Research article

Ricci curvature of semi-slant warped product submanifolds in generalized complex space forms

  • Received: 19 July 2021 Revised: 24 January 2022 Accepted: 26 January 2022 Published: 08 February 2022
  • MSC : 53C25, 53C40, 53C42, 53D15

  • The objective of this paper is to achieve the inequality for Ricci curvature of a semi-slant warped product submanifold isometrically immersed in a generalized complex space form admitting a nearly Kaehler structure in the expressions of the squared norm of mean curvature vector and warping function. In addition, the equality case is likewise discussed. We provide numerous physical applications of the derived inequalities. Later, we proved that under a certain condition the base manifold $ N_T^{n_1} $ is isometric to a $ n_1 $-dimensional sphere $ S^{n_1}(\frac{\lambda_1}{n_1}) $ with constant sectional curvature $ \frac{\lambda_1}{n_1}. $

    Citation: Ali H. Alkhaldi, Meraj Ali Khan, Shyamal Kumar Hui, Pradip Mandal. Ricci curvature of semi-slant warped product submanifolds in generalized complex space forms[J]. AIMS Mathematics, 2022, 7(4): 7069-7092. doi: 10.3934/math.2022394

    Related Papers:

  • The objective of this paper is to achieve the inequality for Ricci curvature of a semi-slant warped product submanifold isometrically immersed in a generalized complex space form admitting a nearly Kaehler structure in the expressions of the squared norm of mean curvature vector and warping function. In addition, the equality case is likewise discussed. We provide numerous physical applications of the derived inequalities. Later, we proved that under a certain condition the base manifold $ N_T^{n_1} $ is isometric to a $ n_1 $-dimensional sphere $ S^{n_1}(\frac{\lambda_1}{n_1}) $ with constant sectional curvature $ \frac{\lambda_1}{n_1}. $



    加载中


    [1] A. Ali, L. I. Piscoran, Ali H. Al-Khalidi, Ricci curvature on warped product submanifolds in spheres with geometric applications, J. Geom. Phys., 146 (2019), 1–17. http://dx.doi.org/10.1016/j.geomphys.2019.103510 doi: 10.1016/j.geomphys.2019.103510
    [2] F. R. Al-Solamy, V. A. Khan, S. Uddin, Geometry of warped product semi-slant submanifolds of Nearly Kaehler manifolds, Results Math., 71 (2017), 783–799. http://dx.doi.org/10.1007/s00025-016-0581-4. doi: 10.1007/s00025-016-0581-4
    [3] K. Arslan, R. Ezentas, I. Mihai, C. $\ddot{O}$zgur, Certain inequalities for submanifolds in $(k, \mu)$-contact space form, Bull. Aust. Math. Soc., 64 (2001), 201–212, http://dx.doi.org/10.1017/S0004972700039873. doi: 10.1017/S0004972700039873
    [4] M. Aquib, J. W. Lee, G. E. Vilcu, W. Yoon, Classification of Casorati ideal Lagrangian submanifolds in complex space forms, Differ. Geom. Appl., 63 (2019), 30–49. http://dx.doi.org/10.1016/j.difgeo.2018.12.006 doi: 10.1016/j.difgeo.2018.12.006
    [5] J. K. Beem, P. Ehrlich, T. G. Powell, Warped product manifolds in relativity, selected studies, North-Holland, Amsterdam-New York, 1982.
    [6] M. Berger, Les Varietes riemanniennes ($\frac{1}{4}$)-pinces, Ann. Sc. Norm. Super. Pisa CI. Sci., 14 (1960), 161–170.
    [7] R. L. Bishop, B. O'Neil, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1–49. http://dx.doi.org/10.1090/S0002-9947-1969-0251664-4 doi: 10.1090/S0002-9947-1969-0251664-4
    [8] O. Calin, D. C. Chang, Geometric mechanics on riemannian manifolds: Applications to partial differential equations, Springer Science & Business Media, 2006.
    [9] B. Y. Chen, CR-submanifolds of a Kaehler manifold I, J. Differ. Geom., 16 (1981), 305–323. http://dx.doi.org/ 10.4310/jdg/1214436106 doi: 10.4310/jdg/1214436106
    [10] B.Y. Chen, Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimension, Glasgow Math. J., 41 (1999), 33–41. http://dx.doi.org/10.1017/S0017089599970271 doi: 10.1017/S0017089599970271
    [11] B. Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifolds I, Monatsh. Math., 133 (2001), 177–195. http://dx.doi.org/10.1007/s006050170019 doi: 10.1007/s006050170019
    [12] B. Y. Chen, Pseudo-Riemannian geometry, $\delta-$invariants and applications, World Scientific Publishing Company, Singapore, 2011.
    [13] B. Y. Chen, Geometry of warped product submanifolds: A survey, J. Adv. Math. Stud., 6 (2013), 1–43.
    [14] B. Y. Chen, F. Dillen, L. Verstraelen, L. Vrancken, Characterization of Riemannian space forms, Einstein spaces and conformally flate spaces, Proc. Amer. Math. Soc., 128 (1999), 589–598.
    [15] S. S. Cheng, Spectrum of the Laplacian and its applications to differential geometry, Univ. of California, Berkeley, 1974.
    [16] D. Cioroboiu, B. Y. Chen, Inequalities for semi-slant submanifolds in Sasakian space forms, Int. J. Math., 27 (2003), 1731–1738.
    [17] E. Garcia-Rio, D. N. Kupeli, B. Unal, On a differential equation characterizing Euclidean sphere, J. Differ. Eq., 194 (2003), 287–299.
    [18] H. Hashimoto, K. Mashimo, On some 3-dimensional CR-submanifolds in $S^6$, Nagoya Math. J., 156 (1999), 171–185.
    [19] S. W. Hawkings, G. F. R. Ellis, The large scale structure of space-time, Cambridge Univ. Press, Cambridge, 1973.
    [20] S. K. Hui, T. Pal, J. Roy, Another class of warped product skew CR-submanifolds of Kenmotsu manifolds, Filomat, 33 (2019), 2583–2600.
    [21] S. K. Hui, M. H. Shahid, T. Pal, J. Roy, On two different classes of warped product submanifolds of Kenmotsu manifolds, Kragujevac J. Math., 47 (2023), 965–986.
    [22] S. K. Hui, M. S. Stankovic, J. Roy, T. Pal, A class of warped product submanifolds of Kenmotsu manifolds, Turk. J. Math., 44 (2020), 760–777.
    [23] V. A. Khan, M. A. Khan, Semi-slant submanifolds of a nearly Kaehler manifold, Turk. J. math., 31 (2007), 341–353.
    [24] V. A. Khan, K. A. Khan, Generic warped product submanifolds of nearly Kaehler manifolds, Beitr. Algebra Geom., 50 (2009), 337–352.
    [25] V. A. Khan, K. A. Khan, Semi-slant warped product submanifolds of a nearly Kaehler manifold, Differ. Geom.-Dyn. Sys., 16 (2014), 168–182.
    [26] A. Mihai, Warped product submanifolds in generalized complex space forms, Acta Math. Acad. Paedagog. Nyhazi., 21 (2005), 79–87.
    [27] A. Mihai, C. $\ddot{O}$zgur, Chen inequalities for submanifolds of real space forms with a semi-symmetric metric connection, Taiwan. J. Math., 14 (2010), 1465–1477. https://dx.doi.org/10.11650/twjm/1500405961 doi: 10.11650/twjm/1500405961
    [28] S. B. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J., 8 (1941), 401–404.
    [29] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan, 14 (1962), 333–340.
    [30] B. O'Neill, Semi-Riemannian geometry with application to relativity, Academic Press, 1983.
    [31] B. Palmer, The Gauss map of a spacelike constant mean curvature hypersurface of Minkowski space, Comment. Math. Helv., 65 (1990), 52–57.
    [32] N. Papaghiuc, Semi-slant submanifolds of Kaehler manifold, An. Stiint. U. Al. I-Mat., 40 (1994), 55–61.
    [33] B. Sahin, Non-existence of warped product semi-slant submanifolds of Kaehler manifold, Geometriae Dedicata, 117 (2006), 195–202, https://dx.doi.org/10.1007/s10711-005-9023-2. doi: 10.1007/s10711-005-9023-2
    [34] D. W. Yoon, Inequality for Ricci curvature of slant submanifolds in cosymplectic space forms, Turk. J. Math., 30 (2006), 43–56.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1721) PDF downloads(73) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog