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Abstract: Given a conformal vector field X defined on an n-dimensional Riemannian manifold (Nn, g),
naturally associated to X are the conformal factor σ, a smooth function defined on Nn, and a skew
symmetric (1, 1) tensor field Ω, called the associated tensor, that is defined using the 1-form dual to X.
In this article, we prove two results. In the first result, we show that if an n-dimensional compact and
connected Riemannian manifold (Nn, g), n > 1, of positive Ricci curvature admits a nontrivial (non-
Killing) conformal vector field X with conformal factor σ such that its Ricci operator Rc and scalar
curvature τ satisfy

Rc (X) = −(n − 1)∇σ and X(τ) = 2σ (n(n − 1)c − τ)

for a constant c, necessarily c > 0 and (Nn, g) is isometric to the sphere S n
c of constant curvature c.

The converse is also shown to be true. In the second result, it is shown that an n-dimensional complete
and connected Riemannian manifold (Nn, g), n > 1, admits a nontrivial conformal vector field X with
conformal factor σ and associated tensor Ω satisfying

Rc (X) = −divΩ and Ω (X) = 0,

if and only if (Nn, g) is isometric to the Euclidean space (En, ⟨, ⟩).
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1. Introduction

Conformal geometry is one of the oldest branches of differential geometry, as one can follow it
through [1] as old as 1959. It is evolving with time and getting enriched constantly till one can find
the most recent work in [2]. The main topic in the conformal geometry is about studying the influence
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of a conformal vector field X on an n-dimensional Riemannian manifold (Nn, g). We shall abbreviate
a conformal vector field X by CONFVF X for the sake of convenience. There is a smooth function σ
that is naturally associated to a CONFVFX on (Nn, g) called the conformal factor satisfying

1
2

£Xg = σg, (1.1)

where £ is the Lie derivative operator. A CONFVF X is said to be Killing if the conformal factor
σ = 0, and consequently, a nontrivial CONFVF X must have a conformal factor σ , 0. There is
naturally associated a (1, 1) skew symmetric tensor field Ω to a CONFVF X on (Nn, g) called the
associated tensor of CONFVF X, defined by

1
2

dη(E, F) = g (ΩE, F) , (1.2)

for smooth vector fields E, F on Nn, where η is the 1-form dual to X. This associated tensor Ω plays a
crucial role in studying the impact of a CONFVF X on the geometry of (Nn, g) (see [2]).

The sphere S n
c of constant curvature as a hypersurface of the Euclidean space

(
En+1, ⟨, ⟩

)
, where ⟨, ⟩

is the Euclidean metric, has unit normal ζ, induced metric g, and the Weingarten map

S = −
√

cI.

Choosing a unit constant vector field Z on the Euclidean space
(
En+1, ⟨, ⟩

)
, its tangential component X

to the sphere S n
c satisfies

∇EX = −
√

cρE and ∇ρ =
√

cX, (1.3)

where
ρ = ⟨Z, ζ⟩

and ∇ρ is the gradient of ρ on S n
c with respect to the induced metric g. Thus, we see that X is a

CONFVF on the sphere S n
c with conformal factor

σ = −
√

cρ.

This CONFVF X is closed, and therefore the associated tensor Ω = 0.
Also, using complex structure J on

(
E2n, ⟨, ⟩

)
, define a unit vector field ξ = Jζ, which has covariant

derivative
∇Eξ = (JE)T , (1.4)

where (JE)T is the tangential component of JE to S 2n−1 and ξ is a Killing vector field, that is,

£ξg = 0.

Now, define a vector field
X = X + ξ,

we obtain a CONFVFX with conformal factor σ that is not closed and indeed has an associated tensor

ΩE = (JE)T .
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Non-closed CONFVF are in abundance, for instance on the Euclidean space
(
E2n, ⟨, ⟩

)
, if ξ is the

position vector field on E2n, then
X = ξ + Jξ,

where J is the complex structure, is a CONFVF on
(
E2n, ⟨, ⟩

)
that is not closed and has an associated

tensor
ΩE = JE.

Riemannian manifolds that admit closed CONFVF have been extensively studied [3–5]. For
related work on conformal vector fields that are not necessarily closed, refer to [6–9]. We see that
while studying the impact of a CONFVF X on the geometry of the Riemannian manifold (Nn, g), on
which it is defined, the associated tensor Ω offers some resistance in analyzing the geometry.
Therefore, this study becomes smooth once one assumes that the CONFVF X is closed, which forces
the associated tensor Ω to vanish. The study of the impact of the existence of a non-closed CONFVF
on Riemannian manifolds is relatively difficult, and therefore this difficulty is softened by imposing
geometric restrictions on Riemannian manifolds, such as the scalar curvature τ being
constant. Riemannian manifolds admitting non-closed CONFVF have been studied in [8, 10, 11].
Moreover, apart from the fact that the presence of a CONFVF on a Riemannian manifold influences
its geometry, they are also used in the theory of relativity [12–14].

Observe that the Ricci operator Rc on a Riemannian manifold (Nn, g) is related to the Ricci tensor
Ric by

Ric (E, F) = g (RcE, F) ,

and for the sphere S n
c the Ricci operator is given by

Rc = (n − 1)cI.

Moreover, the conformal factor σ of the CONFVFX on S n
c described in Eq (1.3) satisfies

Rc (X) = −(n − 1)∇σ. (1.5)

It naturally raises a question: Under what conditions is a compact and connected Riemannian
manifold (Nn, g) admitting a nontrivial CONFVF X with conformal factor σ satisfying Eq (1.5) is
isometric to the sphere S n

c?
The reader may refer to the following sources, as well as the references in [10, 15–17], for

additional information on this question. In this article, we answer this question and indeed find a new
characterization of the sphere S n

c (see Theorem 1). Finally, in this paper, we find a characterization of
the Euclidean space (En, ⟨, ⟩) using a nontrivial CONFVF X with conformal factor σ on a complete
and connected Riemannian manifold (Nn, g) (see Theorem 2).

2. Preliminaries

Let X be a nontrivial CONFVF on an n-dimensional Riemannian manifold (Nn, g) with conformal
factor σ. Then employing Eqs (1.1) and (1.2) in Koszul’s formula, we have

2 (∇EX, F) = (£Xg) (E, F) + dη (E, F) ,

AIMS Mathematics Volume 9, Issue 10, 28765–28777.



28768

where ∇E is the covariant derivative with respect to the Riemannian connection on (Nn, g) and E, F are
smooth vector fields on Nn. Consequently, we have

∇EX = σE + ΩE, (2.1)

where Ω is the associated tensor associated with CONFVF X.
Using Eq (2.1), we find the following expression for the curvature tensor field R

R(E, F)X = E(σ)F − F(σ)E + (∇EΩ) (F) − (∇FΩ) (E), (2.2)

for smooth vector fields E, F on Nn. Choosing a local frame {E1, . . . , En} on (Nn, g) in the above
equation in order to compute the Ricci tensor Ric, we obtain

Ric(E, X) = −(n − 1)E (σ) − g (E, divΩ) , (2.3)

where
divΩ =

∑
j

(
∇E jΩ

)
(E j).

Thus, for the CONFVF X on an n-dimensional Riemannian manifold (Nn, g) with conformal factor
σ, on using Eq (2.3), for Ricci operator Rc, we have

Rc(X) = −(n − 1)∇σ − divΩ. (2.4)

On a Riemannian manifold (Nn, g), the scalar curvature τ = Tr.Rc satisfies the following [18, 19]

1
2
∇τ = divRc, (2.5)

where
divRc =

∑
j

(
∇E jRc

)
(E j).

We see that for the CONFVF X on an n-dimensional Riemannian manifold (Nn, g) with conformal
factor σ, on using Eq (2.1), we have

divX = nσ. (2.6)

Also, we compute the divergence of the vector field Rc (X) as follows:

divRc (X) =
∑

j

g
(
∇E jRc (X) , Ei

)
=

∑
j

((
∇E jRc

)
(X) + Rc

(
∇E j X

)
, E j

)
,

which, on using the symmetry of Rc and Eqs (2.1) and (2.5), yields

divRc (X) =
1
2

X (τ) +
∑

j

g
(
Rc

(
E j

)
, σE j + ΩE j

)
,
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and Ω being skew symmetric, we reach at

divRc (X) =
1
2

X (τ) + στ. (2.7)

Similarly, on using Eq (2.1) and the skew symmetry of the associated operator Ω for the CONFVF X
on an n-dimensional Riemannian manifold (Nn, g) with conformal factor σ, we find

div (ΩX) = − ∥Ω∥2 − g (X, divΩ) , (2.8)

where
∥Ω∥2 =

∑
j

g
(
ΩE j,ΩE j

)
.

Now, for the conformal factor σ of the CONFVF X on an n-dimensional Riemannian manifold
(Nn, g), the Hessian Hess(σ) of σ is the symmetric bilinear form defined by

Hess(σ) (E, F) = E (Fσ) − (∇EF) (σ) ,

and the Hessian operatorHσ of σ is defined by

Hess(σ) (E, F) = g (HσE, F)

for smooth vector fields E, F on Nn. The Laplacian ∆σ of σ is defined by

∆σ = div (∇σ) ,

which is also given by
∆σ = Tr.Hσ.

If (Nn, g) is a compact Riemannian manifold, then we have the following Bochner’s formula∫
Nn

Ric (∇σ,∇σ) =
∫

Nn

(
(∆σ)2

− ∥Hσ∥
2
)
, (2.9)

where for a local frame {E1, .., En} on Nn

∥Hσ∥
2
=

∑
j

g
(
HσE j,H

σE j

)
.

3. Characterizing spheres using conformal vector fields

Let X be a nontrivial CONFVF on an n-dimensional Riemannian manifold (Nn, g) with conformal
factor σ. In this section, we shall answer the questions raised in the introduction. Indeed, first we prove
the following:

Theorem 1. An n-dimensional compact and connected Riemannian manifold (Nn, g), n > 1, of
positive Ricci curvature and scalar curvature τ admits a nontrivial CONFVF X with conformal factor
σ satisfying

Rc (X) = −(n − 1)∇σ and X (τ) = 2σ (n(n − 1)c − τ) ,

for a constant c, if and only if c > 0 and (Nn, g) is isometric to the sphere S n
c .
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Proof. Suppose X is a nontrivial CONFVF on an n-dimensional compact and connected Riemannian
manifold (Nn, g), n > 1, of positive Ricci curvature with conformal factor σ, which satisfies

Rc (X) = −(n − 1)∇σ (3.1)

and
X (τ) = 2σ (n(n − 1)c − τ) , (3.2)

where c is a constant. Using Eqs (2.4) and (3.1), we obtain divΩ = 0 and inserting it in Eq (2.8) yields

div (ΩX) = − ∥Ω∥2 . (3.3)

Now, in Eq (3.1), taking the inner product with X, provides

Ric (X, X) = −(n − 1)X (σ) ,

which, in light of Eq (2.6) used in the formula

div (σX) = X (σ) + σdivX

= X (σ) + nσ2,

takes the form

Ric (X, X) = n(n − 1)σ2 − (n − 1)div (σX) .

Integrating the above equation leads to∫
Nn

Ric (X, X) = n(n − 1)
∫

Nn
σ2. (3.4)

Again, using Eq (3.1), we immediately have∫
Nn

Ric (X,∇σ) = −(n − 1)
∫

Nn
∥∇σ∥2 . (3.5)

Next, taking divergence on both sides of Eq (3.1) and making use of Eq (2.7), we get

−(n − 1)∆σ =
1
2

X (τ) + στ,

which, on treating with Eq (3.2), reduces to

∆σ = −ncσ. (3.6)

Multiplying the above equation by σ and then integrating leads to∫
Nn
∥∇σ∥2 = nc

∫
Nn
σ2. (3.7)

Also, we have

Ric (∇σ + cX,∇σ + cX) = Ric (∇σ,∇σ) + 2cRic (∇σ, X) + c2Ric (X, X) .
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Integrating the above equation and using Eqs (2.9), (3.4), and (3.5), we arrive at∫
Nn

Ric (∇σ + cX,∇σ + cX) =
∫

Nn

{
(∆σ)2

− ∥Hσ∥
2
− 2(n − 1)c ∥∇σ∥2 + n(n − 1)c2σ2

}
,

which is rearranged as∫
Nn

Ric (∇σ + cX,∇σ + cX) =
∫

Nn

{
−

(
∥Hσ∥

2
−

1
n

(∆σ)2
)
+

n − 1
n

(∆σ)2

−2(n − 1)c ∥∇σ∥2 + n(n − 1)c2σ2
}
.

Now, inserting Eqs (3.6) and (3.7) in the above equation reveals∫
Nn

Ric (∇σ + cX,∇σ + cX) +
∫

Nn

(
∥Hσ∥

2
−

1
n

(∆σ)2
)
= 0. (3.8)

Observe that the integrand in the second integral in Eq (3.8) is non-negative by Schwarz inequality,
and the hypothesis requires that the Ricci curvatures of the Riemannian manifold (Nn, g) are positive.
This traps Eq (3.8) to come forward with only the following solutions:

∇σ + cX = 0, ∥Hσ∥
2
=

1
n

(∆σ)2 . (3.9)

Interestingly, both equations in Eq (3.9) reach to the same conclusions. First, take the equation

∇σ + cX = 0,

which on differentiation with respect to a vector field E on Nn and using Eq (2.1), leads to the equation

HσE + cσE = −cΩE, (3.10)

where the left-hand side is symmetric and the right-hand side is skew symmetric. Hence, we have both

HσE + cσE = 0

and
cΩE = 0

for arbitrary E. Thus, we have two choices: either c = 0 or Ω = 0. If c = 0, Eq (3.6) will imply σ is a
constant, and then the integral of Eq (2.6) will produce σ = 0: and that is contrary to the fact that X is
nontrivial. Hence, Ω = 0 and Eq (3.10) reduces to

Hσ = −cσI, (3.11)

where σ has to be a non-constant function, for σ a constant implies σ = 0, which is forbidden by X
being nontrivial. The second equation in Eq (3.9) also reaches the same conclusion as Eq (3.11). For
it is the equality in Schwarz’s inequality

∥Hσ∥
2
≥

1
n

(∆σ)2 ,
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which holds if and only if

Hσ =
∆σ

n
I,

and combining it with Eq (3.6), gives Eq (3.11). As seen in the above paragraph, the constant c , 0,
indeed, as σ is a non-constant function, Eq (3.7) reveals that c > 0. Thus, we have reached the
conclusion that Eq (3.11) is Obata’s differential equation [9, 17]. Hence, (Nn, g) is isometric to the
sphere S n

c .
Conversely, if (Nn, g) is isometric to the sphere S n

c , then through Eq (1.3), we have a CONFVF X
on S n

c with conformal factor
σ = −

√
cρ.

First, we claim that X is a nontrivial CONFVF on S n
c . For if σ = 0, that is, ρ = 0, which on using

Eq (1.3) would imply X = 0, and in turn it would give

Z = X + ρζ = 0

a contradiction to the fact that Z is a unit vector. Hence, X is a nontrivial CONFVF on S n
c . Also, for

S n
c , we have

Rc = (n − 1)cI,

which, on treating with Eq (1.3), implies

Rc (X) = (n − 1)cX = (n − 1)
√

c∇ρ = −(n − 1)∇σ,

that is, Eq (3.1) holds. Also, the scalar curvature τ of S n
c is

τ = n(n − 1)c

a constant, and therefore, Eq (3.2) holds. Finally, S n
c is compact and has positive Ricci curvature.

Hence, converse is true. □

It is worth noticing that the condition (3.2) is essential in the above characterization of S n
c , as there

are compact manifolds admitting a nontrivial CONFVF that are not isometric to S n
c and on them the

Eq (3.2) does not hold.
For example, consider the compact Riemannian manifold (Nn, g), where

Nn = S 1 ×ρ S (n−1)
c

is the warped product, with ρ a smooth positive function on the unit circle S 1 and the warped product
metric

g = dθ2 + ρ2g,

θ is a coordinate function on S 1 and g is the canonical metric on the sphere S (n−1)
c of constant curvature

c. Then the vector field
X = ρ

∂

∂θ

on (Nn, g) satisfies [19]
∇EX = ρ

′

E,
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where E is any vector field on Nn. Thus, we obtain

1
2

£Xg = σg,

that is, X is a CONFVF (Nn, g) with conformal factor σ = ρ
′

. We have the following expression for
the Ricci operator Rc on the warped product manifold (Nn, g) [19]

Rc (E) = −
n − 1
ρ
HρE (3.12)

for a horizontal vector field E on S 1 and

Rc (V) = (n − 2)cV −

ρ′′ρ + (n − 2)
(
ρ
′′

ρ

)2 V

for vertical vector field V on S n
c . As the CONFVF X is horizontal, we see by Eq (3.12) that

Rc (X) = −(n − 1)Hρ
(
∂

∂θ

)
= −(n − 1)∇σ,

that is, the condition (3.1) holds for the CONFVF X on the compact warped product manifold (Nn, g).
The scalar curvature τ of (Nn, g) is given by

τ = −
n − 1
ρ2

(
2ρρ

′′

+ (n − 2)ρ
′2 − (n − 2)c

)
,

which does not satisfy Eq (3.2).

4. Characterizing Euclidean spaces by conformal vector fields

On the Euclidean space (En, ⟨, ⟩), there are finitely many nontrivial conformal vector fields. For
instance, the position vector field ξ

ξ =
∑

j

u j ∂

∂u j (4.1)

satisfies
1
2

£ξg = g,

that is, ξ is a CONFVF on (En, ⟨, ⟩) with conformal factor σ = 1. However, ξ is closed, and therefore
its associated tensor Ω = 0. Next, we construct a non-closed nontrivial CONFVL on (En, ⟨, ⟩). Define
a vector field X on En, n > 2, by

X = ξ + u2 ∂

∂u1 − u1 ∂

∂u2 .

Then, we see that
∇EX = E + ΩE, (4.2)

where
ΩE = E

(
u2

) ∂
∂u1 − E

(
u1

) ∂
∂u2 ,

AIMS Mathematics Volume 9, Issue 10, 28765–28777.



28774

and it follows that
⟨ΩE, F⟩ = − ⟨E,ΩF⟩ ,

that is, Ω is a skew symmetric (1, 1) tensor on the Euclidean space (En, ⟨, ⟩). Using Eq (4.2), one
confirms that

1
2

£Xg = g,

that is, X is a nontrivial CONFVF on (En, ⟨, ⟩) with conformal factor σ = 1, and it is not a closed vector
field. Moreover, we see that there are finitely many of these types of nontrivial conformal vector fields
on the Euclidean space (En, ⟨, ⟩).

In this section, we find the following characterization for a Euclidean space.

Theorem 2. Let X be a nontrivial CONFVF on an n-dimensional complete and connected
Riemannian manifold (Nn, g), n > 1, with conformal factor σ and associated tensor Ω. Then the
following conditions hold:

Rc (X) = −divΩ, Ω (X) = 0,

if and only if (Nn, g) is isometric to the Euclidean space (En, ⟨, ⟩).

Proof. Suppose an n-dimensional complete and connected Riemannian manifold (Nn, g) admits a
nontrivial CONFVL X with conformal factor σ and associated tensor Ω satisfying

Rc (X) = −divΩ (4.3)

and
Ω (X) = 0. (4.4)

Using Eqs (2.4), (4.3), and n > 1, we reach the conclusion that σ is a constant. It is clear that the
constant σ , 0 due to the fact that X is nontrivial. Next, define a smooth function α by

2α = ∥X∥2 .

Then, using Eqs (2.1) and (4.4), we find the gradient of the smooth function α is given by

∇α = σX. (4.5)

Since the CONFVF X is nontrivial and the constant σ , 0, the above equation confirms that the
function α is not a constant. Now, differentiating Eq (4.5) with respect to a vector field E on Nn and
using Eq (2.1), we arrive at

HαE = σ2E + σΩE,

and taking the inner product in the above equation by E, yields

Hess (α) (E, E) = σ2g (E, E) .

On polarizing the above equation, we conclude

Hess (α) = σ2g, (4.6)

where α is a non-constant function and σ2 is a nonzero constant. Equation (4.6) guarantees that (Nn, g)
is isometric to the Euclidean space (En, ⟨, ⟩).

The converse is trivial, for the position vector field ξ given in (4.1) is a nontrivial CONFVF on the
Euclidean space (En, ⟨, ⟩) with conformal factor σ = 1, and it being closed, we have associated tensor
Ω = 0. Also, for the Euclidean space (En, ⟨, ⟩) being flat, we have Ricci operator Rc = 0, and we see
that the conditions (4.3) and (4.4) are automatically satisfied. Hence, the converse. □
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5. Conclusions

It is needless to mention that one of the most interesting and most sought-out questions in differential
geometry is to find different characterizations of the model spaces, namely, the sphere S n

c of constant
curvature c, the Euclidean space En, and the hyperbolic space Hn

−c of constant curvature −c (c > 0). In
the present paper, we witnessed that an n-dimensional compact and connected Riemannian manifold
(Nn, g), n > 1, of positive Ricci curvature and scalar curvature admits a nontrivial CONFVF X with
conformal factor σ satisfying the conditions

Ric (X) = −(n − 1)∇σ and X (τ) = 2σ (n(n − 1)c − τ) , (5.1)

for a constant c, if and only if c > 0 and (Nn, g) is isometric to the sphere S n
c . In the process of the

proof, we have seen that the above conditions together with the assumption that (Nn, g) has positive
Ricci curvature lead us to

∇σ = −cX. (5.2)

Since X is a CONFVF, this indicates that σ is not constant, and furthermore, the compactness of Nn

forces the constant c to be positive. Finally, combining Eq (5.2) with the definition of the CONFVF X
leads us to Obata’s differential equation, concluding that (Nn, g) is isometric to the sphere S n

c .
Note that the CONFVF X on the sphere S n

c with conformal factor σ, by virtue of Eq (1.3), satisfies

Ric (∇σ) =
τ

n
∇σ, (5.3)

where
τ = n(n − 1)c

is the scalar curvature of the sphere S n
c . This naturally leads to the question: Under what conditions

a compact and connected Riemannian manifold (Nn, g) with Ricci operator Ric scalar curvature τ,
admitting a nontrivial CONFVF X with conformal factor σ satisfying Eq (5.3), that is

Ric (∇σ) =
τ

n
∇σ

is isometric to the sphere S n
c? We shall be interested in taking up this question in our future studies.
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