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Abstract: In the present paper, we investigate perfect fluid spacetimes and perfect fluid generalized
Roberston-Walker spacetimes that contain a torse-forming vector field satisfying almost hyperbolic
Ricci solitons. We show that the perfect fluid spacetimes that contain a torse-forming vector field
satisfy an almost hyperbolic Ricci soliton, and we prove that a perfect fluid generalized Roberston-
Walker spacetime satisfying an almost hyperbolic Ricci soliton (g, , 0, u) is an Einstein manifold.
Also, we study an almost hyperbolic Ricci soliton (g, V, 0, i) on these spacetimes when V is a conformal
vector field, a torse-forming vector field, or a Ricci bi-conformal vector field.
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1. Introduction

In general relativity and symmetry of spacetime, a perfect fluid energy-momentum tensor is often
used to describe the source of the gravitational field. The energy-momentum tensor 7" plays a key
role as a matter content of the spacetime, matter is supposed to have pressure, density, and kinematic
and dynamical quantities such as acceleration, speed, vorticity, expansion and shear [1]. In usual
cosmological models, the universe’s matter content is supposed to act like a perfect fluid. In general
relativity, a perfect fluid solution is an exact solution of the Einstein field equation (EFE), where
the gravitational field is completely produced by the momentum, mass and stress density of a fluid.
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In cosmology and astrophysics, fluid solutions are usually used as stellar models and cosmological
models, respectively.

The most important geometric flow is the Ricci flow. In 1982, Hamilton [2] presented the notion
of Ricci soliton as a generalization of Einstein metrics and a special solution to Ricci flow. A Ricci
soliton on a manifold (pseudo-Riemannian) M is defined by [3,4]

Lyg = -2S - 20g,

where Ly is the Lie derivative along the potential vector field V, S is the Ricci tensor of g, and g is a
real constant. If o < 0, = 0, or > 0, then the Ricci soliton is said to be shrinking, steady, or expanding,
respectively. If V = grady for some function i, then g is named a gradient Ricci soliton. If o € C*(M),
then g is termed an almost Ricci soliton.

The authors Venkatesha and Kumara [5] studied Ricci solitons in perfect fluid spacetime (briefly,
PF-spacetime) with a torse-forming vector field (briefly, TFVF). Also, the geometrical structure in a
perfect fluid spacetime have been studied by many authors in several ways to a different extent such
Blaga [6], Chaubey [7], Siddiqi [8], De et al. [9], Zhang et al. [10] and many others. In 2022, Li
et al. [11] studied LP-Kenmotsu manifolds admitting n-Ricci solitons. Moreover, they proved some
results for np-Ricci solitons in LP-Kenmotsu manifolds in the spacetime of general relativity. About
a decade ago, the authors Arslan et al. [12] investigated some curvature conditions on generalized
Robertson-Walker spacetime. In 2017, Mantica and Molinari [13] presented a survey on generalized
Robertson-Walker spacetime with main focus on Chen’s characterization in terms of a timelike
concircular vector and obtained some new results. Very recently, the authors Azami et al. [14] studied
left-invariant cross curvature solitons on Lorentzian three-dimensional Lie groups.

Another type of geometric flow is hyperbolic geometric flow, defined by Dai et al. in [15],

i og
28 =25 80) =g, (0= ko, (1.1)
where k( is a symmetric 2-tensor field on M.

Let (M", g(t)) be a solution of (1.1) on (M, gy). The self-similar solution of (1.1) is given as

follows [16, 17]

S(go) +0Lvgo + (Ly o Ly)go = 1gos

for some constants o and u. In such a case, we say g is a hyperbolic Ricci soliton (briefly, HRS),
and we denote it by (M, go, V, o, u) (briefly (go, V, 0, t)). A HRS is an Einstein metric when V vanishes
identically; thus, a HRS is a generalization of the Einstein metric. If o = % and V is a 2-Killing vector
field [18,19], i.e., (Ly o Ly)go = 0, then; a HRS is a Ricci soliton. We say that (M, gy, Vf,0, ) is a
gradient HRS whenever Vf = V for some smooth functions f : M — R.

An almost HRS (or AHRS) is a 4-tuple (g, V, 0, 1), where o and u are two functions and the metric
g (pseudo-Riemannian) obeys the equation

S +oLyg+(LyoLy)g=pug, (1.2)

where S is concerned with g. In the following, we provide an example of an AHRS that is not Einstein
and Ricci soliton.
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Example 1.1. Suppose that (x,y,z) is the standard coordinates in R? and M = {(x,y,z) € R|z # O}.
We consider the linearly independent vector fields

, 0 , 0 0
elzza, ezzza—y, 63:6—2.
We define the metric g by
1, ifi = jandi, j € {1, 2},
glei,ej))=3-1, ifi=j=3,
0, otherwise.
We define symmetric (1, 1)-tensor ¢, vector field &, and 1-form n on M by
1 10

E=e;, nX)=gXe), ¢=10 0 0|,
000

for all vector fields X. Note that $(X) = X + n(X)¢, and n(¢) = —1. We obtain

1] et e e
(4] 0 0 —%el
(%) 0 0 —%ez

2 2
és Zel 262

The Levi-Civita connection V of M is defined by

—%63 0 —%61
Ve = 0 —%eg —%ez
0 0 0
We see that V& = —%(X + n(X)€). The nonvanishing components of the curvature tensor are:
4 4
R(ey, ex)e; = 2% R(ey, ex)e; = 26 R(ey, e3)e; = 2%
R(ey, e3)er = 2% R(ey, e3)e; = =it R(ey, e3)e3 = 2%
Hence, we get
2
-5 0 0
3 62 2 o |- 2 14
S = -z = —Z—z - Z—2ﬂ® 1.
0 O —1—22

Then Lig = —3(g +n®n) and
20
(Lgo Ly)g = Z—2(8 +nQn).

Therefore, (M, g, &, %, 1—22) is an AHRS on manifold M.

Motivated by the above studies, we study HRSs on PF-spacetimes. The paper is presented as
follows: Section 2 is concerned with some fundamental concepts and formulas for PF-spacetimes. In
Section 3, we study PF-spacetimes with TFVF satisfied in an AHRS. In Section 4, we investigate how

perfect fluid generalized Roberston-Walker spacetimes (or PF-GRW-spacetimes) satisfy an AHRS.

AIMS Mathematics Volume 9, Issue 7, 18929-18943.
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2. Preliminaries

Throughout this section, we assume that the vector fields X, X;, and X3 are arbitrary vector fields,
unless otherwise noted. The energy-momentum tensor 7" in PF-spacetime is defined through [20]

T(Xy, X3) = pg(Xi1, X2) + (o + o)n(X1)n(X2), 2.1)

where o is the energy-density and p is the isotropic pressure, and n(X;) = g(X}, {) is 1-form, such that
g, 0) +1 = 0. Let A and € be the cosmological and gravitational constants, respectively. The field
equation governing the perfect fluid motion is Einstein’s gravitational equation [20]

’
S(Xy, X)) + (A - E)g(Xl,XZ) = eT(Xy, Xy), (2.2)
where r is the scalar curvature of g. From (2.1) and (2.2), we have

S(X, X)) = (=4 + % +€p)g(X1, X3) + €(p + (X )n(X2). (2.3)

Let (M*, g) be a relativistic PF-spacetime admitting (2.3). Thus, by contracting (2.3) and using
g(Z, &) = -1, we conclude

r=¢€(o—3p)+4A. 2.4)
Applying (2.4) to (2.3), it follows:
S(X1, X>) = (a + E("z‘ p) )g(xl, Xy) + ep + X n(Xy). 2.5)
This implies
0X, = (a Gl )«\1 + e(p + MK

where Q is the Ricci operator such that g(QX;, X;) = S (X, X3).

Let (M",g) be a Lorentzian manifold. A manifold (M",g) (3 < n) is termed a generalized
Robertson-Walker (GRW) spacetime [21]. If we write M as M = —I Xp M*, here I C R is an
open interval, f(> 0) € C*(M), and M* is a Riemannian (n — 1)-manifold. If, n = 4 and M* is of
constant curvature, then the spacetime becomes the Robertson-Walker (RW) spacetime. Thus, every
RW spacetime is a PF-spacetime, where, as in n = 4, the GRW spacetime is a PF-spacetime if and only
if it is a RW spacetime.

Definition 2.1. If a vector field V(# 0) on a pseudo-Riemannian manifold (M, g) obeys
Vle = th + w(Xl)V, (26)

then it is called torse-forming [22,23]. Here V is the Levi-Civita connection of g, w is a I-form, and
h € C*(M). In this case, V becomes

e concircular [24,25] whenever w = 0 in (2.6),
e concurrent [26,27] if in the equation (2.6), w = 0and h = 1,
e parallel vector field if in equation (2.6), h = w = 0,
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e torqued vector field [28] if in equation (2.6), w(V) = 0.

Chen [24] presented a simple description of an (3 <) n-dimensional Lorentzian manifold with a
timelike concircular vector field as follows:

Theorem 2.1. [24] Let M be a Lorentzian n-manifold, n > 3. Then, M is a GRW spacetime if and
only if it has a timelike concicular vector field.

3. PF-spacetime with TFVF

In this section, we study HRS on PF-spacetimes. Throughout this section, we assume that X, X>,
and X3 are arbitrary vector fields on a PF-spacetime M, unless otherwise noted.
Now, we suppose that ¢ is a TFVF and

Vx,{ = X1 +n(X1)d. (3.1)
In this case, on a PF-spacetime, we have the following relations:
V=0,
(Vx,m(X2) = g(Xy, Xo) + (X Dn(X),
R(Xy, X2)¢ = n(X) X — n(X )Xo,
NR(X 1, X2)X3) = n(X1)g(Xz, X3) — n(X2)g(Xy, X3).
Let £ be a TFVF on PF-spacetime, (M*, g) and g admit an AHRS (1.2) such that V = f for some
f € C*(M). Using (3.1), we obtain

Ly8(X1, X)) = (X1 Hn(X) + (X f)n(Xy) + 2f(g(Xy1, Xo) + (X )n(X)), (3.2)

hence

(L (L)X, Xr)

= LXK + (X fn(X)) + 2£((X 1. Xa) + n(X)n(X2)))
— (LXK + X f( LX) + 20 ((LyeX 1. X2) + (L X1)N(X)))
- ((le)n(llngz) + (LX) X)) + 2f(g(Xy, Ly Xr) + U(XI)U(L,)”{XZ))) :

Applying V = f{ and the above equation in (1.2), we infer

S(X1,X5) + 0 (X1 /)n(Xa) + (Xa fin(Xy) + 2 (@(X1, Xa) + n(X1)n(Xa)))
L (X PmXo) + (X fIn(X) + 2£((X1, X) + n(X1)n(X2))
— (LX) MX) + (Ko fIn( LX) + 2Ly X0, Xo) + (LpeX1INX2)))

— (X ML) + (LX) X)) + 2 (X1, LyeXo) + n(X (LX)
—ug(X1, X)) =0,

which, by plugging X; = X, = { and using (2.5), yields

B e(o +3p)

A
2

+ 2L +204(f) + 4L(f))Y —p = 0. (3.3)

Thus, we state:
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Theorem 3.1. Let { be a TFVF on PF-spacetime (M*, g) and g admit an AHRS (g, V, 0, 1) such that
V = f( for some f € C*(M), then the relation (3.3) holds.

Now, let £ be a TFVF on PF-GRW-spacetime (M*, g). Then, from (3.2), we have

Leg(X1, X)) = 22Xy, Xa) +n(X)n(Xa), (34)
and
(L(LNX1,Xp) = 20(g(Xy, X2) + n(X)n(X2))
=2 (8(LX1, Xo) + (LX)
=2 (X1, LeXo) + n(X (LX) (3.5)
We have
gLX1 X)) = (VX1 Xp) = n(X1n(Xo) - g(X1, Xo). (3.6)

Similarly, we have
(X, L X5) = g(X, VX)) — g(Xy, Xp) — n(X)n(Xo).

Then
8L X1, Xo) + g(X1, L:Xo) = {(g(X1, X2)) = 2(m(X)n(X>) + g(Xy, X2)). (3.7)

Since V,{ = { +n({){ = 0, using (3.6), we have
(LX) = g(LeXy, 0) = 8(Ve X1, 0) = L(8(X1, 0) = L(n(X))),
similarly, we find
(L X>) = {((X>)).

Thus,

(L XX + n(Xn(LeX2) = {XD)n(Xs)). (3.8)
Therefore, applying (3.7) and (3.8) to (3.5), it follows

(LALNX1, X)) = 4m(X)n(X2) + g(Xy, X2)). (3.9)
Using (2.5), (3.4), and (3.9), we get

elc—-p)+o

> +2@+4—,u)g+(e(p+0')+2g+4)77®17.

N +Q£§g+(£§°£§)g—ﬂg:(

From the above equation, (M*, g) admits an AHRS (g, ¢, 0, i0).
Hence, we have:

AIMS Mathematics Volume 9, Issue 7, 18929-18943.
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Theorem 3.2. Let { be a TFVF on a PF-spacetime (M*,g). Then, manifold M satisfies an AHRS

Remark 3.1. i) Let, in dust-like matter, the energy density be o and n be the same as defined
in (2.1). The energy-momentum of pressure-free fluid spacetime, or dust, is T(X,X;) =
on(X1)n(X,). Hence, if { is a TFVF on a dust fluid spacetime M, then M satisfies an AHRS
(8.4, —5%, 0 - 50).

ii) The energy-momentum tensor of dark fluid spacetime p = —o; is T(X, X») = pg(Xy,X3). Thus,
if { is a TFVF on dark fluid spacetime M, then M satisfies an AHRS (g,{,—2,0 — €p).

iii) The energy-momentum of a radiation fluid spacetime o = 3p; is T(X,,X2) = plg(Xi,X2) +
An(Xin(X3)). Thus, if { is a TFVF on dust fluid spacetime M, then M satisfies an AHRS
(8.4, —2(ep + 1),0 = 3ep).

Definition 3.1. On a pseudo-Riemannian manifold (M, g), a vector field V obeying
(Lvg)( Xy, X2) = 2hg(Xy, X»), (3.10)

for some h € C*(M), is named a conformal Killing vector field. The vector field V reduces to a proper,
a homothetic, or a Killing vector field when h is not constant, constant, or h = 0, respecticvely.

Let ¢ be a TFVF on a PF-spacetime (M*,g), and let V be a conformal Killing vector field
satisfying (3.10). Then

(Lvo Ly)g) (X, X2) = V(Lyg(X1, X)) — Lyg(Ly Xy, Xr) — Lyg(Xy, LyX>)
= V(2hg(X,, X3)) — 2hg(Ly Xy, X3) — 2hg(Xy, Ly X>)
= 2V(hg(Xy,X2) + 2hLyg(Xy, X7)
= (QV(h) + 41*)g(X, Xa). (3.11)

By inserting (3.11) in Eq (1.2), we deduce
S (X1, X) + 2hog(X1, Xo) + QV(h) + 4hH)g(X1, X») — ug(X1, X») = 0. (3.12)

We get
-
(co+5+ep+ 20h + 2V(h) + 4h* — 1)g(X1, X2) + (o + p)n(Xn(Xy) = 0. (3.13)

We conclude with the following result:

Theorem 3.3. If { is a TFVF on a PF-spacetime (M*, g) and g satisfies the AHRS (g, V, 0, ), where V
is the conformally Killing vector field, then M is Einstein, e(o + p) = 0, and

—Q+§+ep+2gh+2V(h)+4h2—,u=0.

Let £ be a TFVF on a PF-spacetime (M*, g) and (g, V, 0, 1) be an AHRS such that V is a TFVF and
satisfied in (2.6). Then

Lyg(Xy, X3) = 2hg(Xy, X3) + w(X1)g(V, X2) + w(W)g(V, Xy), (3.14)

and
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(Lv(Ly)(X1,X2) = V(2hg(X1, X2) + w(X1)g(V, X2) + w(X2)g(V, X1))
—2hg(Ly X1, X2) — w(LyX1)g(V, X2) — w(X2)g(V, Ly X))
—2hg(Xy, Ly X)) — w(X1)g(V, Ly X2) — w(LyX2)g(V, X1).  (3.15)

On the other hand,

8Ly X, Xy) = g(Vy Xy, Xo) — hg(X, X3) — w(X2)g(V, X)),
similarly,

8(Xy, LyXy) = g(X1,VyXy) — hg(X 1, X>) — w(X1)g(V, X>).
Thus,

g(LyX, Xp) + g(X1, LyXo) = V(g(Xy, X2)) — 2hg(Xy, Xo) — w(X2)g(V, X1) — w(X1)g(V, X»).
Also, we have

w(LyX1) w(VyX; - Vi V) = w(VyX| = hX| — w(X)V)

w(Vy X)) — ho(X)) — w(X))w(V),

similarly,
Ww(LyXy) = w(VyX3) — hw(X2) — w(X2)w(V).
Therefore, applying the above equations to (3.15), we infer

(Lyv(Lv)( X1, Xo) = V() +4h")g(X1, Xo) + V (@(XDg(V. X2) + w(X2)g(V, X1)
+4hw(X1)g(V, X2) + 4hw(W)g(V, X))
—w(VyX1)g(V, X3) + 20(X)w(V)g(V, X3) — w(X2)g(Vy X, V)
+20(X)w(V)g(V, X1) — w(VyvX2)g(V, X1) — w(X1)g(VyXa, V). (3.16)

Putting X; = X; = in (3.14) and (3.16), it follows
Lyg(d, ) = =2h +2w(Hn(V) (3.17)

and

(L Lv, ) = =Q2V(h) +41?) + V Qu(n(V)) + 8ha(On(V) + 4w (VIn(V)
—2w(On(V) = 4@(V)w(Q) = 20(Q)IVF. (3.18)

Applying (3.17) and (3.18) to (1.2), we arrive at

LTZID 4 i 0l-1 =20+ 20(V)) = V() + 40 + V QuOn(V)

+8haw(On(V) + 40O (VIn(V) = 20(n(V) = 4n(V)Y’w(@) = 20(IVF = 0. (3.19)

Thus, we conclude with the following result:
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Theorem 3.4. If { is a TFVF on a PF-spacetime (M*, g) and the metric g satisfies an AHRS (g, V, 0, 11)
such that V is TFVF and satisfies (2.6), then the relation (3.19) holds.

Corollary 3.1. If{ is a TFVF on a PF-spacetime (M*, g) and the metric g satisfies an AHRS (g, V, 0, 1t)
such that V is the concircular vector field, that is, Vx, V = hX, for all vector field X,, then

e(o +3p)
2

Garcia-Parrado and Senovilla [29] introduced bi-conformal vector fields; later, this notion was
defined by De et al. in [30] as follows:

+u— (1 +2h)o —2V(h) —4h* = 0.

Definition 3.2. [f a vector field X| on a Riemannian manifold (M, g) obeys
(Lx,8)(X2, X3) = ag(Xy, X3) + BS (X, X3), (3.20)

and
(Lx,S)( X2, X3) = aS (X3, X3) + Bg(X>, X3), (3.21)

for some smooth functions a(# 0) and B(# 0), then it is called Ricci bi-conformal vector field.

Let £ be a TFVF on PF-spacetime (M*, g), and g satisfies the AHRS (g, V, 0, u) such that V is the
Ricci bi-conformal vector field and satisfies (3.20) and (3.21). We get

Ly(Lyg) = (@ + B+ V()g + (2aB + V(B))S. (3.22)
Inserting (3.20) and (3.22) in (1.2), we have
(1 +0B8+2aB8+ V(PB)S(X1,X2) + (0 — pu + a* + 5° + V(a))g(X1,X») = 0. (3.23)

Substituting X; = X, = ¢ in (3.23), we arrive at

(c—-p)

(1+0B+2aB+ V({B)(—o + €(o + p)) — € R (o —p+a* + B>+ V(o)) =0, (3.24)

and
(1+ 0B +2aB+ V(ﬁ))(s(xl’xz) * (Q - 'EWTJrSp)

Set F=1+08+2aB+ V() and G = pa — u + a* + B* + V(a).
Taking the Lie derivative of (3.23) and using (3.20) and (3.21), we deduce

)g(X 1,X2)) =0. (3.25)

(aF +BG + V(F))S (X1,X5) + (aG + BF + V(G))g(X;,X,) = 0. (3.26)
Inserting X; = X, = { in the Eq (3.26), we conclude
(aF + G + V(F)) (—Q + GWTW) +aG +BF +V(G) =0. (3.27)

Using (3.24) and (4.12), we infer

F(,B—ﬁ(—g+ 6(0;3/0)) _ V(_Q+ e(a';— 3p))) _o.

If F # 0 then (3.25) yields that M is an Einstein manifold and r = 4 (—g+ @), where —Q+@ is
constant. If /' = 0, then G = 0. Therefore, we have:
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Theorem 3.5. Suppose that { is a TFVF on PF-spacetime (M*, g) and g satisfies the HRS (g, V, 0, 11),
where V is the Ricci bi-conformal vector field and satisfies (3.20) and (3.21). Then PF-spacetime is

Einstein,
6(0'-2|- 3p)) ~ V(—Q . 6(0'-2|- 3p)) _o.

andr = 4(-¢ +95¥) oro = -1(1+2aB + V(B) and u = =%(1 + V(B)) — &* + B> + V().

ﬁ—ﬁ(—@+

4. PF-GRW-spacetime

In this section, we study HRS on PF-GRW-spacetimes. Throughout this section, we assume that the
vector fields X; and X, are arbitrary vector fields on PF-GRW-spacetime M, unless otherwise noted.
Now, we consider the velocity vector field ¢ of the PF-GRW-spacetime (M*, g) as a concircular vector
field, i.e.,

Vx, { =yX,. 4.1)
In this case, we have
R(X1, X2) = (X1)Xa — (Xa) X (4.2)

Executing contraction over X, we obtain
S (X1, ) = =3(Xy),

and

X = om0

3 )U(X2)~ (4.3)

Applying (4.3) to (4.2), we get

R(X,X){ = -3 2

1( _ €(o+3p)
3 ©

)(77((\'1)(\'2 - n(X2)Xy).

Now, let £ be a concircular vector field on a PF-GRW-spacetime (M*?, g). Then, we obtain
ng(Xl X2 = 2Pg(Xy, Xy), (4.4)

and

(L L)Xy, X) 20 (Yg(Xy, X2)) = 208( L X1, Xo) — 28(Xy, L X>)
20(W)g( X1, Xo) + 2y Lg(Xy, X>) 4.5)

2LW) + 4P)g(X 1, Xo).

Using (4.4) and (4.5), we conclude

0Leg(X1,X2) + (LALX1.X2) = (200 + 20(W) + 42) g(X 1, Xo).
Then Eq (1.2) implies that

S(X1,X2) = (290 - 2V(Y) — 4¢* + )g(X 1, X»).

Thus, we can state:
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Theorem 4.1. If a PF-GRW-spacetime (M*, g) with concircular vector field ¢ satisfies an AHRS
(g,4,0,1), then M is an Einstein spacetime.

Now, suppose that (M*, g) with concircular vector field £ admits the AHRS (1.2) and V = ¢/ for
some function ¢ on M. Using (4.1), we have

Lr8(X1, X2) = (X19n(X) + (Xop)n(Xy) + 20y8(X,, X>),

and

(Lo( L) X1, X2) = @f (X1on(X2) + (Xop)n(Xy) + 2¢9g(X 1, X3))
~ (LX) + (Xa@( LX) + 2008( Ly X1, X2))
~ (XM LX) + (LoeX)(X 1) + 2008(X 1, Lo Xo)).

Inserting X; = X, = { in the above equations, we get
L84, ) = =2(dp) = 209,

and

(Lo L& 0) = =200 (L9) + @) — 4 (o) + i)

Applying V = ¢ and the above equations in (1.2), we infer

30p) + 20 (@) + Qu) + 204 (L) + @u) + 4 ((L9)” + QL)) = = 0. (4.6)

Therefore, this leads to:

Theorem 4.2. Let ¢ be a concircular vector field on PF-GRW-spacetime (M*, g) and (g, V, 0, 1t) be an
AHRS such that V = @[, then the identity (4.6) holds.

Let V be a conformal Killing vector field on a PF-GRW-spacetime (M*, g) with concircular vector
field £. Then, by inserting (3.11) in (1.2), we obtain (3.13). Plugging X, = { in (3.13), we infer

3X1(¥) = (~2hg — 2V(h) = 4h* + 1n(X,). 4.7
Also, by inserting X; = X, = { in (3.13), we infer
3¢W) +2ho + 2V(h) + 4h* —u = 0. (4.8)
Also, from (4.7), we get
38(Vip, X1) = (=2ho = 2V(h) — 4k + p)g (€, X1).
Since X is an arbitrary vector field, we conclude
3Vy = (=2ho — 2V(h) — 4h* + p)E. (4.9)

We conclude the following:
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Theorem 4.3. If the metric g of a PF-GRW-spacetime (M*, g) with concircular vector field { satisfies
the AHRS (g, V, 0, 1) such that V is the conformally Killing vector field, then spacetime is Einstein and
the identities (4.8) and (4.9) are true.

Let £ be a concircular vector field on a PF-GRW-spacetime (M*, g), and (g, V, 0, ) be an AHRS
such that V is a TFVF and satisfies (2.6). Then, putting X; = X; = { in (3.14) and (3.16), it follows
that

Lvg(d, ) = =2h + 2w(OHn(V) (4.10)

and
(L Ly 0) = —QV(h) +4R%) + V Qw(On(V)) + 8haw(On(V)
+H4w(Q(VIN(V) = 260(VIn(V) = 20|V,
Applying (4.10) and (4.11) to (1.2), we arrive at
=34@W) + p + 0(=2h + 2w(N(V)) = 2V(h) + 41%) + V Qw(On(V))
+8ha(n(V) + 4w Q)w(VIN(V) = 24(VIn(V) = 24w(@)IVE = 0. (4.11)
Therefore, we have:

Theorem 4.4. If the metric g of a PF-GRW-spacetime (M*, g) with concircular vector field ¢ satisfies
the AHRS (g, V, 0, 1) such that V is a TFVF and satisfies (2.6), then the Eq (4.11) holds.

Let £ be a concircular vector field on PF-GRW-spacetime (M*,g) and g satisfies the AHRS
(g, V, 0, ) such that V is the Ricci bi-conformal vector field and satisfies (3.20) and (3.21). Substituting
X1 =X, = in (3.23), we arrive at

(1+ 08 +2aB + VIB)(=3{W) + (0a — p+a’ + B + V(a)) = 0,
and
(1 +0B+2aB+ V(P)(S (X1, X2) — (=30(¥))g(X1, X)) = 0.
Putting X; = X, = { in (3.26), we conclude
(aF + BG + V(F))(-3((W)) + aG + BF + V(G) = 0. (4.12)
Using (3.24) and (4.12), we infer

F(B—=B(=3(W)) = V(=3{())) = 0.

If F # 0 then the identity (3.25) yields M is an Einstein manifold, and r = —12{(y), where {(y) is a
constant. If ' = 0, then G = 0. Therefore, by using (4.3), we conclude:

Theorem 4.5. Suppose that { is a concircular vector field on a PF-GRW-spacetime (M*,g) and
the metric g satisfies the HRS (g, V,0,u) such that V is the Ricci bi-conformal vector field and
satisfies (3.20) and (3.21). Then, M is an Einstein manifold,

e(o +3p) e(c+3p)\ _
ﬁ—ﬁ(Q—T)—V(Q—T)—O,
and r = ~127() or 0 = ~5(1 + 208 + V(B)) and p1 = ~%(1 + V(B)) — @ + B + V(@).
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5. Conclusions

In this paper, we obtain the geometrical conditions and characteristics of HRS to utilize their
existence in perfect fluid and GRW spacetimes. We first assume that (g, f¢, o, i) satisfies AHRS such
that £ is a TFVF on PF-spacetime (M*, g), and we give a differential equation that the function f admits
in it. Then, we show that any PF-spacetime with a TFVF satisfies a HRS. Also, we prove that if any PF-
spacetime with TFVF ¢ satisfies HRS (g, V, 0, i), where V is the conformal Killing vector field or Ricci
bi-conformal vector field, then PF-spacetime is Einstein. Next, we show that a PF-GRW-spacetime
with concicular vector field ¢ and AHRS (g, ¢, 0, 1) is Einstein for ¢ = 1, and in general case ¢
admits in a differential equation. Also, we study a HRS (g, V, 0, ) on PF-GRW-spacetimes when V is
a conformal Killing vector field, a TFVF, or a Ricci bi-conformal vector field.
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