In this paper, we will use the Banach fixed point theorem to prove the uniform-in-$ \epsilon $ existence of the compressible full magneto-micropolar system in a bounded smooth domain, where $ \epsilon $ is the dielectric constant. Consequently, the limit as $ \epsilon\rightarrow0 $ can be established. This approximation is usually referred to as the magnetohydrodynamics approximation and is equivalent to the neglect of the displacement current.
Citation: Jishan Fan, Tohru Ozawa. Magnetohydrodynamics approximation of the compressible full magneto- micropolar system[J]. AIMS Mathematics, 2022, 7(9): 16037-16053. doi: 10.3934/math.2022878
In this paper, we will use the Banach fixed point theorem to prove the uniform-in-$ \epsilon $ existence of the compressible full magneto-micropolar system in a bounded smooth domain, where $ \epsilon $ is the dielectric constant. Consequently, the limit as $ \epsilon\rightarrow0 $ can be established. This approximation is usually referred to as the magnetohydrodynamics approximation and is equivalent to the neglect of the displacement current.
[1] | G. Łukaszewicz, Micropolar fluids: theory and applications, Boston: Birkhäuser, 1999. |
[2] | S. Kawashima, Smooth global solutions for two-dimensional equations of electro-magneto-fluid dynamics, Japan J. Appl. Math., 1 (1984), 207. https://doi.org/10.1007/BF03167869 doi: 10.1007/BF03167869 |
[3] | S. Kawashima, Y. Shizuta, Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid, Tsukuba J. Math., 10 (1986), 131–149. https://doi.org/10.21099/tkbjm/1496160397 doi: 10.21099/tkbjm/1496160397 |
[4] | S. Kawashima, Y. Shizuta, Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid II, Proc. Japan Acad. Ser. A Math. Sci., 62 (1986), 181–184. https://doi.org/10.3792/pjaa.62.181 doi: 10.3792/pjaa.62.181 |
[5] | S. Jiang, F. C. Li, Rigorous derivation of the compressible magnetohydrodynamic equations from the electromagnetic fluid system, Nonlinearity, 25 (2012), 1735–1752. https://doi.org/10.1088/0951-7715/25/6/1735 doi: 10.1088/0951-7715/25/6/1735 |
[6] | S. Jiang, F. C. Li, Convergence of the complete electromagnetic fluid system to the full compressible magnetohydrodynamic equations, 2013, arXiv: 1309.3668. |
[7] | A. Milani, On a singular perturbation problem for the linear Maxwell equations, Rend. Sem. Mat. Univ. Politec. Torino, 38 (1980), 99–110. |
[8] | A. Milani, Local in time existence for the complete Maxwell equations with monotone characteristic in a bounded domain, Annali di Matematica pura ed applicata, 131 (1982), 233–254. https://doi.org/10.1007/BF01765154 doi: 10.1007/BF01765154 |
[9] | A. Milani, The quasi-stationary Maxwell equations as singular limit of the complete equations: the quasi-linear case, J. Math. Anal. Appl., 102 (1984), 251–274. https://doi.org/10.1016/0022-247X(84)90218-X doi: 10.1016/0022-247X(84)90218-X |
[10] | M. Stedry, O. Vejvoda, Small time-periodic solutions of equations of magnetohydrodynamics as a singularity perturbed problem, Aplikace matematiky, 28 (1983), 344–356. https://doi.org/10.21136/am.1983.104046 doi: 10.21136/am.1983.104046 |
[11] | M. Stedry, O. Vejvoda, Equations of magnetohydrodynamics of compressible fluid: periodic solutions, Aplikace matematiky, 30 (1985), 77–91. https://doi.org/10.21136/am.1985.104130 doi: 10.21136/am.1985.104130 |
[12] | M. Stedry, O. Vejvoda, Equations of magnetohydrodynamics: periodic solutions, Časopis pro pěstováni matematiky, 111 (1986), 177–184. https://doi.org/10.21136/cpm.1986.118275 |
[13] | D. Lauerová, The Rothe method and time periodic solutions to the Navier-Stokes equations and equations of magnetohydrodynamics, Aplikace matematiky, 35 (1990), 89–98. https://doi.org/10.21136/am.1990.104392 doi: 10.21136/am.1990.104392 |
[14] | F. Li, Y. Mu, Low Mach number limit of the full compressible Navier-Stokes-Maxwell system, J. Math. Anal. Appl., 412 (2014), 334–344. https://doi.org/10.1016/j.jmaa.2013.10.064 doi: 10.1016/j.jmaa.2013.10.064 |
[15] | R. Wei, B. Guo, Y. Li, Global existence and optimal convergence rates of solutions for 3D compressible magneto-micropolar fluid equations, J. Differ. Equations, 263 (2017), 2457–2480. https://doi.org/10.1016/j.jde.2017.04.002 doi: 10.1016/j.jde.2017.04.002 |
[16] | Z. Wu, W. Wang, The pointwise estimates of diffusion wave of the compressible micropolar fluids, J. Differ. Equations, 265 (2018), 2544–2576. https://doi.org/10.1016/j.jde.2018.04.039 doi: 10.1016/j.jde.2018.04.039 |
[17] | P. Zhang, Blow-up criterion for 3D compressible viscous magneto-micropolar fluids with initial vacuum, Bound. Value Probl., 2013 (2013), 160. https://doi.org/10.1186/1687-2770-2013-160 doi: 10.1186/1687-2770-2013-160 |
[18] | C. Jia, Z. Tan, J. Zhou, Well-posedness of compressible magneto-micropolar fluid equations, 2019, arXiv: 1906.06848v2. |
[19] | Z. Song, The global well-posedness for the 3-D compressible micropolar system in the critical Besov space, Z. Angew. Math. Phys., 72 (2021), 160. https://doi.org/10.1007/s00033-021-01591-x doi: 10.1007/s00033-021-01591-x |
[20] | T. Tang, J. Sun, Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum, Discrete Contin. Dyn. Syst. B, 26 (2021), 6017–6026. https://doi.org/10.3934/dcdsb.2020377 doi: 10.3934/dcdsb.2020377 |
[21] | J. Fan, Z. Zhang, Y. Zhou, Local well-posedness for the incompressible full magneto-micropolar system with vacuum, Z. Angew. Math. Phys., 71 (2020), 42. https://doi.org/10.1007/s00033-020-1267-z doi: 10.1007/s00033-020-1267-z |
[22] | M. A. Fahmy, A new boundary element algorithm for a general solution of nonlinear space-time fractional dual phase-lag bio-heat transfer problems during electromagnetic radiation, Case Stud. Therm. Eng., 25 (2021), 100918. https://doi.org/10.1016/j.csite.2021.100918 doi: 10.1016/j.csite.2021.100918 |
[23] | M. A. Fahmy, A new boundary element formulation for modeling and simulation of three-temperature distributions in carbon nanotube fiber reinforced composites with inclusions, Math. Method. Appl. Sci., in press. https://doi.org/10.1002/mma.7312 |
[24] | M. A. Fahmy, A new BEM modeling algorithm for size-dependent thermopiezoelectric problems in smart nanostructures, Comput. Mater. Con., 69 (2021), 931–944. https://doi.org/10.32604/cmc.2021.018191 doi: 10.32604/cmc.2021.018191 |
[25] | M. A. Fahmy, Boundary element modeling of 3T nonlinear transient magneto-thermoviscoelastic wave propagation problems in anisotropic circular cylindrical shells, Compos. Struct., 277 (2021), 114655. https://doi.org/10.1016/j.compstruct.2021.114655 doi: 10.1016/j.compstruct.2021.114655 |
[26] | M. A. Fahmy, M. M. Almehmadi, F. M. Al Subhi, A. Sohail, Fractional boundary element solution of three-temperature thermoelectric problems, Sci. Rep., 12 (2022), 6760. https://doi.org/10.1038/s41598-022-10639-5 doi: 10.1038/s41598-022-10639-5 |
[27] | M. A. Fahmy, 3D Boundary element model for ultrasonic wave propagation fractional order boundary value problems of functionally graded anisotropic fiber-reinforced plates, Fractal Fract., 6 (2022), 247. https://doi.org/10.3390/fractalfract6050247 doi: 10.3390/fractalfract6050247 |
[28] | M. A. Fahmy, Boundary element and sensitivity analysis of anisotropic thermoelastic metal and alloy discs with holes, Materials, 15 (2022), 1828. https://doi.org/10.3390/ma15051828 doi: 10.3390/ma15051828 |
[29] | M. A. Fahmy, M. M. Almehmadi, Boundary element analysis of rotating functionally graded anisotropic fiber-reinforced magneto-thermoelastic composites, Open Eng., 12 (2022), 313–322. https://doi.org/10.1515/eng-2022-0036 doi: 10.1515/eng-2022-0036 |