It is shown that the presence of a non-zero concurrent vector field on a Riemannian manifold poses an obstruction to its topology as well as certain aspects of its geometry. It is shown that on a compact Riemannian manifold, there does not exist a non-zero concurrent vector field. Also, it is shown that a Riemannian manifold of non-zero constant scalar curvature does not admit a non-zero concurrent vector field. It is also shown that a non-zero concurrent vector field annihilates de-Rham Laplace operator. Finally, we find a characterization of a Euclidean space using a non-zero concurrent vector field on a complete and connected Riemannian manifold.
Citation: Amira Ishan. On concurrent vector fields on Riemannian manifolds[J]. AIMS Mathematics, 2023, 8(10): 25097-25103. doi: 10.3934/math.20231281
It is shown that the presence of a non-zero concurrent vector field on a Riemannian manifold poses an obstruction to its topology as well as certain aspects of its geometry. It is shown that on a compact Riemannian manifold, there does not exist a non-zero concurrent vector field. Also, it is shown that a Riemannian manifold of non-zero constant scalar curvature does not admit a non-zero concurrent vector field. It is also shown that a non-zero concurrent vector field annihilates de-Rham Laplace operator. Finally, we find a characterization of a Euclidean space using a non-zero concurrent vector field on a complete and connected Riemannian manifold.
[1] | B. Chen, K. Yano, On submanifolds of submanifolds of a Riemannian manifold, J. Math. Soc. Japan, 23 (1971), 548–554. http://dx.doi.org/10.2969/jmsj/02330548 doi: 10.2969/jmsj/02330548 |
[2] | B. Chen, A simple characterization of generalized Robertson-Walker spacetimes, Gen. Relativ. Gravit., 46 (2014), 1833. http://dx.doi.org/10.1007/s10714-014-1833-9 doi: 10.1007/s10714-014-1833-9 |
[3] | B. Chen, Some results on concircular vector fields and their applications to Ricci solitons, Bull. Korean Math. Soc., 52 (2015), 1535–1547. http://dx.doi.org/10.4134/BKMS.2015.52.5.1535 doi: 10.4134/BKMS.2015.52.5.1535 |
[4] | B. Chen, Concircular vector fields and pseudo-Kaehlerian manifold, Kragujev. J. Math., 40 (2016), 7–14. http://dx.doi.org/10.5937/KgJMath1601007C doi: 10.5937/KgJMath1601007C |
[5] | K. Duggal, R. Sharma, Symmetries of spacetimes and Riemannian manifolds, New York: Springer Science, 1999. http://dx.doi.org/10.1007/978-1-4615-5315-1 |
[6] | A. Fialkow, Conformal geodesics, Trans. Amer. Math. Soc., 45 (1939), 443–473. |
[7] | A. Mihai, I. Mihai, Torse forming vector fields and exterior concurrent vector fields on Riemannian manifolds and applications, J. Geom. Phys., 73 (2013), 200–208. http://dx.doi.org/10.1016/j.geomphys.2013.06.002 doi: 10.1016/j.geomphys.2013.06.002 |
[8] | M. Petrovc, R. Rosca, L. Verstraelen, Exterior concurrent vector fields on Riemannian manifolds-Ⅰ: some general results, Soochow J. Math., 15 (1989), 179–187. |
[9] | M. Petrovc, R. Rosca, L. Verstraelen, Exterior concurrent vector fields on Riemannian manifolds-Ⅱ: examples of exterior concurrent vector fields on manifolds, Soochow J. Math., 19 (1993), 357–368. |
[10] | S. Pigola, M. Rimoldi, A. Setti, Remarks on non-compact gradient Ricci solitons, Math. Z., 268 (2011), 777–790. http://dx.doi.org/10.1007/s00209-010-0695-4 doi: 10.1007/s00209-010-0695-4 |
[11] | S. Sevinc, G. Sekerci, A. Coken, Some results about concircular and concurrent vector fields on Pseudo-Kaehler manifolds, J. Phys.: Conf. Ser., 766 (2016), 012034. http://dx.doi.org/10.1088/1742-6596/766/1/012034 doi: 10.1088/1742-6596/766/1/012034 |
[12] | K. Yano, Sur le parallelisme et la concourance dans l'espace de Riemann, Proc. Imp. Acad., 19 (1943), 189–197. http://dx.doi.org/10.3792/pia/1195573583 doi: 10.3792/pia/1195573583 |
[13] | K. Yano, B. Chen, On the concurrent vector fields of immersed manifolds, Kodai Math. Sem. Rep., 23 (1971), 343–350. http://dx.doi.org/10.2996/kmj/1138846372 doi: 10.2996/kmj/1138846372 |
[14] | K. Yano, Integral formulas in Riemannian geometry, New York: Marcel Dekker Inc., 1970. |
[15] | N. Youssef, S. Abed, A. Soleiman, Concurrent $\pi $ -vector fields and energy $\beta $-change, Int. J. Geom. Methods M., 6 (2009), 1003–1031. http://dx.doi.org/10.1142/S0219887809003904 doi: 10.1142/S0219887809003904 |