Research article Special Issues

Involvement of the fixed point technique for solving a fractional differential system

  • Received: 23 December 2021 Revised: 21 January 2022 Accepted: 26 January 2022 Published: 08 February 2022
  • MSC : 34A08, 34A12, 34B15, 47H10

  • Some physical phenomena were described through fractional differential equations and compared with integer-order differential equations which have better results, which is why researchers of different areas have paid great attention to study this direction. So, in this manuscript, we discuss the existence and uniqueness of solutions to a system of fractional deferential equations (FDEs) under Riemann-Liouville (R-L) integral boundary conditions. The solution method is obtained by two basic rules, the first rule is the Leray-Schauder alternative and the second is the Banach contraction principle. Finally, the theoretical results are supported by an illustrative example.

    Citation: Hasanen A. Hammad, Manuel De la Sen. Involvement of the fixed point technique for solving a fractional differential system[J]. AIMS Mathematics, 2022, 7(4): 7093-7105. doi: 10.3934/math.2022395

    Related Papers:

  • Some physical phenomena were described through fractional differential equations and compared with integer-order differential equations which have better results, which is why researchers of different areas have paid great attention to study this direction. So, in this manuscript, we discuss the existence and uniqueness of solutions to a system of fractional deferential equations (FDEs) under Riemann-Liouville (R-L) integral boundary conditions. The solution method is obtained by two basic rules, the first rule is the Leray-Schauder alternative and the second is the Banach contraction principle. Finally, the theoretical results are supported by an illustrative example.



    加载中


    [1] G. S. Samko, B. Ross, Integration and differentiation to a variable fractional order, Integr. Transf. Spec. F., 1 (2007), 277–300. https://doi.org/10.1080/10652469308819027 doi: 10.1080/10652469308819027
    [2] C. F. Lorenzo, T. T. Hartley, Variable order and distributed order fractional operators, Nonlinear Dyn., 29 (2002), 57–98. https://doi.org/10.1023/A:1016586905654 doi: 10.1023/A:1016586905654
    [3] X. Zheng, H. Wang, A hidden-memory variable-order time-fractional optimal control model: Analysis and approximation, SIAM J. Control Optim., 59 (2021), 1851–1880. https://doi.org/10.1137/20M1344962 doi: 10.1137/20M1344962
    [4] X. Zheng, H. Wang, An error estimate of a numerical approximation to a hidden-memory variable-order space-time fractional diffusion equation, SIAM J. Numer. Anal., 58 (2020), 2492–2514. https://doi.org/10.1137/20M132420X doi: 10.1137/20M132420X
    [5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, Elsevier, 2006.
    [6] V. Lakshmikantham, S. Leela, J. Vasundhara Devi, Theory of fractional dynamic systems, Cambridge: Cambridge Scientific Publishers, 2009.
    [7] V. Lakshmikantham, A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal.: Theory Methods Appl., 69 (2008), 2677–2682. https://doi.org/10.1016/j.na.2007.08.042 doi: 10.1016/j.na.2007.08.042
    [8] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [9] J. Sabatier, O. P. Agrawal, J. A. Tenreiro Machado, Advances in fractional calculus, Theoretical developments and applications in physics and engineering, Dordrecht: Springer, 2007. https://doi.org/10.1007/978-1-4020-6042-7
    [10] B. Ahmad, Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations, Appl. Math. Lett., 23 (2010), 390–394. https://doi.org/10.1016/j.aml.2009.11.004 doi: 10.1016/j.aml.2009.11.004
    [11] X. Su, Boundary value problem for a coupled system of nonlinear fractional differential equations, Appl. Math. Lett., 22 (2009), 64–69. https://doi.org/10.1016/j.aml.2008.03.001 doi: 10.1016/j.aml.2008.03.001
    [12] J. Wang, H. Xiang, Z. Liu, Positive solution to nonzero boundary values problem for a coupled system of nonlinear fractional differential equations, Int. J. Differ. Equ., 2010 (2010), 186928. https://doi.org/10.1155/2010/186928 doi: 10.1155/2010/186928
    [13] D. Bǎleanu, O. G. Mustafa, R. P. Agarwal, An existence result for a superlinear fractional differential equation, Appl. Math. Lett., 23 (2010), 1129–1132. https://doi.org/10.1016/j.aml.2010.04.049 doi: 10.1016/j.aml.2010.04.049
    [14] J. Sun, Y. Liu, G. Liu, Existence of solutions for fractional differential systems with antiperiodic boundary conditions, Comput. Math. Appl., 64 (2012), 1557–1566. https://doi.org/10.1016/j.camwa.2011.12.083 doi: 10.1016/j.camwa.2011.12.083
    [15] C. Bai, Impulsive periodic boundary value problems for fractional differential equation involving Riemann-Liouville sequential fractional derivative, J. Math. Anal. Appl., 384 (2011), 211–231. https://doi.org/10.1016/j.jmaa.2011.05.082 doi: 10.1016/j.jmaa.2011.05.082
    [16] M. Cichoń, H. A. H. Salem, On the lack of equivalence between differential and integral forms of the Caputo-type fractional problems, J. Pseudo-Differ. Oper. Appl., 11 (2020), 1869–1895. https://doi.org/10.1007/s11868-020-00345-z doi: 10.1007/s11868-020-00345-z
    [17] A. Shah, R. A. Khan, A. Khan, H. Khan, J. F. Gómez-Aguilar, Investigation of a system of nonlinear fractional order hybrid differential equations under usual boundary conditions for existence of solution, Math. Methods Appl. Sci., 44 (2020), 1628–1638. https://doi.org/10.1002/mma.6865 doi: 10.1002/mma.6865
    [18] Kamran, G. Ali, J. F. Gómez-Aguilar, Approximation of partial integro differential equations with a weakly singular kernel using local meshless method, Alex. Eng. J., 59 (2020), 2091–2100. https://doi.org/10.1016/j.aej.2020.01.010 doi: 10.1016/j.aej.2020.01.010
    [19] H. Khan, J. F. Gómez-Aguilar, T. Abdeljwad, A. Khan, Existence results and stability criteria for ABC-fuzzy-Volterra integro-differential equation, Fractals, 28 (2020), 2040048. https://doi.org/10.1142/S0218348X20400484 doi: 10.1142/S0218348X20400484
    [20] O. Martínez-Fuentes, F. Meléndez-Vázquez, G. Fern ández-Anaya, J. F. Gómez-Aguilar, Analysis of fractional-order nonlinear dynamic systems with general analytic kernels: Lyapunov stability and inequalities, Mathematics, 9 (2021), 2084. https://doi.org/10.3390/math9172084 doi: 10.3390/math9172084
    [21] Asma, J. F. Gómez-Aguilar, G. ur Rahman, M. Javed, Stability analysis for fractional order implicit $\Psi$-Hilfer differential equations, Math. Methods Appl. Sci., 2021. https://doi.org/10.1002/mma.7948
    [22] H. A. Hammad, H. Aydi, N. Mlaiki, Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann-Liouville fractional integrals, and Atangana-Baleanu integral operators, Adv. Differ. Equ., 2021 (2021), 97. https://doi.org/10.1186/s13662-021-03255-6 doi: 10.1186/s13662-021-03255-6
    [23] H. A. Hammad, M. De la Sen, Tripled fixed point techniques for solving system of tripled fractional differential equations, AIMS Math., 6 (2020), 2330–2343. https://doi.org/10.3934/math.2021141 doi: 10.3934/math.2021141
    [24] H. A. Hammad, H. Aydi, M. De la Sen, Solutions of fractional differential type equations by fixed point techniques for multi-valued contractions, Complexity, 2021 (2021), 5730853. https://doi.org/10.1155/2021/5730853 doi: 10.1155/2021/5730853
    [25] H. A. Hammad, W. Chaolamjiak, Solving singular coupled fractional differential equations with integral boundary constraints by coupled fixed point methodology, AIMS Math., 6 (2021), 13370–13391. https://doi.org/10.3934/math.2021774 doi: 10.3934/math.2021774
    [26] H. A. Hammad, P. Agarwal, S. Momani, F. Alsharari, Solving a fractional-order differential equation using rational symmetric contraction mappings, Fractal Fract., 5 (2021), 159. https://doi.org/10.3390/fractalfract5040159 doi: 10.3390/fractalfract5040159
    [27] N. Fabiano, N. Nikolić, S. Thenmozhi, S. Radenović, N. Čıtaković, Tenth order boundary value problem solution existence by fixed point theorem, J. Inequal. Appl., 2020 (2020), 166. https://doi.org/10.1186/s13660-020-02429-2 doi: 10.1186/s13660-020-02429-2
    [28] J. Leray, J. Schauder, Topologie et équations fonctionnelles, Ann. Sci. É. N. S., 51 (1934), 45–78.
    [29] H. Ben-El-Mechaiekh, A. Idzik, A Leray-Schauder type theorem for approximable maps, Proc. Amer. Math. Soc., 122 (1994), 105–109.
    [30] S. Park, Generalized Leray-Schauder principles for compact admissible multifuctions, Topol. Methods Nonl. An., 5 (1995), 271–277.
    [31] A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. https://doi.org/10.1007/978-0-387-21593-8
    [32] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181.
    [33] S. M. Aydojan, J. F. Gómez-Aguilar, D. Baleanu, S. Rezapour, M. E. Sami, Approximate endpoint solutions for a class of fractional $q$-differential inclusions by computational results, Fractals, 28 (2020), 2040029. https://doi.org/10.1142/S0218348X20400290 doi: 10.1142/S0218348X20400290
    [34] P. Pedi, A. Kumar, T. Abdeljwad, A. Khan, J. F. Gómez-Aguilar, Mild solutions of coupled hybrid fractional order system with Caputo-Hadamard derivatives, Fractals, 29 (2021), 2150158. https://doi.org/10.1142/S0218348X21501589 doi: 10.1142/S0218348X21501589
    [35] Kamran, G. Ali, J. F. Gómez-Aguilar, Approximation of partial integro differential equations with a weakly singular kernel using local meshless method, Alex. Eng. J., 59 (2020), 2091–2100. https://doi.org/10.1016/j.aej.2020.01.010 doi: 10.1016/j.aej.2020.01.010
    [36] A. Khan, H. Khan, J. F. Gómez-Aguilar, T. Abdeljwad, Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel, Chaos Solitons Fractals, 127 (2019), 422–427. https://doi.org/10.1016/j.chaos.2019.07.026 doi: 10.1016/j.chaos.2019.07.026
    [37] H. Khan, T. Abdeljwad, J. F. Gómez-Aguilar, H. Tajadodi, A. Khan, Fractional order Volterra integro-differential equation with Mittag-Leffler kernel, Fractals, 29 (2021), 2150154. https://doi.org/10.1142/S0218348X21501541 doi: 10.1142/S0218348X21501541
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1579) PDF downloads(62) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog