In the present paper, we investigate perfect fluid spacetimes and perfect fluid generalized Roberston-Walker spacetimes that contain a torse-forming vector field satisfying almost hyperbolic Ricci solitons. We show that the perfect fluid spacetimes that contain a torse-forming vector field satisfy an almost hyperbolic Ricci soliton, and we prove that a perfect fluid generalized Roberston-Walker spacetime satisfying an almost hyperbolic Ricci soliton $ (g, \zeta, \varrho, \mu) $ is an Einstein manifold. Also, we study an almost hyperbolic Ricci soliton $ (g, V, \varrho, \mu) $ on these spacetimes when $ V $ is a conformal vector field, a torse-forming vector field, or a Ricci bi-conformal vector field.
Citation: Shahroud Azami, Mehdi Jafari, Nargis Jamal, Abdul Haseeb. Hyperbolic Ricci solitons on perfect fluid spacetimes[J]. AIMS Mathematics, 2024, 9(7): 18929-18943. doi: 10.3934/math.2024921
In the present paper, we investigate perfect fluid spacetimes and perfect fluid generalized Roberston-Walker spacetimes that contain a torse-forming vector field satisfying almost hyperbolic Ricci solitons. We show that the perfect fluid spacetimes that contain a torse-forming vector field satisfy an almost hyperbolic Ricci soliton, and we prove that a perfect fluid generalized Roberston-Walker spacetime satisfying an almost hyperbolic Ricci soliton $ (g, \zeta, \varrho, \mu) $ is an Einstein manifold. Also, we study an almost hyperbolic Ricci soliton $ (g, V, \varrho, \mu) $ on these spacetimes when $ V $ is a conformal vector field, a torse-forming vector field, or a Ricci bi-conformal vector field.
[1] | Z. Ahsan, Tensors: Mathematics of differential geometry and relativity, PHI Learning Pvt. Ltd., 2015. |
[2] | R. S. Hamilton, The Ricci flow on surfaces, Contemp. Math., 71 (1988), 237–262. https://doi.org/10.1090/conm/071 |
[3] | C. Calin, M. Crasmareanu, From the Eisenhart problem to Ricci solitons in $f$-Kenmotsu manifolds, arXiv: 1006.3132, 2010. https://doi.org/10.48550/arXiv.1006.3132 |
[4] | A. Haseeb, M. Bilal, S. K. Chaubey, A. A. H. Ahmadini, $\zeta$-conformally flat $LP$-Kenmotsu manifolds and Ricci-Yamabe solitons, Mathematics, 11 (2023), 212. https://doi.org/10.3390/math11010212 doi: 10.3390/math11010212 |
[5] | Venkatesha, H. A. Kumara, Ricci soliton and geometrical structure in a perfect fluid spacetime with torse-forming vector field, Afr. Mat., 30 (2019), 725–736. https://doi.org/10.1007/s13370-019-00679-y doi: 10.1007/s13370-019-00679-y |
[6] | A. M. Blaga, Solitons and geometrical structures in a perfect fluid spacetime, Rocky Mountain J. Math., 50 (2020), 41–53. https://doi.org/10.1216/rmj.2020.50.41 doi: 10.1216/rmj.2020.50.41 |
[7] | S. K. Chaubey, Characterization of perfect fluid spacetme admitting gradient $\eta$-Ricci and gradient Einstein solitons, J. Geom. Phys., 162 (2021), 104069. https://doi.org/10.1016/j.geomphys.2020.104069 doi: 10.1016/j.geomphys.2020.104069 |
[8] | M. D. Siddiqi, S. A. Siddiqi, Conformal Ricci soliton and geometrical structure in a perfect fluid spacetime, Int. J. Geom. Methods Mod. Phys., 17 (2020), 2050083. https://doi.org/10.1142/S0219887820500838 doi: 10.1142/S0219887820500838 |
[9] | K. De, U. C. De, A. A. Syied, N. B. Turki, S. Alsaeed, Perfect fluid spacetimes and gradient solitons, J. Nonlinear Math. Phys., 29 (2022), 843–858. https://doi.org/10.1007/s44198-022-00066-5 doi: 10.1007/s44198-022-00066-5 |
[10] | P. Zhang, Y. Li, S. Roy, S. Dey, A. Bhattacharyya, Geometrical structure in a perfect fluid spacetime with conformal Ricci-Yamabe soliton, Symmetry, 14 (2022), 594. https://doi.org/10.3390/sym14030594 doi: 10.3390/sym14030594 |
[11] | Y. Li, A. Haseeb, M. Ali, $LP$-Kenmotsu manifolds admitting $\eta$-Ricci solitons and spacetime, J. Math., 2022 (2022), 6605127. https://doi.org/10.1155/2022/6605127 doi: 10.1155/2022/6605127 |
[12] | K. Arslan, R. Deszcz, R. Ezentas, M. Hotlos, C. Martahan, On generalized Robertson-Walker spacetime satisfying some curvature condition, Turk. J. Math., 38 (2014), 353–373. https://doi.org/10.3906/mat-1304-3 doi: 10.3906/mat-1304-3 |
[13] | C. A. Mantica, L. G. Molinari, Generalized Robertson-Walker spacetime-A survey, Int. J. Geom. Methods Mod. Phys., 14 (2017), 1730001. https://doi.org/10.1142/S021988781730001X doi: 10.1142/S021988781730001X |
[14] | S. Azami, M. Jafari, A. Haseeb, A. A. H. Ahmadini, Cross curvature solitons of Lorentzian three-dimensional lie groups, Axioms, 13 (2024), 211. https://doi.org/10.3390/axioms13040211 doi: 10.3390/axioms13040211 |
[15] | W. R. Dai, D. X. Kong, K. Liu, Hyperbolic gometric flow (I): Short-time existence and nonlinear stability, Pure Appl. Math. Q., 6 (2010), 331–359. https://dx.doi.org/10.4310/PAMQ.2010.v6.n2.a3 doi: 10.4310/PAMQ.2010.v6.n2.a3 |
[16] | S. Azami, G. Fasihi-Ramndi, Hyperbolic Ricci soliton on warped product manifolds, Filomat, 37 (2023), 6843–6853. https://doi.org/10.2298/FIL2320843A doi: 10.2298/FIL2320843A |
[17] | H. Faraji, S. Azami, G. Fasihi-Ramandi, Three dimensional homogeneous hyperbolic Ricci soliton, J. Nonlinear Math. Phys., 30 (2023), 135–155. https://doi.org/10.1007/s44198-022-00075-4 doi: 10.1007/s44198-022-00075-4 |
[18] | J. X. Cruz Neto, I. D. Melo, P. A. Sousa, Non-existence of strictly monotone vector fields on certain Riemannian manifolds, Acta Math. Hungar., 146 (2015), 240–246. https://doi.org/10.1007/s10474-015-0482-0 doi: 10.1007/s10474-015-0482-0 |
[19] | S. Z. Németh, Five kinds of monotone vector fields, Pure Math. Appl., 9 (1998), 417–428. |
[20] | B. O'Neill, Semi-Riemannian geometry with application to Relativity, Academic Press, 1983 |
[21] | L. J. Alias, A. Romero, M. Sanchez, Uniquenes of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetime, Gen. Relat. Gravit., 27 (1995), 71–84. https://doi.org/10.1007/BF02105675 doi: 10.1007/BF02105675 |
[22] | K. Yano, On the torse-forming directions in Riemannian spaces, Proc. Imp. Acad., 20 (1944), 340–345. https://doi.org/10.3792/pia/1195572958 doi: 10.3792/pia/1195572958 |
[23] | A. Haseeb, M. A. Khan, Conformal $\eta$-Ricci-Yamabe solitons within the framework of $\epsilon$-LP-Sasakian 3-manifolds, Adv. Math. Phys., 2022 (2022), 3847889. https://doi.org/10.1155/2022/3847889 doi: 10.1155/2022/3847889 |
[24] | B. Y. Chen, A simple characterization of generalized Robertson-Walker space-times, Gen. Relativ. Gravit., 46 (2014), 1833. https://doi.org/10.1007/s10714-014-1833-9 doi: 10.1007/s10714-014-1833-9 |
[25] | K. Yano, Concircular geometry I. Concircular tranformations, Proc. Imp. Acad., 16 (1940), 195–200. https://doi.org/10.3792/pia/1195579139 doi: 10.3792/pia/1195579139 |
[26] | J. A. Schouten, Ricci calculus, Heidelberg: Springer Berlin, 1954. https://doi.org/10.1007/978-3-662-12927-2 |
[27] | K. Yano, B. Y. Chen, On the concurrent vector fields of immersed manifolds, Kodai Math. Sem. Rep., 23 (1971), 343–350. https://doi.org/10.2996/kmj/1138846372 doi: 10.2996/kmj/1138846372 |
[28] | B. Y. Chen, Classification of torqued vector fields and its applications to Ricci solitons, Kragujevac J. Math., 41 (2017), 239–250. https://doi.org/10.5937/KgJMath1702239C doi: 10.5937/KgJMath1702239C |
[29] | A. Garcia-Parrado, J. M. M. Senovilla, Bi-conformal vector fields and their applications, Class. Quantum Grav., 21 (2004), 2153–2177. https://doi.org/10.1088/0264-9381/21/8/017 doi: 10.1088/0264-9381/21/8/017 |
[30] | U. C. De, A. Sardar, A. Sarkar, Some conformal vector fields and conformal Ricci solitons on $N(k)$-contact metric manifolds, AUT J. Math. Comput., 2 (2021), 61–71. https://doi.org/10.22060/ajmc.2021.19220.1043 doi: 10.22060/ajmc.2021.19220.1043 |