Research article

Some new characterizations of spheres and Euclidean spaces using conformal vector fields

  • Received: 09 July 2024 Revised: 20 September 2024 Accepted: 30 September 2024 Published: 11 October 2024
  • MSC : 53C21, 53C24

  • Given a conformal vector field $ X $ defined on an $ n $-dimensional Riemannian manifold $ \left(N^{n}, g\right) $, naturally associated to $ X $ are the conformal factor $ \sigma $, a smooth function defined on $ N^{n} $, and a skew symmetric $ (1, 1) $ tensor field $ \Omega $, called the associated tensor, that is defined using the $ 1 $-form dual to $ X $. In this article, we prove two results. In the first result, we show that if an $ n $-dimensional compact and connected Riemannian manifold $ \left(N^{n}, g\right) $, $ n > 1 $, of positive Ricci curvature admits a nontrivial (non-Killing) conformal vector field $ X $ with conformal factor $ \sigma $ such that its Ricci operator $ Rc $ and scalar curvature $ \tau $ satisfy

    $ Rc\left( X\right) = -(n-1)\nabla \sigma \; \; \text{ and }\; \; X(\tau ) = 2\sigma \left( n(n-1)c-\tau \right) $

    for a constant $ c $, necessarily $ c > 0 $ and $ \left(N^{n}, g\right) $ is isometric to the sphere $ S_{c}^{n} $ of constant curvature $ c $. The converse is also shown to be true. In the second result, it is shown that an $ n $-dimensional complete and connected Riemannian manifold $ \left(N^{n}, g\right) $, $ n > 1 $, admits a nontrivial conformal vector field $ X $ with conformal factor $ \sigma $ and associated tensor $ \Omega $ satisfying

    $ Rc\left( X\right) = -div\Omega \; \; \text{ and }\; \; \Omega \left( X\right) = 0, $

    if and only if $ \left(N^{n}, g\right) $ is isometric to the Euclidean space $ \left(E^{n}, \langle, \rangle \right) $.

    Citation: Sharief Deshmukh, Mohammed Guediri. Some new characterizations of spheres and Euclidean spaces using conformal vector fields[J]. AIMS Mathematics, 2024, 9(10): 28765-28777. doi: 10.3934/math.20241395

    Related Papers:

  • Given a conformal vector field $ X $ defined on an $ n $-dimensional Riemannian manifold $ \left(N^{n}, g\right) $, naturally associated to $ X $ are the conformal factor $ \sigma $, a smooth function defined on $ N^{n} $, and a skew symmetric $ (1, 1) $ tensor field $ \Omega $, called the associated tensor, that is defined using the $ 1 $-form dual to $ X $. In this article, we prove two results. In the first result, we show that if an $ n $-dimensional compact and connected Riemannian manifold $ \left(N^{n}, g\right) $, $ n > 1 $, of positive Ricci curvature admits a nontrivial (non-Killing) conformal vector field $ X $ with conformal factor $ \sigma $ such that its Ricci operator $ Rc $ and scalar curvature $ \tau $ satisfy

    $ Rc\left( X\right) = -(n-1)\nabla \sigma \; \; \text{ and }\; \; X(\tau ) = 2\sigma \left( n(n-1)c-\tau \right) $

    for a constant $ c $, necessarily $ c > 0 $ and $ \left(N^{n}, g\right) $ is isometric to the sphere $ S_{c}^{n} $ of constant curvature $ c $. The converse is also shown to be true. In the second result, it is shown that an $ n $-dimensional complete and connected Riemannian manifold $ \left(N^{n}, g\right) $, $ n > 1 $, admits a nontrivial conformal vector field $ X $ with conformal factor $ \sigma $ and associated tensor $ \Omega $ satisfying

    $ Rc\left( X\right) = -div\Omega \; \; \text{ and }\; \; \Omega \left( X\right) = 0, $

    if and only if $ \left(N^{n}, g\right) $ is isometric to the Euclidean space $ \left(E^{n}, \langle, \rangle \right) $.



    加载中


    [1] K. Yano, Integral formulas in Riemannian geometry, Marcel Dekker Inc., 1970.
    [2] S. Hwang, G. Yun, Conformal vector fields and their applications to Einstein-type manifolds, Results Math., 79 (2024), 45. https://doi.org/10.1007/s00025-023-02070-7 doi: 10.1007/s00025-023-02070-7
    [3] A. Caminha, The geometry of closed conformal vector fields on Riemannian spaces, Bull. Braz. Math. Soc. New Ser., 42 (2011), 277–300. https://doi.org/10.1007/s00574-011-0015-6 doi: 10.1007/s00574-011-0015-6
    [4] J. F. da S. Filho, Critical point equation and closed conformal vector fields, Math. Nach., 293 (2020), 2299–2305. https://doi.org/10.1002/mana.201900316 doi: 10.1002/mana.201900316
    [5] S. Tanno, W. Weber, Closed conformal vector fields, J. Differ. Geom., 3 (1969), 361–366. https://doi.org/10.4310/JDG/1214429058 doi: 10.4310/JDG/1214429058
    [6] W. Kuhnel, H. B. Rademacher, Conformal diffeomorphisms preserving the Ricci tensor, Proc. Amer. Math. Soc., 123 (1995), 2841–2848.
    [7] W. Kuhnel, H. B. Rademacher, Einstein spaces with a conformal group, Results Math., 56 (2009), 421. https://doi.org/10.1007/s00025-009-0440-7 doi: 10.1007/s00025-009-0440-7
    [8] W. Kühnel, H. B. Rademacher, Conformal vector fields on pseudo-Riemannian spaces, Differ. Geom. Appl., 7 (1997), 237–250. https://doi.org/10.1016/S0926-2245(96)00052-6 doi: 10.1016/S0926-2245(96)00052-6
    [9] M. Obata, The conjectures about conformal transformations, J. Differ. Geom., 6 (1971), 247–258. https://doi.org/10.4310/JDG/1214430407 doi: 10.4310/JDG/1214430407
    [10] S. Deshmukh, Characterizing spheres and Euclidean spaces by conformal vector field, Ann. Mat. Pura Appl., 196 (2017), 2135–2145. https://doi.org/10.1007/s10231-017-0657-0 doi: 10.1007/s10231-017-0657-0
    [11] K. Yano, T. Nagano, Einstein spaces admitting a one-parameter group of conformal transformations, North-holland Math. Stud., 70 (1982), 219–229. https://doi.org/10.1016/S0304-0208(08)72248-5 doi: 10.1016/S0304-0208(08)72248-5
    [12] B. Y. Chen, A simple characterization of generalized Robertson-Walker spacetimes, Gen. Relat. Gravit., 46 (2014), 1833. https://doi.org/10.1007/s10714-014-1833-9 doi: 10.1007/s10714-014-1833-9
    [13] G. S. Hall, Conformal vector fields and conformal-type collineations in space-times, Gen. Relat. Gravit., 32 (2000), 933–941. https://doi.org/10.1023/A:1001941209388 doi: 10.1023/A:1001941209388
    [14] G. S. Hall, J. D. Steele, Conformal vector fields in general relativity, J. Math. Phys., 32 (1991), 1847. https://doi.org/10.1063/1.529249 doi: 10.1063/1.529249
    [15] S. Deshmukh, M. Guediri, Characterization of Euclidean spheres, AIMS Math., 6 (2021), 7733–7740. https://doi.org/10.3934/math.2021449 doi: 10.3934/math.2021449
    [16] M. Guediri, S. Deshmukh, Hypersurfaces in a Euclidean space with a Killing vector field, AIMS Math., 9 (2024), 1899–1910. https://doi.org/10.3934/math.2024093 doi: 10.3934/math.2024093
    [17] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Jpn., 14 (1962), 333–340. https://doi.org/10.2969/JMSJ/01430333 doi: 10.2969/JMSJ/01430333
    [18] A. L. Besse, Einstein manifolds, Springer-Verlag, 1987. https://doi.org/10.1007/978-3-540-74311-8
    [19] B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, 1983.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(462) PDF downloads(46) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog