We present Perov's type $ (\beta, F) $-contraction principle and examine the fixed points of the self-operators satisfying Perov's type $ (\beta, F) $-contraction principle in the context of vector-valued $ b $-metrics. A specific instance of the $ (\beta, F) $-contraction principle is the $ F $-contraction principle. We generalize a number of recent findings that are already in the literature and provide an example to illustrate the hypothesis of the main theorem. We apply the obtained fixed point theorem to show the existence of the solution to the delay integro-differential problem.
Citation: Muhammad Nazam, Hijaz Ahmad, Muhammad Waheed, Sameh Askar. On the Perov's type $ (\beta, F) $-contraction principle and an application to delay integro-differential problem[J]. AIMS Mathematics, 2023, 8(10): 23871-23888. doi: 10.3934/math.20231217
We present Perov's type $ (\beta, F) $-contraction principle and examine the fixed points of the self-operators satisfying Perov's type $ (\beta, F) $-contraction principle in the context of vector-valued $ b $-metrics. A specific instance of the $ (\beta, F) $-contraction principle is the $ F $-contraction principle. We generalize a number of recent findings that are already in the literature and provide an example to illustrate the hypothesis of the main theorem. We apply the obtained fixed point theorem to show the existence of the solution to the delay integro-differential problem.
[1] | S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fund. Math., 3 (1922), 133–181. |
[2] | E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc., 13 (1962), 459–465. |
[3] | D. W. Boyd, J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20 (1969), 458–464. https://doi.org/10.1090/S0002-9939-1969-0239559-9 doi: 10.1090/S0002-9939-1969-0239559-9 |
[4] | E. Karapinar, Revisiting the Kannan type contractions via interpolation, Adv. Theory Nonlinear Anal. Appl., 2 (2018), 85–87. https://doi.org/10.31197/atnaa.431135 doi: 10.31197/atnaa.431135 |
[5] | A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326–329. |
[6] | S. K. Chatterjea, Fixed point theorems, C.R. Acad. Bulgare Sci., 25 (1972), 727–730. |
[7] | S. Reich, Some remarks concerning contraction mappings, Can. Math. Bull., 14 (1971), 121–124. https://doi.org/10.4153/CMB-1971-024-9 doi: 10.4153/CMB-1971-024-9 |
[8] | G. E. Hary, T. D. Rogers, A generalization of a fixed point theorem of Reich, Can. Math. Bull., 16 (1973), 201–206. https://doi.org/10.4153/CMB-1973-036-0 doi: 10.4153/CMB-1973-036-0 |
[9] | Lj. B. Ćiríc, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267–273. |
[10] | J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215 (1976), 241–251. |
[11] | D. Wardowski, Fixed point theory of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl., 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94 |
[12] | R. P. Agarwal, U. Aksoy, E. Karapinar, İ. M. Erhan, F-contraction mappings on metric-like spaces in connection with integral equations on time scales, RACSAM, 114 (2020), 147. https://doi.org/10.1007/s13398-020-00877-5 doi: 10.1007/s13398-020-00877-5 |
[13] | H. Aydi, E. Karapinar, H. Yazidi, Modified F-contractions via alpha-admissible mappings and application to integral equations, Filomat, 31 (2017), 1141–1148. |
[14] | O. Acar, I. Altun, Multivalued $F$-contractive mappings with a graph and some fixed point results, Publ. Math. Debrecen, 88 (2016), 305–317. https://doi.org/10.5486/PMD.2016.7308 doi: 10.5486/PMD.2016.7308 |
[15] | M. U. Ali, T. Kamran, Multivalued $F$-contractions and related fixed point theorems with an application, Filomat, 30 (2016), 3779–3793. http://doi.org/10.2298/FIL1614779A doi: 10.2298/FIL1614779A |
[16] | S. V. Bedre, Remarks on $F$-weak contractions and discontinuity at the fixed point, Adv. Theory Nonlinear Anal. Appl., 4 (2020), 260–265. https://doi.org/10.31197/atnaa.780721 doi: 10.31197/atnaa.780721 |
[17] | G. Durmaz, G. Minak, I. Altun, Fixed points of ordered F-contractions, Hacet. J. Math. Stat., 45 (2016), 15–21. |
[18] | S. Gulyaz-Ozyurt, A note on Kannan type mappings with a $F$-contractive iterate, Res. Nonlinear Anal., 2 (2019), 143–146. |
[19] | M. Sarwar, Z. Islam, H. Ahmad, H. Işık, S. Noeiaghdam, Near-Common Fixed Point Result in Cone Interval b-Metric Spaces over Banach Algebras, Axioms, 10 (2021), 251. https://doi.org/10.3390/axioms10040251 doi: 10.3390/axioms10040251 |
[20] | H. Ahmad, M. Tariq, S. K. Sahoo, S. Askar, A. E. Abouelregal, K. M. Khedher, Refinements of Ostrowski type integral inequalities involving Atangana-Baleanu fractional integral operator, Symmetry, 13 (2021), 2059. https://doi.org/10.3390/sym13112059 doi: 10.3390/sym13112059 |
[21] | E. Karapinar, A. Fulga, R. P. Agarwal, A survey: F-contractions with related fixed point results, J. Fixed Point Theory Appl., 22 (2020), 69. https://doi.org/10.1007/s11784-020-00803-7 doi: 10.1007/s11784-020-00803-7 |
[22] | N. Mlaiki, N. Souayah, T. Abdeljawad, H. Aydi, A new extension to the controlled metric type spaces endowed with a graph, Adv. Differ. Equ., 2021 (2021), 94. https://doi.org/10.1186/s13662-021-03252-9 doi: 10.1186/s13662-021-03252-9 |
[23] | M. Nazam, N. Hussain, A. Hussain, M. Arshad, Fixed point theorems for weakly admissible pair of $F$-contractions with application, Nonlinear Anal.-Model., 24 (2019), 898–918. https://doi.org/10.15388/NA.2019.6.4 doi: 10.15388/NA.2019.6.4 |
[24] | M. Nazam, H. Aydi, M. S. Noorani, H. Qawaqneh, Existence of fixed points of four maps for a new generalized $F$-contraction and an application, J. Funct. Spaces, 2019 (2019), 5980312. https://doi.org/10.1155/2019/5980312 doi: 10.1155/2019/5980312 |
[25] | M. Nazam, H. Aydi, C. Park, M. Arshad, E. Savas, D. Y. Shin, Some variants of Wardowski fixed point theorem, Adv. Differ. Equ., 2021 (2021), 485. https://doi.org/10.1186/s13662-021-03640-1 doi: 10.1186/s13662-021-03640-1 |
[26] | M. Nazam, M. Arshad, M. Postolache, Coincidence and common fixed point theorems for four mappings satisfying $(\alpha_s, F)$-contraction, Nonlinear Anal.-Model., 23 (2018), 664–690. https://doi.org/10.15388/NA.2018.5.3 doi: 10.15388/NA.2018.5.3 |
[27] | A. Öztürk, A fixed point theorem for mappings with an $F$-contractive iterate, Adv. Theory Nonlinear Anal. Appl., 3 (2019), 231–236. https://doi.org/10.31197/atnaa.644325 doi: 10.31197/atnaa.644325 |
[28] | M. A. Khamsi, Generalized metric spaces: A survey, J. Fixed Point Theory Appl., 17 (2015), 455–475. https://doi.org/10.1007/s11784-015-0232-5 doi: 10.1007/s11784-015-0232-5 |
[29] | A. I. Perov, A. V. Kibenko, On a certain general method for investigation of boundary value problems, Izv. Akad. Nauk SSSR Ser. Mat., 30 (1966), 249–264. |
[30] | M. Boriceanu, Fixed point theory on spaces with vector valued $b$-metrics, Demonst. Math., 42 (2009), 825–836. https://doi.org/10.1515/dema-2009-0415 doi: 10.1515/dema-2009-0415 |
[31] | I. Altun, M. Olgun, Fixed point results for Perov type $F$-contractions and an application, J. Fixed Point Theory Appl., 22 (2020), 46. https://doi.org/10.1007/s11784-020-00779-4 doi: 10.1007/s11784-020-00779-4 |
[32] | R. S. Varga, Matrix iterative analysis, 2000, Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-05156-2 |
[33] | S. Czerwik, Nonlinear set-valued contraction mappings in $b$-metric spaces, Atti Sem. Math. Fis. Univ. Modena, 46 (1998), 263–276. |
[34] | M. U. Ali, T. Kamran, M. Postolache, Solution of Volterra integral inclusion in b-metric spaces via new fixed point theorem, Nonlinear Anal.-Model., 22 (2017), 17–30. http://doi.org/10.15388/NA.2017.1.2 doi: 10.15388/NA.2017.1.2 |
[35] | T. Suzuki, Fixed point theorems for single- and set-valued $F$-contractions in $b$-metric spaces, J. Fixed Point Theory Appl., 20 (2018), 35. https://doi.org/10.1007/s11784-018-0519-4 doi: 10.1007/s11784-018-0519-4 |