

AIMS Mathematics, 9(10): 28765–28777. DOI: 10.3934/[math.20241395](https://dx.doi.org/ 10.3934/math.20241395) Received: 09 July 2024 Revised: 20 September 2024 Accepted: 30 September 2024 Published: 11 October 2024

https://[www.aimspress.com](https://www.aimspress.com/journal/Math)/journal/Math

Research article

Some new characterizations of spheres and Euclidean spaces using conformal vector fields

Sharief Deshmukh and Mohammed Guediri*

Department of Mathematics, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia

* Correspondence: Email: mguediri@ksu.edu.sa; Tel: +966114676473; Fax: +966114676512.

Abstract: Given a conformal vector field *X* defined on an *n*-dimensional Riemannian manifold (N^n, g) ,
naturally associated to *X* are the conformal factor σ , a smooth function defined on N^n , and a skew naturally associated to *X* are the conformal factor σ , a smooth function defined on N^n , and a skew
symmetric (1, 1) tensor field O, called the associated tensor, that is defined using the 1-form dual to *Y* symmetric (1, 1) tensor field Ω , called the associated tensor, that is defined using the 1-form dual to *X*. In this article, we prove two results. In the first result, we show that if an *n*-dimensional compact and connected Riemannian manifold (N^n, g) , $n > 1$, of positive Ricci curvature admits a nontrivial (non-
Killing) conformal vector field Y with conformal factor σ such that its Ricci operator Re and scalar Killing) conformal vector field *X* with conformal factor σ such that its Ricci operator *Rc* and scalar curvature τ satisfy

$$
Rc(X) = -(n-1)\nabla\sigma \quad \text{and} \quad X(\tau) = 2\sigma\left(n(n-1)c - \tau\right)
$$

for a constant *c*, necessarily $c > 0$ and (N^n, g) is isometric to the sphere S_c^n of constant curvature *c*.
The converge is also shown to be true. In the second result, it is shown that an *n* dimensional complete The converse is also shown to be true. In the second result, it is shown that an *n*-dimensional complete and connected Riemannian manifold (N^n, g) , $n > 1$, admits a nontrivial conformal vector field *X* with conformal factor σ and associated tensor O satisfying conformal factor σ and associated tensor Ω satisfying

$$
Rc(X) = -div\Omega \text{ and } \Omega(X) = 0,
$$

if and only if (N^n, g) is isometric to the Euclidean space (E^n, \langle, \rangle) .

Keywords: conformal field; conformal factor; isometric to sphere; isometric to Euclidean space Mathematics Subject Classification: 53C21, 53C24

1. Introduction

Conformal geometry is one of the oldest branches of differential geometry, as one can follow it through [\[1\]](#page-11-0) as old as 1959. It is evolving with time and getting enriched constantly till one can find the most recent work in [\[2\]](#page-11-1). The main topic in the conformal geometry is about studying the influence

of a conformal vector field *X* on an *n*-dimensional Riemannian manifold (N^n, g) . We shall abbreviate
a conformal vector field *X* by *CONEVE X* for the sake of convenience. There is a smooth function σ a conformal vector field *X* by *CONFVF X* for the sake of convenience. There is a smooth function σ that is naturally associated to a *CONFVFX* on (N^n, g) called the conformal factor satisfying

$$
\frac{1}{2}\pounds_X g = \sigma g,\tag{1.1}
$$

where £ is the Lie derivative operator. A *CONFVF X* is said to be Killing if the conformal factor $\sigma = 0$, and consequently, a nontrivial *CONFVF X* must have a conformal factor $\sigma \neq 0$. There is naturally associated a (1, 1) skew symmetric tensor field Ω to a *CONFVF X* on ($Nⁿ$, *g*) called the associated tensor of *CONFVF X* defined by associated tensor of *CONFVF X*, defined by

$$
\frac{1}{2}d\eta(E,F) = g(\Omega E,F),\qquad(1.2)
$$

for smooth vector fields *E*, *F* on *Nⁿ*, where *η* is the 1-form dual to *X*. This associated tensor Ω plays a
crucial role in studying the impact of a *CONEVE Y* on the geometry of (N^n, a) (see [21]) crucial role in studying the impact of a *CONFVF X* on the geometry of (N^n, g) (see [\[2\]](#page-11-1)).

The sphere S_c^n of constant curvature as a hypersurface of the Euclidean space $(E^{n+1}, \langle, \rangle)$, where \langle, \rangle is the Euclidean metric, has unit normal ζ , induced metric g , and the Weingarten map

$$
S = -\sqrt{c}I.
$$

Choosing a unit constant vector field *Z* on the Euclidean space $(E^{n+1}, \langle, \rangle)$, its tangential component *X* to the sphere *Sⁿ* satisfies to the sphere S_c^n satisfies √ √

$$
\nabla_E X = -\sqrt{c}\rho E \quad \text{and} \quad \nabla \rho = \sqrt{c}X,\tag{1.3}
$$

where

 $\rho = \langle Z, \zeta \rangle$

and $\nabla \rho$ is the gradient of ρ on S_c^n with respect to the induced metric *g*. Thus, we see that *X* is a *CONEVE* on the sphere S^n with conformal factor *CONFVF* on the sphere S_c^n with conformal factor

$$
\sigma=-\sqrt{c}\rho.
$$

This *CONFVF X* is closed, and therefore the associated tensor $\Omega = 0$.

Also, using complex structure *J* on $(E^{2n}, \langle, \rangle)$, define a unit vector field $\xi = J\zeta$, which has covariant derivative

$$
\nabla_E \xi = (JE)^T, \tag{1.4}
$$

where $(JE)^T$ is the tangential component of *JE* to S^{2n-1} and ξ is a Killing vector field, that is,

$$
\pounds_{\xi}g=0.
$$

Now, define a vector field

$$
\overline{X} = X + \xi,
$$

we obtain a *CONFVFX* with conformal factor σ that is not closed and indeed has an associated tensor

$$
\Omega E = (JE)^T.
$$

Non-closed *CONFVF* are in abundance, for instance on the Euclidean space $(E^{2n}, \langle, \rangle)$, if ξ is the negation vector field on E^{2n} then position vector field on E^{2n} , then

$$
X=\xi+J\xi,
$$

where *J* is the complex structure, is a *CONFVF* on $(E^{2n}, \langle, \rangle)$ that is not closed and has an associated tensor. tensor

 $QE = IE$

Riemannian manifolds that admit closed CONFVF have been extensively studied [\[3–](#page-11-2)[5\]](#page-11-3). For related work on conformal vector fields that are not necessarily closed, refer to [\[6](#page-11-4)[–9\]](#page-11-5). We see that while studying the impact of a *CONFVF X* on the geometry of the Riemannian manifold (N^n, g) , on
which it is defined, the associated tensor O offers some resistance in analyzing the geometry which it is defined, the associated tensor Ω offers some resistance in analyzing the geometry. Therefore, this study becomes smooth once one assumes that the *CONFVF X* is closed, which forces the associated tensor Ω to vanish. The study of the impact of the existence of a non-closed *CONFVF* on Riemannian manifolds is relatively difficult, and therefore this difficulty is softened by imposing geometric restrictions on Riemannian manifolds, such as the scalar curvature τ being constant. Riemannian manifolds admitting non-closed *CONFVF* have been studied in [\[8,](#page-11-6) [10,](#page-11-7) [11\]](#page-11-8). Moreover, apart from the fact that the presence of a *CONFVF* on a Riemannian manifold influences its geometry, they are also used in the theory of relativity [\[12–](#page-11-9)[14\]](#page-11-10).

Observe that the Ricci operator *Rc* on a Riemannian manifold (N^n, g) is related to the Ricci tensor *Ric* by

$$
Ric(E, F) = g(RcE, F),
$$

and for the sphere S_c^n the Ricci operator is given by

$$
Rc = (n-1)cI.
$$

Moreover, the conformal factor σ of the *CONFVFX* on S_c^n described in Eq (1.3) satisfies

$$
Rc(X) = -(n-1)\nabla\sigma.
$$
 (1.5)

It naturally raises a question: Under what conditions is a compact and connected Riemannian manifold (N^n, g) admitting a nontrivial *CONFVF X* with conformal factor σ satisfying Eq (1.5) is
isometric to the sphere S^{n_2} isometric to the sphere S_c^n ?

The reader may refer to the following sources, as well as the references in [\[10,](#page-11-7) [15](#page-11-11)[–17\]](#page-12-0), for additional information on this question. In this article, we answer this question and indeed find a new characterization of the sphere S_c^n (see Theorem 1). Finally, in this paper, we find a characterization of the Euclidean space (E^n, \langle, \rangle) using a nontrivial *CONFVF X* with conformal factor σ on a complete
and connected Piemannian manifold (N^n, α) (see Theorem 2) and connected Riemannian manifold (N^n, g) (see Theorem 2).

2. Preliminaries

Let *X* be a nontrivial *CONFVF* on an *n*-dimensional Riemannian manifold (N^n, g) with conformal tor σ . Then employing Eqs. (1.1) and (1.2) in Koszul's formula, we have factor σ . Then employing Eqs (1.1) and (1.2) in Koszul's formula, we have

$$
2(\nabla_E X, F) = (\pounds_X g)(E, F) + d\eta(E, F),
$$

where ∇_E is the covariant derivative with respect to the Riemannian connection on (N^n, g) and *E*, *F* are smooth vector fields on N^n . Consequently, we have smooth vector fields on $Nⁿ$. Consequently, we have

$$
\nabla_E X = \sigma E + \Omega E, \tag{2.1}
$$

where Ω is the associated tensor associated with *CONFVF X*.

Using Eq (2.1), we find the following expression for the curvature tensor field *R*

$$
R(E, F)X = E(\sigma)F - F(\sigma)E + (\nabla_E \Omega)(F) - (\nabla_F \Omega)(E),
$$
\n(2.2)

for smooth vector fields E, F on N^n . Choosing a local frame $\{E_1, \ldots, E_n\}$ on (N^n, g) in the above equation in order to compute the Picci tensor *Pic*, we obtain equation in order to compute the Ricci tensor *Ric*, we obtain

$$
Ric(E, X) = -(n-1)E(\sigma) - g(E, div\Omega),
$$
\n(2.3)

where

$$
div\Omega = \sum_j (\nabla_{E_j} \Omega)(E_j).
$$

Thus, for the *CONFVF X* on an *n*-dimensional Riemannian manifold (N^n, g) with conformal factor
on using Eq. (2.3), for Picci operator Re , we have σ , on using Eq (2.3), for Ricci operator *Rc*, we have

$$
Rc(X) = -(n-1)\nabla\sigma - div\Omega.
$$
 (2.4)

On a Riemannian manifold (N^n, g) , the scalar curvature $\tau = Tr.Rc$ satisfies the following [\[18,](#page-12-1) [19\]](#page-12-2)

$$
\frac{1}{2}\nabla\tau = \text{div}Rc,\tag{2.5}
$$

where

$$
divRc = \sum_j (\nabla_{E_j} Rc)(E_j).
$$

We see that for the *CONFVF X* on an *n*-dimensional Riemannian manifold (N^n, g) with conformal tor σ , on using Eq. (2.1), we have factor σ , on using Eq (2.1), we have

$$
divX = n\sigma. \tag{2.6}
$$

Also, we compute the divergence of the vector field *Rc* (*X*) as follows:

$$
divRc(X) = \sum_{j} g(\nabla_{E_j}Rc(X), E_i)
$$

=
$$
\sum_{j} ((\nabla_{E_j}Rc)(X) + Rc(\nabla_{E_j}X), E_j),
$$

which, on using the symmetry of *Rc* and Eqs (2.1) and (2.5), yields

$$
divRc(X) = \frac{1}{2}X(\tau) + \sum_{j} g\big(Rc(E_j), \sigma E_j + \Omega E_j\big),
$$

and Ω being skew symmetric, we reach at

$$
divRc(X) = \frac{1}{2}X(\tau) + \sigma\tau.
$$
 (2.7)

Similarly, on using Eq (2.1) and the skew symmetry of the associated operator Ω for the *CONFVF X* on an *n*-dimensional Riemannian manifold (N^n, g) with conformal factor σ , we find

$$
div (\Omega X) = -\left\|\Omega\right\|^2 - g\left(X, div\Omega\right),\tag{2.8}
$$

where

$$
\|\Omega\|^2 = \sum_j g\left(\Omega E_j, \Omega E_j\right)
$$

Now, for the conformal factor σ of the *CONFVF X* on an *n*-dimensional Riemannian manifold (N^n, g) , the Hessian *Hess*(σ) of σ is the symmetric bilinear form defined by

$$
Hess(\sigma)(E, F) = E(F\sigma) - (\nabla_E F)(\sigma),
$$

and the Hessian operator \mathcal{H}^{σ} of σ is defined by

$$
Hess(\sigma)(E, F) = g(\mathcal{H}^{\sigma}E, F)
$$

for smooth vector fields *E*, *F* on N^n . The Laplacian $\Delta \sigma$ of σ is defined by

$$
\Delta \sigma = div\,(\nabla \sigma)\,,
$$

which is also given by

$$
\Delta \sigma = Tr \mathcal{H}^{\sigma}
$$

If (N^n, g) is a compact Riemannian manifold, then we have the following Bochner's formula

$$
\int_{N^n} Ric \, (\nabla \sigma, \nabla \sigma) = \int_{N^n} \left((\Delta \sigma)^2 - ||\mathcal{H}^\sigma||^2 \right),\tag{2.9}
$$

where for a local frame $\{E_1, ..., E_n\}$ on N^n

$$
\|\mathcal{H}^{\sigma}\|^2 = \sum_j g\left(\mathcal{H}^{\sigma} E_j, \mathcal{H}^{\sigma} E_j\right).
$$

3. Characterizing spheres using conformal vector fields

Let *X* be a nontrivial *CONFVF* on an *n*-dimensional Riemannian manifold (N^n, g) with conformal tor σ . In this section, we shall answer the questions raised in the introduction. Indeed, first we prove factor σ . In this section, we shall answer the questions raised in the introduction. Indeed, first we prove the following:

Theorem 1. An n-dimensional compact and connected Riemannian manifold (N^n, g) , $n > 1$, of positive Ricci curvature and scalar curvature τ admits a pontrivial CONEVE X with conformal factor *positive Ricci curvature and scalar curvature* τ *admits a nontrivial CONFVF X with conformal factor* σ *satisfying*

$$
Rc(X) = -(n-1)\nabla\sigma \quad and \quad X(\tau) = 2\sigma(n(n-1)c - \tau),
$$

for a constant c, if and only if $c > 0$ *and* (N^n, g) *is isometric to the sphere* S_c^n .

Proof. Suppose *X* is a nontrivial *CONFVF* on an *n*-dimensional compact and connected Riemannian manifold (N^n , g), $n > 1$, of positive Ricci curvature with conformal factor σ , which satisfies

$$
Rc(X) = -(n-1)\nabla\sigma\tag{3.1}
$$

and

$$
X(\tau) = 2\sigma (n(n-1)c - \tau),
$$
\n(3.2)

where *c* is a constant. Using Eqs (2.4) and (3.1), we obtain $div\Omega = 0$ and inserting it in Eq (2.8) yields

$$
div(\Omega X) = -\|\Omega\|^2. \tag{3.3}
$$

Now, in Eq (3.1), taking the inner product with *X*, provides

$$
Ric(X, X) = -(n-1)X(\sigma),
$$

which, in light of Eq (2.6) used in the formula

$$
div (\sigma X) = X(\sigma) + \sigma divX
$$

$$
= X(\sigma) + n\sigma^2,
$$

takes the form

$$
Ric(X, X) = n(n-1)\sigma^2 - (n-1)div(\sigma X).
$$

Integrating the above equation leads to

$$
\int_{N^n} Ric(X, X) = n(n-1) \int_{N^n} \sigma^2.
$$
\n(3.4)

Again, using Eq (3.1), we immediately have

$$
\int_{N^n} Ric(X, \nabla \sigma) = -(n-1) \int_{N^n} ||\nabla \sigma||^2.
$$
\n(3.5)

Next, taking divergence on both sides of Eq (3.1) and making use of Eq (2.7), we get

$$
-(n-1)\Delta\sigma = \frac{1}{2}X(\tau) + \sigma\tau,
$$

which, on treating with Eq (3.2) , reduces to

$$
\Delta \sigma = -nc\sigma. \tag{3.6}
$$

Multiplying the above equation by σ and then integrating leads to

$$
\int_{N^n} \|\nabla \sigma\|^2 = nc \int_{N^n} \sigma^2.
$$
\n(3.7)

Also, we have

$$
Ric (\nabla \sigma + cX, \nabla \sigma + cX) = Ric (\nabla \sigma, \nabla \sigma) + 2cRic (\nabla \sigma, X) + c^2Ric (X, X).
$$

Integrating the above equation and using Eqs (2.9), (3.4), and (3.5), we arrive at

$$
\int_{N^n} Ric \left(\nabla \sigma + cX, \nabla \sigma + cX \right) = \int_{N^n} \left\{ (\Delta \sigma)^2 - ||\mathcal{H}^\sigma||^2 - 2(n-1)c \, ||\nabla \sigma||^2 + n(n-1)c^2 \sigma^2 \right\},
$$

which is rearranged as

$$
\int_{N^n} Ric \left(\nabla \sigma + cX, \nabla \sigma + cX \right) = \int_{N^n} \left\{ - \left(\|\mathcal{H}^\sigma\|^2 - \frac{1}{n} \left(\Delta \sigma \right)^2 \right) + \frac{n-1}{n} \left(\Delta \sigma \right)^2 - 2(n-1)c \left\| \nabla \sigma \right\|^2 + n(n-1)c^2 \sigma^2 \right\}.
$$

Now, inserting Eqs (3.6) and (3.7) in the above equation reveals

$$
\int_{N^n} Ric \left(\nabla \sigma + cX, \nabla \sigma + cX \right) + \int_{N^n} \left(\|\mathcal{H}^\sigma\|^2 - \frac{1}{n} \left(\Delta \sigma \right)^2 \right) = 0. \tag{3.8}
$$

Observe that the integrand in the second integral in Eq (3.8) is non-negative by Schwarz inequality, and the hypothesis requires that the Ricci curvatures of the Riemannian manifold (N^n, g) are positive.
This traps Eq. (3.8) to come forward with only the following solutions: This traps Eq (3.8) to come forward with only the following solutions:

$$
\nabla \sigma + cX = 0, \quad ||\mathcal{H}^{\sigma}||^{2} = \frac{1}{n} (\Delta \sigma)^{2}.
$$
 (3.9)

Interestingly, both equations in Eq (3.9) reach to the same conclusions. First, take the equation

$$
\nabla \sigma + cX = 0,
$$

which on differentiation with respect to a vector field E on $Nⁿ$ and using Eq (2.1), leads to the equation

$$
\mathcal{H}^{\sigma} E + c \sigma E = -c \Omega E, \tag{3.10}
$$

where the left-hand side is symmetric and the right-hand side is skew symmetric. Hence, we have both

$$
\mathcal{H}^{\sigma}E + c\sigma E = 0
$$

and

$$
c\Omega E=0
$$

for arbitrary *E*. Thus, we have two choices: either $c = 0$ or $\Omega = 0$. If $c = 0$, Eq (3.6) will imply σ is a constant, and then the integral of Eq (2.6) will produce $\sigma = 0$: and that is contrary to the fact that *X* is nontrivial. Hence, $\Omega = 0$ and Eq (3.10) reduces to

$$
\mathcal{H}^{\sigma} = -c\sigma I,\tag{3.11}
$$

where σ has to be a non-constant function, for σ a constant implies $\sigma = 0$, which is forbidden by *X* being nontrivial. The second equation in Eq (3.9) also reaches the same conclusion as Eq (3.11). For it is the equality in Schwarz's inequality

$$
\|\mathcal{H}^{\sigma}\|^2 \geq \frac{1}{n} \left(\Delta \sigma\right)^2,
$$

which holds if and only if

$$
\mathcal{H}^{\sigma} = \frac{\Delta \sigma}{n} I,
$$

and combining it with Eq (3.6), gives Eq (3.11). As seen in the above paragraph, the constant $c \neq 0$, indeed, as σ is a non-constant function, Eq (3.7) reveals that $c > 0$. Thus, we have reached the conclusion that Eq (3.11) is Obata's differential equation [\[9,](#page-11-5) [17\]](#page-12-0). Hence, (N^n, g) is isometric to the sphere S^n sphere S^n_c .

Conversely, if (N^n, g) is isometric to the sphere S_c^n , then through Eq (1.3), we have a *CONFVF X*
Sⁿ with conformal factor on S_c^n with conformal factor √

$$
\sigma=-\sqrt{c}\rho.
$$

First, we claim that *X* is a nontrivial *CONFVF* on S_c^n . For if $\sigma = 0$, that is, $\rho = 0$, which on using Eq. (1.3) would imply $Y = 0$ and in turn it would give Eq (1.3) would imply $X = 0$, and in turn it would give

$$
Z = X + \rho \zeta = 0
$$

a contradiction to the fact that *Z* is a unit vector. Hence, *X* is a nontrivial *CONFVF* on S_c^n . Also, for S_c^n , we have

$$
Rc = (n-1)cI,
$$

which, on treating with Eq (1.3) , implies

$$
Rc(X) = (n-1)cX = (n-1)\sqrt{c}\nabla\rho = -(n-1)\nabla\sigma,
$$

that is, Eq (3.1) holds. Also, the scalar curvature τ of S_c^n is

$$
\tau = n(n-1)c
$$

a constant, and therefore, Eq (3.2) holds. Finally, S_c^n is compact and has positive Ricci curvature. Hence, converse is true. \Box

It is worth noticing that the condition (3.2) is essential in the above characterization of S_c^n , as there are compact manifolds admitting a nontrivial *CONFVF* that are not isometric to S_c^n and on them the Eq (3.2) does not hold.

For example, consider the compact Riemannian manifold (N^n, g) , where

$$
N^n = S^1 \times_{\rho} S_c^{(n-1)}
$$

is the warped product, with ρ a smooth positive function on the unit circle S^1 and the warped product metric metric

$$
g = d\theta^2 + \rho^2 \overline{g},
$$

 θ is a coordinate function on S^1 and \overline{g} is the canonical metric on the sphere $S_c^{(n-1)}$ of constant curvature c . Then the vector field *c*. Then the vector field Ω

$$
X = \rho \frac{\partial}{\partial \theta}
$$

on (N^n, g) satisfies [\[19\]](#page-12-2)

$$
\nabla_E X = \rho^{'} E,
$$

where E is any vector field on $Nⁿ$. Thus, we obtain

$$
\frac{1}{2}\pounds_X g = \sigma g,
$$

that is, *X* is a *CONFVF* (N^n , *g*) with conformal factor $\sigma = \rho'$. We have the following expression for the Picci operator P_G on the warped product manifold (N^n , α) [10] the Ricci operator *Rc* on the warped product manifold (N^n, g) [\[19\]](#page-12-2)

$$
Rc(E) = -\frac{n-1}{\rho} \mathcal{H}^{\rho} E
$$
 (3.12)

for a horizontal vector field *E* on *S* 1 and

$$
Rc(V) = (n-2)cV - \left(\frac{\rho''}{\rho} + (n-2)\left(\frac{\rho''}{\rho}\right)^2\right)V
$$

for vertical vector field *V* on S_c^n . As the *CONFVF X* is horizontal, we see by Eq (3.12) that

$$
Rc(X) = -(n-1)\mathcal{H}^{\rho}\left(\frac{\partial}{\partial \theta}\right) = -(n-1)\nabla\sigma,
$$

that is, the condition (3.1) holds for the *CONFVF X* on the compact warped product manifold (N^n , *g*).
The scalar curvature τ of (N^n , *g*) is given by The scalar curvature τ of (N^n, g) is given by

$$
\tau = -\frac{n-1}{\rho^2} \left(2\rho \rho'' + (n-2)\rho'^2 - (n-2)c \right),
$$

which does not satisfy Eq (3.2).

4. Characterizing Euclidean spaces by conformal vector fields

On the Euclidean space (E^n, \langle, \rangle) , there are finitely many nontrivial conformal vector fields. For instance, the position vector field ξ

$$
\xi = \sum_{j} u^{j} \frac{\partial}{\partial u^{j}}
$$
 (4.1)

satisfies

$$
\frac{1}{2}\pounds_{\xi}g=g,
$$

that is, ξ is a *CONFVF* on (E^n, \langle, \rangle) with conformal factor $\sigma = 1$. However, ξ is closed, and therefore
its associated tensor $\Omega = 0$. Next, we construct a non-closed pontrivial *CONFVI* on (E^n, \langle, \rangle) . Define its associated tensor $\Omega = 0$. Next, we construct a non-closed nontrivial *CONFVL* on (E^n, \langle, \rangle) . Define a vector field *X* on E^n , $n > 2$, by

$$
X = \xi + u^2 \frac{\partial}{\partial u^1} - u^1 \frac{\partial}{\partial u^2}.
$$

$$
\nabla_E X = E + \Omega E,
$$
 (4.2)

Then, we see that

where

$$
\Omega E = E\left(u^2\right) \frac{\partial}{\partial u^1} - E\left(u^1\right) \frac{\partial}{\partial u^2},
$$

and it follows that

$$
\langle \Omega E, F \rangle = - \langle E, \Omega F \rangle,
$$

that is, Ω is a skew symmetric (1, 1) tensor on the Euclidean space (E^n, \langle, \rangle) . Using Eq (4.2), one confirms that confirms that

$$
\frac{1}{2}\pounds_X g = g,
$$

that is, *X* is a nontrivial *CONFVF* on (E^n, \langle, \rangle) with conformal factor $\sigma = 1$, and it is not a closed vector field field. Moreover, we see that there are finitely many of these types of nontrivial conformal vector fields on the Euclidean space (E^n, \langle, \rangle) .
In this section, we find the fo

In this section, we find the following characterization for a Euclidean space.

Theorem 2. *Let X be a nontrivial CONFVF on an n-dimensional complete and connected Riemannian manifold* (*Nⁿ*,*g*)*, n* > 1*, with conformal factor σ and* associated tensor Ω*. Then the*
following conditions hold: *following conditions hold:*

$$
Rc(X) = -div\Omega, \quad \Omega(X) = 0,
$$

if and only if (N^n, g) *is isometric to the Euclidean space* (E^n, \langle, \rangle) *.*

Proof. Suppose an *n*-dimensional complete and connected Riemannian manifold (N^n, g) admits a portrivial *CONEVI* Y with conformal factor σ and associated tensor O satisfying nontrivial *CONFVL X* with conformal factor σ and associated tensor Ω satisfying

$$
Rc(X) = -div\Omega
$$
\n(4.3)

and

$$
\Omega(X) = 0.\tag{4.4}
$$

Using Eqs (2.4), (4.3), and $n > 1$, we reach the conclusion that σ is a constant. It is clear that the pattern $\sigma \neq 0$ due to the fact that Y is pontrivial. Next, define a smooth function α by constant $\sigma \neq 0$ due to the fact that *X* is nontrivial. Next, define a smooth function α by

$$
2\alpha = ||X||^2.
$$

Then, using Eqs (2.1) and (4.4), we find the gradient of the smooth function α is given by

$$
\nabla \alpha = \sigma X. \tag{4.5}
$$

Since the *CONFVF X* is nontrivial and the constant $\sigma \neq 0$, the above equation confirms that the function α is not a constant. Now, differentiating Eq (4.5) with respect to a vector field *E* on N^n and using Eq (2.1), we arrive at using Eq (2.1) , we arrive at

$$
\mathcal{H}^{\alpha}E = \sigma^2 E + \sigma \Omega E,
$$

and taking the inner product in the above equation by *E*, yields

$$
Hess(\alpha)(E, E) = \sigma^2 g(E, E).
$$

On polarizing the above equation, we conclude

$$
Hess(\alpha) = \sigma^2 g,\tag{4.6}
$$

where α is a non-constant function and σ^2 is a nonzero constant. Equation (4.6) guarantees that (N^n, g)
is isometric to the Euclidean space (F^n, f) is isometric to the Euclidean space (E^n, \langle, \rangle) .
The converse is trivial, for the position v

The converse is trivial, for the position vector field ξ given in (4.1) is a nontrivial *CONFVF* on the Euclidean space (E^n, \langle, \rangle) with conformal factor $\sigma = 1$, and it being closed, we have associated tensor $\Omega = 0$. Also, for the Euclidean space $(E^n \wedge \rangle)$ being flat, we have Ricci operator $Re = 0$, and we see $\Omega = 0$. Also, for the Euclidean space (E^n, \langle, \rangle) being flat, we have Ricci operator $Rc = 0$, and we see that the conditions (4.3) and (4.4) are automatically satisfied. Hence, the converse that the conditions (4.3) and (4.4) are automatically satisfied. Hence, the converse. \Box

It is needless to mention that one of the most interesting and most sought-out questions in differential geometry is to find different characterizations of the model spaces, namely, the sphere S_c^n of constant curvature *c*, the Euclidean space E^n , and the hyperbolic space H^n_{-c} of constant curvature $-c$ (*c* > 0). In the present paper, we witnessed that an *n* dimensional compact and connected Piemannian manifold the present paper, we witnessed that an *n*-dimensional compact and connected Riemannian manifold (N^n, g) , $n > 1$, of positive Ricci curvature and scalar curvature admits a nontrivial *CONFVF X* with conformal factor σ satisfying the conditions conformal factor σ satisfying the conditions

$$
Ric(X) = -(n-1)\nabla\sigma \text{ and } X(\tau) = 2\sigma(n(n-1)c - \tau), \qquad (5.1)
$$

for a constant *c*, if and only if $c > 0$ and (N^n, g) is isometric to the sphere S_c^n . In the process of the proces proof, we have seen that the above conditions together with the assumption that (N^n, g) has positive Ricci curvature lead us to Ricci curvature lead us to

$$
\nabla \sigma = -cX.\tag{5.2}
$$

Since *X* is a *CONFVF*, this indicates that σ is not constant, and furthermore, the compactness of N^n
ces the constant c to be positive. Finally, combining Eq. (5.2) with the definition of the *CONFVF* Y forces the constant *c* to be positive. Finally, combining Eq (5.2) with the definition of the *CONFVF X* leads us to Obata's differential equation, concluding that (N^n, g) is isometric to the sphere S^n_c .
Note that the *CONEVE Y* on the sphere S^n with conformal factor σ , by virtue of Eq. (1.3).

Note that the *CONFVF X* on the sphere S_c^n with conformal factor σ , by virtue of Eq (1.3), satisfies

$$
Ric\left(\nabla\sigma\right) = \frac{\tau}{n}\nabla\sigma,\tag{5.3}
$$

where

$$
\tau = n(n-1)c
$$

is the scalar curvature of the sphere S_c^n . This naturally leads to the question: Under what conditions a compact and connected Riemannian manifold (N^n, g) with Ricci operator *Ric* scalar curvature τ ,
admitting a pontrivial *CONEVE X* with conformal factor σ satisfying Eq. (5.3), that is admitting a nontrivial *CONFVF X* with conformal factor σ satisfying Eq (5.3), that is

$$
Ric\left(\nabla\sigma\right) = \frac{\tau}{n}\nabla\sigma
$$

is isometric to the sphere S_c^n ? We shall be interested in taking up this question in our future studies.

Author contributions

S. Deshmukh: conceptualization, investigation, methodology, validation, writing-original draft, formal analysis, validation, inspection; M. Guediri: conceptualization, investigation, methodology, formal analysis, writing-review and editing, validation, inspection. All authors have read and agreed to the published version of the manuscript.

Acknowledgments

This research was supported by Researchers Supporting Project number (RSPD2024R1053), King Saud University, Riyadh, Saudi Arabia.

Conflict of interest

The authors declare that there are no conflicts of interest.

References

- 1. K. Yano, *Integral formulas in Riemannian geometry*, Marcel Dekker Inc., 1970.
- 2. S. Hwang, G. Yun, Conformal vector fields and their applications to Einstein-type manifolds, *Results Math.*, 79 (2024), 45. https://doi.org/10.1007/[s00025-023-02070-7](https://dx.doi.org/https://doi.org/10.1007/s00025-023-02070-7)
- 3. A. Caminha, The geometry of closed conformal vector fields on Riemannian spaces, *Bull. Braz. Math. Soc. New Ser.*, 42 (2011), 277–300. https://doi.org/10.1007/[s00574-011-0015-6](https://dx.doi.org/https://doi.org/10.1007/s00574-011-0015-6)
- 4. J. F. da S. Filho, Critical point equation and closed conformal vector fields, *Math. Nach.*, 293 (2020), 2299–2305. https://doi.org/10.1002/[mana.201900316](https://dx.doi.org/https://doi.org/10.1002/mana.201900316)
- 5. S. Tanno, W. Weber, Closed conformal vector fields, *J. Di*ff*er. Geom.*, 3 (1969), 361–366. https://doi.org/10.4310/JDG/[1214429058](https://dx.doi.org/https://doi.org/10.4310/JDG/1214429058)
- 6. W. Kuhnel, H. B. Rademacher, Conformal diffeomorphisms preserving the Ricci tensor, *Proc. Amer. Math. Soc.*, 123 (1995), 2841–2848.
- 7. W. Kuhnel, H. B. Rademacher, Einstein spaces with a conformal group, *Results Math.*, 56 (2009), 421. https://doi.org/10.1007/[s00025-009-0440-7](https://dx.doi.org/https://doi.org/10.1007/s00025-009-0440-7)
- 8. W. Kühnel, H. B. Rademacher, Conformal vector fields on pseudo-Riemannian spaces, Differ. *Geom. Appl.*, 7 (1997), 237–250. https://doi.org/10.1016/[S0926-2245\(96\)00052-6](https://dx.doi.org/https://doi.org/10.1016/S0926-2245(96)00052-6)
- 9. M. Obata, The conjectures about conformal transformations, *J. Di*ff*er. Geom.*, 6 (1971), 247–258. https://doi.org/10.4310/JDG/[1214430407](https://dx.doi.org/https://doi.org/10.4310/JDG/1214430407)
- 10. S. Deshmukh, Characterizing spheres and Euclidean spaces by conformal vector field, *Ann. Mat. Pura Appl.*, 196 (2017), 2135–2145. https://doi.org/10.1007/[s10231-017-0657-0](https://dx.doi.org/https://doi.org/10.1007/s10231-017-0657-0)
- 11. K. Yano, T. Nagano, Einstein spaces admitting a one-parameter group of conformal transformations, *North-holland Math. Stud.*, 70 (1982), 219–229. https://doi.org/[10.1016](https://dx.doi.org/https://doi.org/10.1016/S0304-0208(08)72248-5)/S0304- [0208\(08\)72248-5](https://dx.doi.org/https://doi.org/10.1016/S0304-0208(08)72248-5)
- 12. B. Y. Chen, A simple characterization of generalized Robertson-Walker spacetimes, *Gen. Relat. Gravit.*, 46 (2014), 1833. https://doi.org/10.1007/[s10714-014-1833-9](https://dx.doi.org/https://doi.org/10.1007/s10714-014-1833-9)
- 13. G. S. Hall, Conformal vector fields and conformal-type collineations in space-times, *Gen. Relat. Gravit.*, 32 (2000), 933–941. https://doi.org/10.1023/[A:1001941209388](https://dx.doi.org/https://doi.org/10.1023/A:1001941209388)
- 14. G. S. Hall, J. D. Steele, Conformal vector fields in general relativity, *J. Math. Phys.*, 32 (1991), 1847. https://doi.org/10.1063/[1.529249](https://dx.doi.org/https://doi.org/10.1063/1.529249)
- 15. S. Deshmukh, M. Guediri, Characterization of Euclidean spheres, *AIMS Math.*, 6 (2021), 7733– 7740. https://doi.org/10.3934/[math.2021449](https://dx.doi.org/https://doi.org/10.3934/math.2021449)
- 16. M. Guediri, S. Deshmukh, Hypersurfaces in a Euclidean space with a Killing vector field, *AIMS Math.*, 9 (2024), 1899–1910. https://doi.org/10.3934/[math.2024093](https://dx.doi.org/https://doi.org/10.3934/math.2024093)
- 17. M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, *J. Math. Soc. Jpn.*, 14 (1962), 333–340. https://doi.org/10.2969/JMSJ/[01430333](https://dx.doi.org/https://doi.org/10.2969/JMSJ/01430333)
- 18. A. L. Besse, *Einstein manifolds*, Springer-Verlag, 1987. https://doi.org/10.1007/[978-3-540-74311-](https://dx.doi.org/https://doi.org/10.1007/978-3-540-74311-8) [8](https://dx.doi.org/https://doi.org/10.1007/978-3-540-74311-8)
- 19. B. O'Neill, *Semi-Riemannian geometry with applications to relativity*, Academic Press, 1983.

© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://[creativecommons.org](https://creativecommons.org/licenses/by/4.0)/licenses/by/4.0)