(ba)μk[kIμ,ψψ1(a)+(fψ)(ψ1(b))+kIμ,ψψ1(b)(fψ)(ψ1(a))]|ba2[|f(a)|(2B(12;α+1,μk+1)+1(12)α+μkα+μk+1B(α+1,μk+1))+m|f(bm)|×(2(1(12)μk)μk+1+(12)1+μk+αμk+1+α2B(12;α+1,μk+1)1(12)1+μk+αμk+1+α+B(α+1,μk+1))].

    Corollary 8. Under the assumption of Theorem 10 with k=m=1 and c=0 in (3.5), the following inequality holds:

    |f(a)+f(b)2Γ(μ+1)2(ba)μ[Iμ,ψψ1(a)+(fψ)(ψ1(b))+Iμ,ψψ1(b)(fψ)(ψ1(a))]|ba2[|f(a)|(2B(12;α+1,μ+1)+1(12)α+μα+μ+1B(α+1,μ+1))+|f(b)|×(2(1(12)μ)μ+1+(12)1+μ+αμ+1+α2B(12;α+1,μ+1)1(12)1+μ+αμ+1+α+B(α+1,μ+1))].

    Corollary 9. Under the assumption of Theorem 10 with ψ=I in (3.5), the following inequality holds:

    |f(a)+f(b)2Γk(μ+k)2(ba)μk[kIμa+f(b)+kIμbf(a)]|ba2[|f(a)|(2B(12;α+1,μk+1)+1(12)α+μkα+μk+1B(α+1,μk+1))+m|f(bm)|(2(1(12)μk)μk+1+(12)1+μk+αμk+1+α2B(12;α+1,μk+1)1(12)1+μk+αμk+1+α+B(α+1,μk+1))]c(ba)3(2B(12;α+1,μk+1)2α4α2˜F1(1+2α,μk,2(1+α);12)+1(12)μk+αμk+1+αB(α+1,μk+1)1(12)μk+2αμk+1+2α+B(2α+1,μk+1))].

    For next two results, we need the following lemma.

    Lemma 2. [26] Let f:[a,b]R be a differentiable mapping on (a,b) such that fL[a,b], ψ is positive increasing function having continuous derivative ψ on (a,b). If [a,b]Range(ψ), k>0 and m(0,1], then the following integral identity for fractional integral holds:

    2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]=mba4[10tμkf(at2+m(2t2)b)dt10tμkf(am(2t2)+bt2)dt]. (3.12)

    Theorem 11. Let f:[a,b]R be a differentiable mapping on (a,b) such that fŁ[a,b]. Also suppose that |f|q is strongly (α,m)-convex function on [a,b] for q1, ψ is an increasing and positive monotone function on (a,b], having a continuous derivative ψ on (a,b). If [a,b]Range(ψ), k>0 and (α,m)(0,1]2, then the following k-fractional integral inequality holds:

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba22+1q(μk+1)(μk+2)1q[(21αk|f(a)|q(μk+1)(μk+2)αk+μ+k+21αmk|f(b)|q(μk+1)(μk+2)(2α(αk+μ+k)(μ+k)(μ+k)(αk+μ+k))212αcm(ba)2(μk+1)(μk+2)×(2α(2αk+μ+k)(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q+(21αkm|f(am2)|q(μk+1)(μk+2)(2α(αk+μ+k)(μ+k)(μ+k)(αk+μ+k))+21αk(μk+1)(μk+2)|f(b)|qαk+μ+k212αcm(μk+1)(μk+2)(bam2)2(2α(2αk+μ+k)(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q], (3.13)

    with μ>0.

    Proof. Applying Lemma 2 and strongly (α,m)-convexity of |f|, (for q=1), we have

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba4[10|tμkf(at2+m(2t2)b)|dt+10|tμkf(am(2t2)+bt2)dt|]mba4[(|f(a)|+|f(b)|2α)10tμk+αdt+m(|f(b)|+|f(am2)|)2α10(2αtα)tμkdtcm((ba)2+(bam2)2)22α10tμk+α(2αtα)dt]mba4[k[|f(a)|+|f(b)|]2α(μ+αk+k)+mk[2α(αk+μ+k)(μ+k)](μ+k)(αk+μ+k)×(|f(b)|+|f(am2)|)cmk[2α(2αk+μ+k)(αk+μ+k)]22α(αk+μ+k)(2αk+μ+k)((ba)2+(bam2)2)].

    Now for q>1, we proceed as follows: From Lemma 2 and using power mean inequality, we get

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba4(10tμkdt)11q[(10tμk|f(at2+m(2t2)b)|qdt)1q+(10tμk|f(am(2t2)+bt2)|qdt)1q]mba4(μk+1)1p[(|f(a)|q2α10tα+μkdt+m|f(b)|q2α10(2αtα)tμkdtcm(ba)222α10(2αtα)tμk+αdt)1q+(m|f(am2)|2α10(2αtα)tμkdt+|f(b)|q2α10tα+μkdtcm(bam2)222α10(2αtα)tμk+αdt)1q]mba4(μk+1)1p[(k|f(a)|q2α(αk+μ+k)+mk|f(b)|q[2α(αk+μ+k)(μ+k)]2α(μ+k)(αk+μ+k)cmk(ba)2[2α(2αk+μ+k)(αk+μ+k)]22α(kα+μ+k)(2αk+μ+k))1q+(mk|f(am2)|q[2α(αk+μ+k)(μ+k)]2α(μ+k)(αk+μ+k)+k|f(b)|q2α(kα+μ+k)cmk(bam2)2[2α(2αk+μ+k)(αk+μ+k)]22α(kα+μ+k)(2αk+μ+k))1q]mba22+1q(μk+1)(μk+2)1q[(2k|f(a)|q(μk+1)(μk+2)2α(αk+μ+k)+21αmk|f(b)|q(μk+1)(μk+2)(2α(αk+μ+k)(μ+k)(μ+k)(αk+μ+k))212αcm(ba)2(μk+1)(μk+2)(2α(2αk+μ+k)(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q+(21αkm|f(am2)|q(μk+1)(μk+2)2α(αk+μ+k)(μ+k)(μ+k)(αk+μ+k)+2k(μk+1)(μk+2)|f(b)|q2α(αk+μ+k)2cm(μk+1)(μk+2)(bam2)222α2α(2αk+μ+k)(αk+μ+k)(kα+μ+k)(2αk+μ+k))1q].

    This completes the proof.

    Remark 5. Under the assumption of Theorem 11, one can achieve the following outcomes:

    (i) If α=m=1 in (3.13), then the inequality stated in [17,Theorem 12] can be obtained.

    (ii) If α=k=1 and ψ=I in (3.13), then the inequality stated in [21,Theorem 10] can be obtained.

    (iii) If α=k=1, ψ=I and c=0 in (3.13), then the inequality stated in [27,Theorem 2.4] can be obtained.

    (iv) If α=m=1, ψ=I and c=0 in (3.13), then the inequality stated in [13,Theorem 3.1] can be obtained.

    (v) If α=m=k=1, ψ=I and c=0 in (3.13), then the inequality stated in [9,Theorem 5] can be obtained.

    (vi) If α=μ=k=m=q=1 and ψ=I in (3.13), then the inequality stated in [26,Corollary 8] can be obtained.

    (vii) If α=μ=k=m=q=1, ψ=I and c=0 in (3.13), then the inequality stated in [28,Theorem 2.2] can be obtained.

    Corollary 10. Under the assumption of Theorem 11 with c=0 in (3.13), the following inequality holds:

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba22+1q(μk+1)(μk+2)1q[(21αk|f(a)|q(μk+1)(μk+2)αk+μ+k+21αmk|f(b)|q(μk+1)(μk+2)(2α(αk+μ+k)(μ+k)(μ+k)(αk+μ+k)))1q+(21αkm|f(am2)|q(μk+1)(μk+2)×(2α(αk+μ+k)(μ+k)(μ+k)(αk+μ+k))+21αk(μk+1)(μk+2)|f(b)|qαk+μ+k)1q].

    Corollary 11. Under the assumption of Theorem 11 with k=1 in (3.13), the following inequality holds:

    |2μ1Γ(μ+1)(mba)μ[Iμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμ+1Iμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba22+1q(μ+1)(μ+2)1q[(21α|f(a)|q(μ+1)(μ+2)α+μ+1+21αm|f(b)|q(μ+1)(μ+2)×(2α(α+μ+1)(μ+1)(μ+1)(α+μ+1))212αcm(ba)2(μ+1)(μ+2)(2α(2α+μ+1)(α+μ+1)(α+μ+1)(2α+μ+1)))1q+(21αm|f(am2)|q(μ+1)(μ+2)(2α(α+μ+1)(μ+1)(μ+1)(α+μ+1))+21α(μ+1)(μ+2)|f(b)|qα+μ+1212αcm(μ+1)(μ+2)(bam2)2(2α(2α+μ+1)(α+μ+1)(α+μ+1)(2α+μ+1)))1q].

    Corollary 12. Under the assumption of Theorem 11 with ψ=I in (3.13), the following inequality holds:

    |2μk1Γk(μ+k)(mba)μk[kIμ(a+mb2)+f(mb)+mμk+1kIμ(a+mb2m)f(am)]12[f(a+mb2)+mf(a+mb2m)]|mba22+1q(μk+1)(μk+2)1q[(21αk|f(a)|q(μk+1)(μk+2)αk+μ+k+21αmk|f(b)|q(μk+1)(μk+2)×(2α(αk+μ+k)(μ+k)(μ+k)(αk+μ+k))212αcm(ba)2(μk+1)(μk+2)(2α(2αk+μ+k)(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q+(21αkm|f(am2)|q(μk+1)(μk+2)(2α(αk+μ+k)(μ+k)(μ+k)(αk+μ+k))+21αk(μk+1)(μk+2)|f(b)|qαk+μ+k212αcm(μk+1)(μk+2)(bam2)2(2α(2αk+μ+k)(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q].

    Theorem 12. Let f:IR be a differentiable mapping on (a,b) with a<b. Also suppose that |f|q is strongly (α,m)-convex function for q>1, ψ is positive increasing function having continuous derivative ψ on (a,b). If [a,b]Range(ψ), k>0 and (α,m)(0,1]2, then the following fractional integral inequality holds:

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba421p(μpk+1)1p[((|f(a)|(22αα+1)1q+|f(b)|(2αm[2α(1+α)1]1+α)1q)q222αcm(ba)2(1α+2α(1+2α)(1+α)(1+2α)))1q+((|f(am2)|(22αm[2α(1+α)1]1+α)1q+(22αα+1)1q|f(b)|)q222αcm(bam2)2(1(1+α)+2α(1+2α)(1+α)(1+2α)))1q], (3.14)

    with μ>0 and 1p+1q=1.

    Proof. By applying Lemma 2 and using the property of modulus, we get

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba4[10|tμkf(at2+m(2t2)b)|dt+10|tμkf(am(2t2)+bt2)|dt].

    Now applying Hölder's inequality for integrals, we get

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba4(μpk+1)1p[(10|f(at2+m(2t2)b)|qdt)1q+(10|f(am(2t2)+bt2)|qdt)1q].

    Using strongly (α,m)-convexity of |f|q, we get

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba4(μpk+1)1p[(|f(a)|q2α10tαdt+m|f(b)|q2α10(2αtα)dtcm(ba)222α10tα(2αtα)dt)1q+(m|f(am2)|q2α10(2αtα)dt+|f(b)|q2α10tαdtcm(bam2)222α10tα(2αtα)dt)1q]=mba4(μpk+1)1p[(|f(a)|q2α(α+1)+m|f(b)|q[2α(1+α)1]2α(1+α)cm(ba)222α(1(1+α)+2α(1+2α)(1+α)(1+2α)))1q+(m|f(am2)|q[2α(1+α)1]2α(1+α)+|f(b)|q2α(α+1)cm(bam2)222α(1α+2α(1+2α)(1+α)(1+2α)))1q]mba421p(μpk+1)1p[(22α|f(a)|q(α+1)+22αm|f(b)|q[2α(1+α)1]1+α222αcm(ba)2(1α+2α(1+2α)(1+α)(1+2α)))1q+(22αm|f(am2)|q[2α(1+α)1](1+α)+22α|f(b)|qα+1222αcm(bam2)2(1α+2α(1+2α)(1+α)(1+2α)))1q]mba421p(μpk+1)1p[((|f(a)|(22αα+1)1q+|f(b)|(22αm[2α(1+α)1]1+α)1q)q222αcm(ba)2(1α+2α(1+2α)(1+α)(1+2α)))1q+((|f(am2)|×(22αm[2α(1+α)1]1+α)1q+(22αα+1)1q|f(b)|)q222αcm(bam2)2(1(1+α)+2α(1+2α)(1+α)(1+2α)))1q].

    Here, we have used the fact aq+bq(a+b)q, for q>1, a,b0. This completes the proof.

    Remark 6. Under the assumption of Theorem 12, one can achieve the following outcomes:

    (i) If α=m=1 in (3.14), then the inequality stated in [17,Theorem 13] can be obtained.

    (ii) If α=k=1 and ψ=I in (3.14), then the inequality stated in [21,Theorem 10] can be obtained.

    (iii) If α=k=1, ψ=I and c=0 in (3.14), then the inequality stated in [27,Theorem 2.7] can be obtained.

    (iv) If α=m=1, ψ=I and c=0 in (3.14), then the inequality stated in [13,Theorem 2.7] can be obtained.

    (v) If α=μ=k=m=1, ψ=I and c=0 in (3.14), then the inequality stated in [29,Theorem 2.4] can be obtained.

    Corollary 13. Under the assumption of Theorem 12 with c=0 in 3.14, the following inequality holds:

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba421p(μpk+1)1p[|f(a)|(22αα+1)1q+|f(b)|(22αm[2α(1+α)1]1+α)1q+(|f(am2)|(22αm[2α(1+α)1]1+α)1q+(22αα+1)1q|f(b)|)].

    Corollary 14. Under the assumption of Theorem 12 with k=1 in (3.14), the following inequality holds:

    |2μ1Γ(μ+1)(mba)μ[Iμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμ+1Iμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba421p(μp+1)1p[((|f(a)|(22αα+1)1q+|f(b)|(2αm[2α(1+α)1]1+α)1q)q222αcm(ba)2(1α+2α(1+2α)(1+α)(1+2α)))1q+((|f(am2)|(22αm[2α(1+α)1]1+α)1q+(22αα+1)1q|f(b)|)q222αcm(bam2)2(1(1+α)+2α(1+2α)(1+α)(1+2α)))1q].

    Corollary 15. Under the assumption of Theorem 12 with ψ=I in (3.14), the following inequality holds:

    |2μk1Γk(μ+k)(mba)μk[kIμ(a+mb2)+f(mb)+mμk+1kIμ(a+mb2m)f(am)]12[f(a+mb2)+mf(a+mb2m)]|mba421p(μpk+1)1p[((|f(a)|(22αα+1)1q+|f(b)|(22αm[2α(1+α)1]1+α)1q)q222αcm(ba)2×(1α+2α(1+2α)(1+α)(1+2α)))1q+((|f(am2)|(22αm[2α(1+α)1]1+α)1q+(22αα+1)1q|f(b)|)q222αcm(bam2)2(1(1+α)+2α(1+2α)(1+α)(1+2α)))1q].

    Some new versions of the Hadamard type inequalities are established for strongly (α,m)-convex functions via the generalized Riemann-Liouville fractional integrals. We have obtained new generalizations as well as proved estimations of such inequalities for strongly (α,m)-convex functions. We conclude that findings of this study give the refinements as well as generalization of several fractional inequalities for convex, strongly convex and strongly m-convex functions. The reader can further deduce inequalities for Riemann-Liouville fractional integrals.

    Authors do not have conflict of interest.



    [1] X. J. Chen, S. H. Xiang, Perturbation bounds of P-matrix linear complementarity problems, SIAM J. Optim., 18 (2007), 1250–1265. https://doi.org/10.1137/060653019 doi: 10.1137/060653019
    [2] R. W. Cottle, J. S. Pang, R. E. Stone, The linear complementarity problem, Academic Press, San Diego, 1992.
    [3] K. G. Murty, Linear complementarity, linear and nonlinear programming, Heldermann Verlag, Berlin, 1998.
    [4] J. M. Peña, A class of P-matrices with applications to the localization of the eigenvalues of a real matrix, SIAM J. Matrix Anal. Appl., 22 (2001), 1027–1037. https://doi.org/10.1137/S0895479800370342 doi: 10.1137/S0895479800370342
    [5] X. Y. Chen, S. H. Xiang, Computation of error bounds for P-matrix linear complementarity problem, Math. Program., 106 (2006), 513–525. https://doi.org/10.1007/s10107-005-0645-9 doi: 10.1007/s10107-005-0645-9
    [6] P. N. Shivakumar, K. H. Chew, A sufficient condition for nonvanishing of determinants, Proc. Am. Math. Soc., 43 (1974), 63–66. https://doi.org/10.1002/pauz.19740030203 doi: 10.1002/pauz.19740030203
    [7] M. García-Esnaola, J. M. Peňa, Error bounds for linear complementarity problems for $B-$matrices, Appl. Math. Lett., 22 (2009), 1071–1075. https://doi.org/10.1016/j.aml.2008.09.001 doi: 10.1016/j.aml.2008.09.001
    [8] C. Q. Li, Y. T. Li, Note on error bounds for linear complementarity problems for $B-$matrices, Appl. Math. Lett., 57 (2016), 108–113. https://doi.org/10.1016/j.aml.2016.01.013 doi: 10.1016/j.aml.2016.01.013
    [9] C. Q. Li, Y. T. Li, Weakly chained diagonally dominant B-matrices and error bounds for linear complementarity problems, Numer. Algor., 73 (2016), 985–998. https://doi.org/10.1007/s11075-016-0125-8 doi: 10.1007/s11075-016-0125-8
    [10] R. Q. Zhao, A new upper bound of infinity norms of inverses for strictly diagonally dominant B-matrices, J. Sw. China. Normal. U., 45 (2020), 6–11.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1142) PDF downloads(54) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog