

AIMS Mathematics, 9(10): 28765–28777. DOI: 10.3934/math.20241395 Received: 09 July 2024 Revised: 20 September 2024 Accepted: 30 September 2024 Published: 11 October 2024

https://www.aimspress.com/journal/Math

## Research article

# Some new characterizations of spheres and Euclidean spaces using conformal vector fields

# Sharief Deshmukh and Mohammed Guediri\*

Department of Mathematics, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia

\* Correspondence: Email: mguediri@ksu.edu.sa; Tel: +966114676473; Fax: +966114676512.

**Abstract:** Given a conformal vector field *X* defined on an *n*-dimensional Riemannian manifold  $(N^n, g)$ , naturally associated to *X* are the conformal factor  $\sigma$ , a smooth function defined on  $N^n$ , and a skew symmetric (1, 1) tensor field  $\Omega$ , called the associated tensor, that is defined using the 1-form dual to *X*. In this article, we prove two results. In the first result, we show that if an *n*-dimensional compact and connected Riemannian manifold  $(N^n, g)$ , n > 1, of positive Ricci curvature admits a nontrivial (non-Killing) conformal vector field *X* with conformal factor  $\sigma$  such that its Ricci operator *Rc* and scalar curvature  $\tau$  satisfy

$$Rc(X) = -(n-1)\nabla\sigma$$
 and  $X(\tau) = 2\sigma(n(n-1)c - \tau)$ 

for a constant *c*, necessarily c > 0 and  $(N^n, g)$  is isometric to the sphere  $S_c^n$  of constant curvature *c*. The converse is also shown to be true. In the second result, it is shown that an *n*-dimensional complete and connected Riemannian manifold  $(N^n, g)$ , n > 1, admits a nontrivial conformal vector field *X* with conformal factor  $\sigma$  and associated tensor  $\Omega$  satisfying

$$Rc(X) = -div\Omega$$
 and  $\Omega(X) = 0$ ,

if and only if  $(N^n, g)$  is isometric to the Euclidean space  $(E^n, \langle, \rangle)$ .

**Keywords:** conformal field; conformal factor; isometric to sphere; isometric to Euclidean space **Mathematics Subject Classification:** 53C21, 53C24

## 1. Introduction

Conformal geometry is one of the oldest branches of differential geometry, as one can follow it through [1] as old as 1959. It is evolving with time and getting enriched constantly till one can find the most recent work in [2]. The main topic in the conformal geometry is about studying the influence

of a conformal vector field X on an *n*-dimensional Riemannian manifold  $(N^n, g)$ . We shall abbreviate a conformal vector field X by *CONFVF* X for the sake of convenience. There is a smooth function  $\sigma$ that is naturally associated to a *CONFVFX* on  $(N^n, g)$  called the conformal factor satisfying

$$\frac{1}{2}\pounds_X g = \sigma g, \tag{1.1}$$

where £ is the Lie derivative operator. A *CONFVF X* is said to be Killing if the conformal factor  $\sigma = 0$ , and consequently, a nontrivial *CONFVF X* must have a conformal factor  $\sigma \neq 0$ . There is naturally associated a (1, 1) skew symmetric tensor field  $\Omega$  to a *CONFVF X* on ( $N^n$ , g) called the associated tensor of *CONFVF X*, defined by

$$\frac{1}{2}d\eta(E,F) = g\left(\Omega E,F\right),\tag{1.2}$$

for smooth vector fields E, F on  $N^n$ , where  $\eta$  is the 1-form dual to X. This associated tensor  $\Omega$  plays a crucial role in studying the impact of a *CONFVF* X on the geometry of  $(N^n, g)$  (see [2]).

The sphere  $S_c^n$  of constant curvature as a hypersurface of the Euclidean space  $(E^{n+1}, \langle, \rangle)$ , where  $\langle, \rangle$  is the Euclidean metric, has unit normal  $\zeta$ , induced metric g, and the Weingarten map

$$S = -\sqrt{cI}.$$

Choosing a unit constant vector field Z on the Euclidean space  $(E^{n+1}, \langle, \rangle)$ , its tangential component X to the sphere  $S_c^n$  satisfies

$$\nabla_E X = -\sqrt{c\rho E}$$
 and  $\nabla \rho = \sqrt{c} X$ , (1.3)

where

 $\rho = \langle Z, \zeta \rangle$ 

and  $\nabla \rho$  is the gradient of  $\rho$  on  $S_c^n$  with respect to the induced metric g. Thus, we see that X is a *CONFVF* on the sphere  $S_c^n$  with conformal factor

$$\sigma = -\sqrt{c\rho}.$$

This *CONFVF X* is closed, and therefore the associated tensor  $\Omega = 0$ .

Also, using complex structure J on  $(E^{2n}, \langle, \rangle)$ , define a unit vector field  $\xi = J\zeta$ , which has covariant derivative

$$\nabla_E \xi = (JE)^T \,, \tag{1.4}$$

where  $(JE)^T$  is the tangential component of JE to  $S^{2n-1}$  and  $\xi$  is a Killing vector field, that is,

$$\pounds_{\xi}g=0.$$

Now, define a vector field

$$\overline{X} = X + \xi,$$

we obtain a  $CONFVF\overline{X}$  with conformal factor  $\sigma$  that is not closed and indeed has an associated tensor

$$\Omega E = (JE)^T.$$

AIMS Mathematics

Non-closed *CONFVF* are in abundance, for instance on the Euclidean space  $(E^{2n}, \langle, \rangle)$ , if  $\xi$  is the position vector field on  $E^{2n}$ , then

$$X = \xi + J\xi,$$

where J is the complex structure, is a *CONFVF* on  $(E^{2n}, \langle, \rangle)$  that is not closed and has an associated tensor

 $\Omega E = JE.$ 

Riemannian manifolds that admit closed CONFVF have been extensively studied [3–5]. For related work on conformal vector fields that are not necessarily closed, refer to [6–9]. We see that while studying the impact of a *CONFVF X* on the geometry of the Riemannian manifold ( $N^n$ , g), on which it is defined, the associated tensor  $\Omega$  offers some resistance in analyzing the geometry. Therefore, this study becomes smooth once one assumes that the *CONFVF X* is closed, which forces the associated tensor  $\Omega$  to vanish. The study of the impact of the existence of a non-closed *CONFVF* on Riemannian manifolds is relatively difficult, and therefore this difficulty is softened by imposing geometric restrictions on Riemannian manifolds, such as the scalar curvature  $\tau$  being constant. Riemannian manifolds admitting non-closed *CONFVF* have been studied in [8, 10, 11]. Moreover, apart from the fact that the presence of a *CONFVF* on a Riemannian manifold influences its geometry, they are also used in the theory of relativity [12–14].

Observe that the Ricci operator Rc on a Riemannian manifold  $(N^n, g)$  is related to the Ricci tensor *Ric* by

$$Ric(E,F) = g(RcE,F),$$

and for the sphere  $S_c^n$  the Ricci operator is given by

$$Rc = (n-1)cI.$$

Moreover, the conformal factor  $\sigma$  of the CONFVFX on  $S_c^n$  described in Eq (1.3) satisfies

$$Rc(X) = -(n-1)\nabla\sigma.$$
(1.5)

It naturally raises a question: Under what conditions is a compact and connected Riemannian manifold  $(N^n, g)$  admitting a nontrivial *CONFVF X* with conformal factor  $\sigma$  satisfying Eq (1.5) is isometric to the sphere  $S_c^n$ ?

The reader may refer to the following sources, as well as the references in [10, 15–17], for additional information on this question. In this article, we answer this question and indeed find a new characterization of the sphere  $S_c^n$  (see Theorem 1). Finally, in this paper, we find a characterization of the Euclidean space  $(E^n, \langle, \rangle)$  using a nontrivial *CONFVF X* with conformal factor  $\sigma$  on a complete and connected Riemannian manifold  $(N^n, g)$  (see Theorem 2).

## 2. Preliminaries

Let *X* be a nontrivial *CONFVF* on an *n*-dimensional Riemannian manifold  $(N^n, g)$  with conformal factor  $\sigma$ . Then employing Eqs (1.1) and (1.2) in Koszul's formula, we have

$$2\left(\nabla_{E}X,F\right) = (\pounds_{X}g)\left(E,F\right) + d\eta\left(E,F\right),$$

**AIMS Mathematics** 

where  $\nabla_E$  is the covariant derivative with respect to the Riemannian connection on  $(N^n, g)$  and E, F are smooth vector fields on  $N^n$ . Consequently, we have

$$\nabla_E X = \sigma E + \Omega E, \tag{2.1}$$

where  $\Omega$  is the associated tensor associated with *CONFVF X*.

Using Eq (2.1), we find the following expression for the curvature tensor field R

$$R(E, F)X = E(\sigma)F - F(\sigma)E + (\nabla_E \Omega)(F) - (\nabla_F \Omega)(E), \qquad (2.2)$$

for smooth vector fields E, F on  $N^n$ . Choosing a local frame  $\{E_1, \ldots, E_n\}$  on  $(N^n, g)$  in the above equation in order to compute the Ricci tensor *Ric*, we obtain

$$Ric(E, X) = -(n-1)E(\sigma) - g(E, div\Omega), \qquad (2.3)$$

where

$$div\Omega = \sum_{j} \left( \nabla_{E_j} \Omega \right) (E_j)$$

Thus, for the *CONFVF X* on an *n*-dimensional Riemannian manifold  $(N^n, g)$  with conformal factor  $\sigma$ , on using Eq (2.3), for Ricci operator Rc, we have

$$Rc(X) = -(n-1)\nabla\sigma - div\Omega.$$
(2.4)

On a Riemannian manifold  $(N^n, g)$ , the scalar curvature  $\tau = Tr.Rc$  satisfies the following [18, 19]

$$\frac{1}{2}\nabla\tau = divRc,$$
(2.5)

where

$$divRc = \sum_{j} \left( \nabla_{E_j} Rc \right) (E_j)$$

We see that for the *CONFVF X* on an *n*-dimensional Riemannian manifold  $(N^n, g)$  with conformal factor  $\sigma$ , on using Eq (2.1), we have

$$divX = n\sigma. \tag{2.6}$$

Also, we compute the divergence of the vector field Rc(X) as follows:

$$divRc(X) = \sum_{j} g\left(\nabla_{E_{j}}Rc(X), E_{i}\right)$$
$$= \sum_{j} \left(\left(\nabla_{E_{j}}Rc\right)(X) + Rc\left(\nabla_{E_{j}}X\right), E_{j}\right),$$

which, on using the symmetry of Rc and Eqs (2.1) and (2.5), yields

$$divRc(X) = \frac{1}{2}X(\tau) + \sum_{j} g\left(Rc\left(E_{j}\right), \sigma E_{j} + \Omega E_{j}\right),$$

**AIMS Mathematics** 

and  $\Omega$  being skew symmetric, we reach at

$$divRc(X) = \frac{1}{2}X(\tau) + \sigma\tau.$$
(2.7)

Similarly, on using Eq (2.1) and the skew symmetry of the associated operator  $\Omega$  for the *CONFVF X* on an *n*-dimensional Riemannian manifold ( $N^n$ , g) with conformal factor  $\sigma$ , we find

$$div\left(\Omega X\right) = -\left\|\Omega\right\|^2 - g\left(X, div\Omega\right),\tag{2.8}$$

where

$$\|\Omega\|^2 = \sum_j g\left(\Omega E_j, \Omega E_j\right)$$

Now, for the conformal factor  $\sigma$  of the *CONFVF X* on an *n*-dimensional Riemannian manifold  $(N^n, g)$ , the Hessian  $Hess(\sigma)$  of  $\sigma$  is the symmetric bilinear form defined by

$$Hess(\sigma)(E,F) = E(F\sigma) - (\nabla_E F)(\sigma),$$

and the Hessian operator  $\mathcal{H}^{\sigma}$  of  $\sigma$  is defined by

$$Hess(\sigma)(E,F) = g(\mathcal{H}^{\sigma}E,F)$$

for smooth vector fields E, F on  $N^n$ . The Laplacian  $\Delta \sigma$  of  $\sigma$  is defined by

$$\Delta \sigma = div (\nabla \sigma),$$

which is also given by

$$\Delta \sigma = Tr.\mathcal{H}^{\sigma}.$$

If  $(N^n, g)$  is a compact Riemannian manifold, then we have the following Bochner's formula

$$\int_{N^n} Ric\left(\nabla\sigma, \nabla\sigma\right) = \int_{N^n} \left( (\Delta\sigma)^2 - \|\mathcal{H}^{\sigma}\|^2 \right), \tag{2.9}$$

where for a local frame  $\{E_1, ..., E_n\}$  on  $N^n$ 

$$\|\mathcal{H}^{\sigma}\|^{2} = \sum_{j} g\left(\mathcal{H}^{\sigma}E_{j}, \mathcal{H}^{\sigma}E_{j}\right)$$

#### 3. Characterizing spheres using conformal vector fields

Let *X* be a nontrivial *CONFVF* on an *n*-dimensional Riemannian manifold  $(N^n, g)$  with conformal factor  $\sigma$ . In this section, we shall answer the questions raised in the introduction. Indeed, first we prove the following:

**Theorem 1.** An *n*-dimensional compact and connected Riemannian manifold  $(N^n, g)$ , n > 1, of positive Ricci curvature and scalar curvature  $\tau$  admits a nontrivial CONFVF X with conformal factor  $\sigma$  satisfying

$$Rc(X) = -(n-1)\nabla\sigma$$
 and  $X(\tau) = 2\sigma(n(n-1)c - \tau)$ ,

for a constant c, if and only if c > 0 and  $(N^n, g)$  is isometric to the sphere  $S_c^n$ .

AIMS Mathematics

*Proof.* Suppose *X* is a nontrivial *CONFVF* on an *n*-dimensional compact and connected Riemannian manifold  $(N^n, g)$ , n > 1, of positive Ricci curvature with conformal factor  $\sigma$ , which satisfies

$$Rc(X) = -(n-1)\nabla\sigma \tag{3.1}$$

and

$$X(\tau) = 2\sigma \left( n(n-1)c - \tau \right), \tag{3.2}$$

where c is a constant. Using Eqs (2.4) and (3.1), we obtain  $div\Omega = 0$  and inserting it in Eq (2.8) yields

$$div\left(\Omega X\right) = -\left\|\Omega\right\|^2. \tag{3.3}$$

Now, in Eq (3.1), taking the inner product with *X*, provides

$$Ric(X,X) = -(n-1)X(\sigma),$$

which, in light of Eq (2.6) used in the formula

$$div(\sigma X) = X(\sigma) + \sigma div X$$
$$= X(\sigma) + n\sigma^{2},$$

takes the form

$$Ric(X, X) = n(n-1)\sigma^2 - (n-1)div(\sigma X).$$

Integrating the above equation leads to

$$\int_{N^{n}} Ric(X, X) = n(n-1) \int_{N^{n}} \sigma^{2}.$$
(3.4)

Again, using Eq (3.1), we immediately have

$$\int_{N^n} Ric(X, \nabla \sigma) = -(n-1) \int_{N^n} \|\nabla \sigma\|^2.$$
(3.5)

Next, taking divergence on both sides of Eq (3.1) and making use of Eq (2.7), we get

$$-(n-1)\Delta\sigma = \frac{1}{2}X(\tau) + \sigma\tau,$$

which, on treating with Eq (3.2), reduces to

$$\Delta \sigma = -nc\sigma. \tag{3.6}$$

Multiplying the above equation by  $\sigma$  and then integrating leads to

$$\int_{N^n} \|\nabla \sigma\|^2 = nc \int_{N^n} \sigma^2.$$
(3.7)

Also, we have

$$Ric \left(\nabla \sigma + cX, \nabla \sigma + cX\right) = Ric \left(\nabla \sigma, \nabla \sigma\right) + 2cRic \left(\nabla \sigma, X\right) + c^2Ric \left(X, X\right)$$

AIMS Mathematics

Integrating the above equation and using Eqs (2.9), (3.4), and (3.5), we arrive at

$$\int_{N^n} Ric \left(\nabla \sigma + cX, \nabla \sigma + cX\right) = \int_{N^n} \left\{ (\Delta \sigma)^2 - \|\mathcal{H}^\sigma\|^2 - 2(n-1)c \|\nabla \sigma\|^2 + n(n-1)c^2 \sigma^2 \right\},$$

which is rearranged as

$$\int_{N^n} Ric \left(\nabla \sigma + cX, \nabla \sigma + cX\right) = \int_{N^n} \left\{ -\left( \left\| \mathcal{H}^{\sigma} \right\|^2 - \frac{1}{n} \left(\Delta \sigma\right)^2 \right) + \frac{n-1}{n} \left(\Delta \sigma\right)^2 - 2(n-1)c \left\| \nabla \sigma \right\|^2 + n(n-1)c^2 \sigma^2 \right\}.$$

Now, inserting Eqs (3.6) and (3.7) in the above equation reveals

$$\int_{N^n} Ric \left(\nabla \sigma + cX, \nabla \sigma + cX\right) + \int_{N^n} \left( \left\| \mathcal{H}^{\sigma} \right\|^2 - \frac{1}{n} \left(\Delta \sigma\right)^2 \right) = 0.$$
(3.8)

Observe that the integrand in the second integral in Eq (3.8) is non-negative by Schwarz inequality, and the hypothesis requires that the Ricci curvatures of the Riemannian manifold ( $N^n$ , g) are positive. This traps Eq (3.8) to come forward with only the following solutions:

$$\nabla \sigma + cX = 0, \quad \left\| \mathcal{H}^{\sigma} \right\|^{2} = \frac{1}{n} \left( \Delta \sigma \right)^{2}.$$
(3.9)

Interestingly, both equations in Eq (3.9) reach to the same conclusions. First, take the equation

$$\nabla \sigma + cX = 0$$

which on differentiation with respect to a vector field E on  $N^n$  and using Eq (2.1), leads to the equation

$$\mathcal{H}^{\sigma}E + c\sigma E = -c\Omega E, \qquad (3.10)$$

where the left-hand side is symmetric and the right-hand side is skew symmetric. Hence, we have both

$$\mathcal{H}^{\sigma}E + c\sigma E = 0$$

and

$$c\Omega E = 0$$

for arbitrary *E*. Thus, we have two choices: either c = 0 or  $\Omega = 0$ . If c = 0, Eq (3.6) will imply  $\sigma$  is a constant, and then the integral of Eq (2.6) will produce  $\sigma = 0$ : and that is contrary to the fact that *X* is nontrivial. Hence,  $\Omega = 0$  and Eq (3.10) reduces to

$$\mathcal{H}^{\sigma} = -c\sigma I, \tag{3.11}$$

where  $\sigma$  has to be a non-constant function, for  $\sigma$  a constant implies  $\sigma = 0$ , which is forbidden by X being nontrivial. The second equation in Eq (3.9) also reaches the same conclusion as Eq (3.11). For it is the equality in Schwarz's inequality

$$\|\mathcal{H}^{\sigma}\|^{2} \geq \frac{1}{n} \left(\Delta \sigma\right)^{2},$$

**AIMS Mathematics** 

which holds if and only if

$$\mathcal{H}^{\sigma} = \frac{\Delta \sigma}{n} I,$$

and combining it with Eq (3.6), gives Eq (3.11). As seen in the above paragraph, the constant  $c \neq 0$ , indeed, as  $\sigma$  is a non-constant function, Eq (3.7) reveals that c > 0. Thus, we have reached the conclusion that Eq (3.11) is Obata's differential equation [9, 17]. Hence,  $(N^n, g)$  is isometric to the sphere  $S_c^n$ .

Conversely, if  $(N^n, g)$  is isometric to the sphere  $S_c^n$ , then through Eq (1.3), we have a *CONFVF X* on  $S_c^n$  with conformal factor

$$\sigma = -\sqrt{c\rho}.$$

First, we claim that X is a nontrivial *CONFVF* on  $S_c^n$ . For if  $\sigma = 0$ , that is,  $\rho = 0$ , which on using Eq (1.3) would imply X = 0, and in turn it would give

$$Z = X + \rho \zeta = 0$$

a contradiction to the fact that Z is a unit vector. Hence, X is a nontrivial CONFVF on  $S_c^n$ . Also, for  $S_c^n$ , we have

$$Rc = (n-1)cI,$$

which, on treating with Eq (1.3), implies

$$Rc(X) = (n-1)cX = (n-1)\sqrt{c}\nabla\rho = -(n-1)\nabla\sigma,$$

that is, Eq (3.1) holds. Also, the scalar curvature  $\tau$  of  $S_c^n$  is

$$\tau = n(n-1)c$$

a constant, and therefore, Eq (3.2) holds. Finally,  $S_c^n$  is compact and has positive Ricci curvature. Hence, converse is true.

It is worth noticing that the condition (3.2) is essential in the above characterization of  $S_c^n$ , as there are compact manifolds admitting a nontrivial *CONFVF* that are not isometric to  $S_c^n$  and on them the Eq (3.2) does not hold.

For example, consider the compact Riemannian manifold  $(N^n, g)$ , where

$$N^n = S^1 \times_\rho S_c^{(n-1)}$$

is the warped product, with  $\rho$  a smooth positive function on the unit circle  $S^1$  and the warped product metric

$$g = d\theta^2 + \rho^2 \overline{g},$$

 $\theta$  is a coordinate function on  $S^1$  and  $\overline{g}$  is the canonical metric on the sphere  $S_c^{(n-1)}$  of constant curvature c. Then the vector field

$$X = \rho \frac{\partial}{\partial \theta}$$

on  $(N^n, g)$  satisfies [19]

$$\nabla_E X = \rho E,$$

AIMS Mathematics

where E is any vector field on  $N^n$ . Thus, we obtain

$$\frac{1}{2}\mathfrak{t}_Xg=\sigma g,$$

that is, *X* is a *CONFVF* ( $N^n$ , g) with conformal factor  $\sigma = \rho'$ . We have the following expression for the Ricci operator *Rc* on the warped product manifold ( $N^n$ , g) [19]

$$Rc(E) = -\frac{n-1}{\rho} \mathcal{H}^{\rho} E$$
(3.12)

for a horizontal vector field E on  $S^1$  and

$$Rc(V) = (n-2)cV - \left(\frac{\rho''}{\rho} + (n-2)\left(\frac{\rho''}{\rho}\right)^{2}\right)V$$

for vertical vector field V on  $S_c^n$ . As the CONFVF X is horizontal, we see by Eq (3.12) that

$$Rc(X) = -(n-1)\mathcal{H}^{\rho}\left(\frac{\partial}{\partial\theta}\right) = -(n-1)\nabla\sigma$$

that is, the condition (3.1) holds for the *CONFVF X* on the compact warped product manifold  $(N^n, g)$ . The scalar curvature  $\tau$  of  $(N^n, g)$  is given by

$$\tau = -\frac{n-1}{\rho^2} \left( 2\rho \rho^{''} + (n-2)\rho^{'2} - (n-2)c \right),$$

which does not satisfy Eq (3.2).

#### 4. Characterizing Euclidean spaces by conformal vector fields

On the Euclidean space  $(E^n, \langle, \rangle)$ , there are finitely many nontrivial conformal vector fields. For instance, the position vector field  $\xi$ 

$$\xi = \sum_{j} u^{j} \frac{\partial}{\partial u^{j}} \tag{4.1}$$

satisfies

$$\frac{1}{2}\pounds_{\xi}g = g,$$

that is,  $\xi$  is a *CONFVF* on  $(E^n, \langle, \rangle)$  with conformal factor  $\sigma = 1$ . However,  $\xi$  is closed, and therefore its associated tensor  $\Omega = 0$ . Next, we construct a non-closed nontrivial *CONFVL* on  $(E^n, \langle, \rangle)$ . Define a vector field X on  $E^n$ , n > 2, by

$$X = \xi + u^2 \frac{\partial}{\partial u^1} - u^1 \frac{\partial}{\partial u^2}.$$
  

$$\nabla_E X = E + \Omega E,$$
(4.2)

Then, we see that

where

$$\Omega E = E\left(u^2\right)\frac{\partial}{\partial u^1} - E\left(u^1\right)\frac{\partial}{\partial u^2},$$

AIMS Mathematics

and it follows that

$$\langle \Omega E, F \rangle = - \langle E, \Omega F \rangle$$

that is,  $\Omega$  is a skew symmetric (1, 1) tensor on the Euclidean space  $(E^n, \langle, \rangle)$ . Using Eq (4.2), one confirms that

$$\frac{1}{2}\mathbf{\pounds}_X g = g,$$

that is, *X* is a nontrivial *CONFVF* on  $(E^n, \langle, \rangle)$  with conformal factor  $\sigma = 1$ , and it is not a closed vector field. Moreover, we see that there are finitely many of these types of nontrivial conformal vector fields on the Euclidean space  $(E^n, \langle, \rangle)$ .

In this section, we find the following characterization for a Euclidean space.

**Theorem 2.** Let X be a nontrivial CONFVF on an n-dimensional complete and connected Riemannian manifold  $(N^n, g)$ , n > 1, with conformal factor  $\sigma$  and associated tensor  $\Omega$ . Then the following conditions hold:

$$Rc(X) = -div\Omega, \quad \Omega(X) = 0,$$

if and only if  $(N^n, g)$  is isometric to the Euclidean space  $(E^n, \langle, \rangle)$ .

*Proof.* Suppose an *n*-dimensional complete and connected Riemannian manifold  $(N^n, g)$  admits a nontrivial *CONFVL X* with conformal factor  $\sigma$  and associated tensor  $\Omega$  satisfying

$$Rc(X) = -div\Omega \tag{4.3}$$

and

$$\Omega(X) = 0. \tag{4.4}$$

Using Eqs (2.4), (4.3), and n > 1, we reach the conclusion that  $\sigma$  is a constant. It is clear that the constant  $\sigma \neq 0$  due to the fact that X is nontrivial. Next, define a smooth function  $\alpha$  by

$$2\alpha = \|X\|^2$$

Then, using Eqs (2.1) and (4.4), we find the gradient of the smooth function  $\alpha$  is given by

$$\nabla \alpha = \sigma X. \tag{4.5}$$

Since the *CONFVF X* is nontrivial and the constant  $\sigma \neq 0$ , the above equation confirms that the function  $\alpha$  is not a constant. Now, differentiating Eq (4.5) with respect to a vector field *E* on  $N^n$  and using Eq (2.1), we arrive at

$$\mathcal{H}^{\alpha}E = \sigma^{2}E + \sigma\Omega E,$$

and taking the inner product in the above equation by E, yields

$$Hess(\alpha)(E,E) = \sigma^2 g(E,E)$$

On polarizing the above equation, we conclude

$$Hess(\alpha) = \sigma^2 g, \tag{4.6}$$

where  $\alpha$  is a non-constant function and  $\sigma^2$  is a nonzero constant. Equation (4.6) guarantees that  $(N^n, g)$  is isometric to the Euclidean space  $(E^n, \langle, \rangle)$ .

The converse is trivial, for the position vector field  $\xi$  given in (4.1) is a nontrivial *CONFVF* on the Euclidean space  $(E^n, \langle, \rangle)$  with conformal factor  $\sigma = 1$ , and it being closed, we have associated tensor  $\Omega = 0$ . Also, for the Euclidean space  $(E^n, \langle, \rangle)$  being flat, we have Ricci operator Rc = 0, and we see that the conditions (4.3) and (4.4) are automatically satisfied. Hence, the converse.

It is needless to mention that one of the most interesting and most sought-out questions in differential geometry is to find different characterizations of the model spaces, namely, the sphere  $S_c^n$  of constant curvature c, the Euclidean space  $E^n$ , and the hyperbolic space  $H_{-c}^n$  of constant curvature -c (c > 0). In the present paper, we witnessed that an *n*-dimensional compact and connected Riemannian manifold ( $N^n$ , g), n > 1, of positive Ricci curvature and scalar curvature admits a nontrivial *CONFVF X* with conformal factor  $\sigma$  satisfying the conditions

$$Ric(X) = -(n-1)\nabla\sigma \quad \text{and} \quad X(\tau) = 2\sigma(n(n-1)c - \tau), \tag{5.1}$$

for a constant *c*, if and only if c > 0 and  $(N^n, g)$  is isometric to the sphere  $S_c^n$ . In the process of the proof, we have seen that the above conditions together with the assumption that  $(N^n, g)$  has positive Ricci curvature lead us to

$$\nabla \sigma = -cX. \tag{5.2}$$

Since X is a *CONFVF*, this indicates that  $\sigma$  is not constant, and furthermore, the compactness of  $N^n$  forces the constant *c* to be positive. Finally, combining Eq (5.2) with the definition of the *CONFVF X* leads us to Obata's differential equation, concluding that  $(N^n, g)$  is isometric to the sphere  $S_c^n$ .

Note that the CONFVF X on the sphere  $S_c^n$  with conformal factor  $\sigma$ , by virtue of Eq (1.3), satisfies

$$Ric\left(\nabla\sigma\right) = \frac{\tau}{n}\nabla\sigma,\tag{5.3}$$

where

$$\tau = n(n-1)c$$

is the scalar curvature of the sphere  $S_c^n$ . This naturally leads to the question: Under what conditions a compact and connected Riemannian manifold  $(N^n, g)$  with Ricci operator *Ric* scalar curvature  $\tau$ , admitting a nontrivial *CONFVF X* with conformal factor  $\sigma$  satisfying Eq (5.3), that is

$$Ric\left(\nabla\sigma\right) = \frac{\tau}{n}\nabla\sigma$$

is isometric to the sphere  $S_c^n$ ? We shall be interested in taking up this question in our future studies.

### **Author contributions**

S. Deshmukh: conceptualization, investigation, methodology, validation, writing-original draft, formal analysis, validation, inspection; M. Guediri: conceptualization, investigation, methodology, formal analysis, writing-review and editing, validation, inspection. All authors have read and agreed to the published version of the manuscript.

#### Acknowledgments

This research was supported by Researchers Supporting Project number (RSPD2024R1053), King Saud University, Riyadh, Saudi Arabia.

## **Conflict of interest**

The authors declare that there are no conflicts of interest.

# References

- 1. K. Yano, Integral formulas in Riemannian geometry, Marcel Dekker Inc., 1970.
- 2. S. Hwang, G. Yun, Conformal vector fields and their applications to Einstein-type manifolds, *Results Math.*, **79** (2024), 45. https://doi.org/10.1007/s00025-023-02070-7
- 3. A. Caminha, The geometry of closed conformal vector fields on Riemannian spaces, *Bull. Braz. Math. Soc. New Ser.*, **42** (2011), 277–300. https://doi.org/10.1007/s00574-011-0015-6
- 4. J. F. da S. Filho, Critical point equation and closed conformal vector fields, *Math. Nach.*, **293** (2020), 2299–2305. https://doi.org/10.1002/mana.201900316
- 5. S. Tanno, W. Weber, Closed conformal vector fields, J. Differ. Geom., 3 (1969), 361–366. https://doi.org/10.4310/JDG/1214429058
- 6. W. Kuhnel, H. B. Rademacher, Conformal diffeomorphisms preserving the Ricci tensor, *Proc. Amer. Math. Soc.*, **123** (1995), 2841–2848.
- 7. W. Kuhnel, H. B. Rademacher, Einstein spaces with a conformal group, *Results Math.*, **56** (2009), 421. https://doi.org/10.1007/s00025-009-0440-7
- 8. W. Kühnel, H. B. Rademacher, Conformal vector fields on pseudo-Riemannian spaces, *Differ. Geom. Appl.*, **7** (1997), 237–250. https://doi.org/10.1016/S0926-2245(96)00052-6
- 9. M. Obata, The conjectures about conformal transformations, *J. Differ. Geom.*, **6** (1971), 247–258. https://doi.org/10.4310/JDG/1214430407
- 10. S. Deshmukh, Characterizing spheres and Euclidean spaces by conformal vector field, *Ann. Mat. Pura Appl.*, **196** (2017), 2135–2145. https://doi.org/10.1007/s10231-017-0657-0
- K. Yano, T. Nagano, Einstein spaces admitting a one-parameter group of conformal transformations, *North-holland Math. Stud.*, **70** (1982), 219–229. https://doi.org/10.1016/S0304-0208(08)72248-5
- 12. B. Y. Chen, A simple characterization of generalized Robertson-Walker spacetimes, *Gen. Relat. Gravit.*, **46** (2014), 1833. https://doi.org/10.1007/s10714-014-1833-9
- 13. G. S. Hall, Conformal vector fields and conformal-type collineations in space-times, *Gen. Relat. Gravit.*, **32** (2000), 933–941. https://doi.org/10.1023/A:1001941209388
- 14. G. S. Hall, J. D. Steele, Conformal vector fields in general relativity, J. Math. Phys., **32** (1991), 1847. https://doi.org/10.1063/1.529249
- 15. S. Deshmukh, M. Guediri, Characterization of Euclidean spheres, *AIMS Math.*, **6** (2021), 7733–7740. https://doi.org/10.3934/math.2021449
- M. Guediri, S. Deshmukh, Hypersurfaces in a Euclidean space with a Killing vector field, AIMS Math., 9 (2024), 1899–1910. https://doi.org/10.3934/math.2024093

28776

- 17. M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, *J. Math. Soc. Jpn.*, **14** (1962), 333–340. https://doi.org/10.2969/JMSJ/01430333
- A. L. Besse, *Einstein manifolds*, Springer-Verlag, 1987. https://doi.org/10.1007/978-3-540-74311-8
- 19. B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, 1983.



© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)