In this study, we seek to establish new upper bounds for the mean curvature and constant sectional curvature of the first positive eigenvalue of the $ \alpha $-Laplacian operator on Riemannian manifolds. More precisely, various methods are used to determine the first eigenvalue for the $ \alpha $-Laplacian operator on the closed oriented pseudo-slant submanifolds in a generalized Sasakian space form. From our findings for the Laplacian, we extend many Reilly-like inequalities to the $ \alpha $-Laplacian on pseudo slant submanifold in a unit sphere.
Citation: Meraj Ali Khan, Ali H. Alkhaldi, Mohd. Aquib. Estimation of eigenvalues for the $ \alpha $-Laplace operator on pseudo-slant submanifolds of generalized Sasakian space forms[J]. AIMS Mathematics, 2022, 7(9): 16054-16066. doi: 10.3934/math.2022879
In this study, we seek to establish new upper bounds for the mean curvature and constant sectional curvature of the first positive eigenvalue of the $ \alpha $-Laplacian operator on Riemannian manifolds. More precisely, various methods are used to determine the first eigenvalue for the $ \alpha $-Laplacian operator on the closed oriented pseudo-slant submanifolds in a generalized Sasakian space form. From our findings for the Laplacian, we extend many Reilly-like inequalities to the $ \alpha $-Laplacian on pseudo slant submanifold in a unit sphere.
[1] | P. Alegre, D. E. Blair, A. Carriazo, Generalized Sasakian-space-forms, Israel J. Math., 141 (2004), 157–183. https://doi.org/10.1007/BF02772217 doi: 10.1007/BF02772217 |
[2] | A. Ali, A. H. Alkhaldi, P. Laurian-Ioan, R. Ali, Eigenvalue inequalities for the $p$-Laplacian operator on $C$-totally real submanifolds in Sasakian space forms, Appl. Anal., 101 (2020), 702–713. https://doi.org/10.1080/00036811.2020.1758307 doi: 10.1080/00036811.2020.1758307 |
[3] | B. Andrews, Moduli of continuity, isoperimetric profiles, and multi-point estimates in geometric heat equations, Surv. Differ. Geom., 19 (2014), 1–47. https://doi.org/10.4310/SDG.2014.v19.n1.a1 doi: 10.4310/SDG.2014.v19.n1.a1 |
[4] | C. Blacker, S. Seto, First eigenvalue of the $p$-Laplacian on Kähler manifolds, Proc. Amer. Math. Soc., 147 (2019), 2197–2206. https://doi.org/10.1090/proc/14395 doi: 10.1090/proc/14395 |
[5] | J. L. Cabrerizo, A. Carriazo, L. M. Fernández, M. Fernández, Slant submanifolds in Sasakian manifolds, Glasgow Math. J., 42 (2000), 125–138. https://doi.org/10.1017/S0017089500010156 doi: 10.1017/S0017089500010156 |
[6] | F. Cavalletti, A. Mondino, Sharp geometric and functional inequalities in metric measure spaces with lower Ricci curvature bounds, Geom. Topol., 21 (2017), 603–645. |
[7] | B. Y. Chen, Geometry of Slant submanifolds, Katholieke Universiteit Leuven, 1990. |
[8] | D. G. Chen, H. Z. Li, Second eigenvalue of Paneitz operators and mean curvature, Commun. Math. Phys., 305 (2011), 555–562. https://doi.org/10.1007/s00220-011-1281-2 doi: 10.1007/s00220-011-1281-2 |
[9] | H. Chen, X. F. Wang, Sharp Reilly-type inequalities for a class of elliptic operators on submanifolds, Differ. Geom. Appl., 63 (2019), 1–29. https://doi.org/10.1016/j.difgeo.2018.12.008 doi: 10.1016/j.difgeo.2018.12.008 |
[10] | H. Chen, G. F. Wei, Reilly-type inequalities for $p$-Laplacian on submanifolds in space forms, Nonlinear Anal., 184 (2019), 210–217. https://doi.org/10.1016/j.na.2019.02.009 doi: 10.1016/j.na.2019.02.009 |
[11] | S. Y. Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z., 143 (1975), 289–297. https://doi.org/10.1007/BF01214381 doi: 10.1007/BF01214381 |
[12] | F. Du, J. Mao, Reilly-type inequalities for $p$-Laplacian on compact Riemannian manifolds, Front. Math. China, 10 (2015), 583–594. https://doi.org/10.1007/s11464-015-0422-x doi: 10.1007/s11464-015-0422-x |
[13] | F. Du, Q. L. Wang, C. Y. Xia, Estimates for eigenvalue of the Wentzel-Laplacian operator, J. Geom. Phys., 129 (2018), 25–33. https://doi.org/10.1016/j.geomphys.2018.02.020 doi: 10.1016/j.geomphys.2018.02.020 |
[14] | C. S. Goodrich, M. A. Ragusa, A. Scapellato, Partial regularity of solutions to $p(x)$-Laplacian PDEs with discontinuous coefficients, J. Differ. Equ., 268 (2020), 5440–5468. https://doi.org/10.1016/j.jde.2019.11.026 doi: 10.1016/j.jde.2019.11.026 |
[15] | Y. J. He, Reilly type inequality for the first eigenvalue of the $L_{r; F}$ operator, Differ. Geom. Appl., 31 (2013), 321–330. https://doi.org/10.1016/j.difgeo.2013.03.003 doi: 10.1016/j.difgeo.2013.03.003 |
[16] | V. A. Khan, M. A. Khan, Pseudo-slant submanifolds of a Sasakian manifold, Indian J. Pure Appl. Math., 38 (2007), 31–42. |
[17] | J. Lee, J. M. Kim, Y. H. Kim, A. Scapellato, On multiple solutions to a nonlocal fractional $p$(·)-Laplacian problem with concave-convex nonlinearities, Adv. Cont. Discr. Mod., 2022 (2022), 1–25. https://doi.org/10.1186/s13662-022-03689-6 doi: 10.1186/s13662-022-03689-6 |
[18] | P. Li, S. T. Yau, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math., 69 (1982), 269–291. https://doi.org/10.1007/BF01399507 doi: 10.1007/BF01399507 |
[19] | H. Z. Lin, Eigenvalue estimate and gap theorems for submanifolds in the hyperbolic space, Nonlinear Anal., 148 (2017), 126–137. https://doi.org/10.1016/j.na.2016.09.015 doi: 10.1016/j.na.2016.09.015 |
[20] | A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Sc. Math. Roumanie, 39 (1996), 183–198. |
[21] | A. M. Matei, First eigenvalue for the $p$-Laplace operator, Nonlinear Anal., 39 (2000), 1051–1068. https://doi.org/10.1016/S0362-546X(98)00266-1 doi: 10.1016/S0362-546X(98)00266-1 |
[22] | A. M. Matei, Conformal bounds for the first eigenvalue of the $p$-Laplacian, Nonlinear Anal., 80 (2013), 88–95. https://doi.org/10.1016/j.na.2012.11.026 doi: 10.1016/j.na.2012.11.026 |
[23] | A. Naber, D. Valtorta, Sharp estimates on the first eigenvalue of the $p$-Laplacian with negative Ricci lower bound, Math. Z., 277 (2014), 867–891. https://doi.org/10.1007/s00209-014-1282-x doi: 10.1007/s00209-014-1282-x |
[24] | N. S. Papageorgiou, A. Scapellato, Concave-convex problems for the Robin $p$-Laplacian plus an indefinite potential, Mathematics, 8 (2020), 1–27. https://doi.org/10.3390/math8030421 doi: 10.3390/math8030421 |
[25] | R. C. Reilly, On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space, Comment. Math. Helv., 52 (1977), 525–533. https://doi.org/10.1007/BF02567385 doi: 10.1007/BF02567385 |
[26] | A. E. Soufi, S. Ilias, Une inégalité du type "Reilly" pour les sous-variétés de l'espace hyperbolique, Comment. Math. Helv., 67 (1992), 167–181. https://doi.org/10.1007/BF02566494 doi: 10.1007/BF02566494 |
[27] | A. E. Soufi, S. Ilias, Second eigenvalue of Schrödinger operators and mean curvature, Commun. Math. Phys., 208 (2000), 761–770. https://doi.org/10.1007/s002200050009 doi: 10.1007/s002200050009 |
[28] | S. Seto, G. F. Wei, First eigenvalue of the $p$-Laplacian under integral curvature condition, Nonlinear Anal., 163 (2017), 60–70. https://doi.org/10.1016/j.na.2017.07.007 doi: 10.1016/j.na.2017.07.007 |
[29] | D. Valtorta, Sharp estimates on the first eigenvalue of the $p$-Laplacian, Nonlinear Anal., 75 (2012), 4974–4994. https://doi.org/10.1016/j.na.2012.04.012 doi: 10.1016/j.na.2012.04.012 |
[30] | L. Véron, Some existence and uniqueness results for solution of some quasilinear elliptic equations on compact Riemannian manifolds, Colloquia Math. Soc. János Bolyai, 62 (1991), 317–352. |
[31] | C. W. Xiong, Eigenvalue estimates of Reilly type in product manifolds and eigenvalue comparison of strip domains, Differ. Geom. Appl., 60 (2018), 104–115. https://doi.org/10.1016/j.difgeo.2018.06.003 doi: 10.1016/j.difgeo.2018.06.003 |
[32] | F. Q. Zeng, Q. He, Reilly-type inequalities for the first eigenvalue of $p$-Laplcian of submanifolds in Minkowski spaces, Mediterr. J. Math., 14 (2017), 1–9. https://doi.org/10.1007/s00009-017-1005-8 doi: 10.1007/s00009-017-1005-8 |