In this paper, a new error bound for the linear complementarity problems of $ B- $matrices which is a subclass of the $ P- $matrices is presented. Theoretical analysis and numerical example illustrate that the new error bound improves some existing results.
Citation: Hongmin Mo, Yingxue Dong. A new error bound for linear complementarity problems involving $ B- $matrices[J]. AIMS Mathematics, 2023, 8(10): 23889-23899. doi: 10.3934/math.20231218
In this paper, a new error bound for the linear complementarity problems of $ B- $matrices which is a subclass of the $ P- $matrices is presented. Theoretical analysis and numerical example illustrate that the new error bound improves some existing results.
[1] | X. J. Chen, S. H. Xiang, Perturbation bounds of P-matrix linear complementarity problems, SIAM J. Optim., 18 (2007), 1250–1265. https://doi.org/10.1137/060653019 doi: 10.1137/060653019 |
[2] | R. W. Cottle, J. S. Pang, R. E. Stone, The linear complementarity problem, Academic Press, San Diego, 1992. |
[3] | K. G. Murty, Linear complementarity, linear and nonlinear programming, Heldermann Verlag, Berlin, 1998. |
[4] | J. M. Peña, A class of P-matrices with applications to the localization of the eigenvalues of a real matrix, SIAM J. Matrix Anal. Appl., 22 (2001), 1027–1037. https://doi.org/10.1137/S0895479800370342 doi: 10.1137/S0895479800370342 |
[5] | X. Y. Chen, S. H. Xiang, Computation of error bounds for P-matrix linear complementarity problem, Math. Program., 106 (2006), 513–525. https://doi.org/10.1007/s10107-005-0645-9 doi: 10.1007/s10107-005-0645-9 |
[6] | P. N. Shivakumar, K. H. Chew, A sufficient condition for nonvanishing of determinants, Proc. Am. Math. Soc., 43 (1974), 63–66. https://doi.org/10.1002/pauz.19740030203 doi: 10.1002/pauz.19740030203 |
[7] | M. García-Esnaola, J. M. Peňa, Error bounds for linear complementarity problems for $B-$matrices, Appl. Math. Lett., 22 (2009), 1071–1075. https://doi.org/10.1016/j.aml.2008.09.001 doi: 10.1016/j.aml.2008.09.001 |
[8] | C. Q. Li, Y. T. Li, Note on error bounds for linear complementarity problems for $B-$matrices, Appl. Math. Lett., 57 (2016), 108–113. https://doi.org/10.1016/j.aml.2016.01.013 doi: 10.1016/j.aml.2016.01.013 |
[9] | C. Q. Li, Y. T. Li, Weakly chained diagonally dominant B-matrices and error bounds for linear complementarity problems, Numer. Algor., 73 (2016), 985–998. https://doi.org/10.1007/s11075-016-0125-8 doi: 10.1007/s11075-016-0125-8 |
[10] | R. Q. Zhao, A new upper bound of infinity norms of inverses for strictly diagonally dominant B-matrices, J. Sw. China. Normal. U., 45 (2020), 6–11. |