Research article Special Issues

Graphical edge-weight-function indices of trees

  • Received: 31 August 2024 Revised: 10 October 2024 Accepted: 30 October 2024 Published: 18 November 2024
  • MSC : 05C05, 05C07, 05C09

  • Consider a tree graph $ G $ with edge set $ E(G) $. The notation $ d_G(x) $ represents the degree of vertex $ x $ in $ G $. Let $ \mathfrak{f} $ be a symmetric real-valued function defined on the Cartesian square of the set of all distinct elements of the degree sequence of $ G $. A graphical edge-weight-function index for the graph $ G $, denoted by $ \mathcal{I}_\mathfrak{f}(G) $, is defined as $ \mathcal{I}_\mathfrak{f}(G) = \sum_{st \in E(G)} \mathfrak{f}(d_G(s), d_G(t)) $. This paper establishes the best possible bounds for $ \mathcal{I}_\mathfrak{f}(G) $ in terms of the order of $ G $ and parameter $ \mathfrak{p} $, subject to specific conditions on $ \mathfrak{f} $. Here, $ \mathfrak{p} $ can be one of the following three graph parameters: (ⅰ) matching number, (ⅱ) the count of pendent vertices, and (ⅲ) maximum degree. We also characterize all tree graphs that achieve these bounds. The constraints considered for $ \mathfrak{f} $ are satisfied by several well-known indices. We specifically illustrate our findings by applying them to the recently introduced Euler-Sombor index.

    Citation: Akbar Ali, Sneha Sekar, Selvaraj Balachandran, Suresh Elumalai, Abdulaziz M. Alanazi, Taher S. Hassan, Yilun Shang. Graphical edge-weight-function indices of trees[J]. AIMS Mathematics, 2024, 9(11): 32552-32570. doi: 10.3934/math.20241559

    Related Papers:

  • Consider a tree graph $ G $ with edge set $ E(G) $. The notation $ d_G(x) $ represents the degree of vertex $ x $ in $ G $. Let $ \mathfrak{f} $ be a symmetric real-valued function defined on the Cartesian square of the set of all distinct elements of the degree sequence of $ G $. A graphical edge-weight-function index for the graph $ G $, denoted by $ \mathcal{I}_\mathfrak{f}(G) $, is defined as $ \mathcal{I}_\mathfrak{f}(G) = \sum_{st \in E(G)} \mathfrak{f}(d_G(s), d_G(t)) $. This paper establishes the best possible bounds for $ \mathcal{I}_\mathfrak{f}(G) $ in terms of the order of $ G $ and parameter $ \mathfrak{p} $, subject to specific conditions on $ \mathfrak{f} $. Here, $ \mathfrak{p} $ can be one of the following three graph parameters: (ⅰ) matching number, (ⅱ) the count of pendent vertices, and (ⅲ) maximum degree. We also characterize all tree graphs that achieve these bounds. The constraints considered for $ \mathfrak{f} $ are satisfied by several well-known indices. We specifically illustrate our findings by applying them to the recently introduced Euler-Sombor index.



    加载中


    [1] D. Adiyanyam, E. Azjargal, L. Buyantogtokh, Bond incident degree indices of stepwise irregular graphs, AIMS Math., 7 (2022), 8685–8700. https://doi.org/10.3934/math.2022485 doi: 10.3934/math.2022485
    [2] A. M. Albalahi, A. Ali, A. M. Alanazi, A. A. Bhatti, A. E. Hamza, Harmonic-arithmetic index of (molecular) trees, Contrib. Math., 7 (2023), 41–47. https://doi.org/10.47443/cm.2023.008 doi: 10.47443/cm.2023.008
    [3] A. Ali, A. M. Albalahi, A. M. Alanazi, A. A. Bhatti, A. E. Hamza, On the maximum sigma index of $k$-cyclic graphs, Discrete Appl. Math., 325 (2023), 58–62. https://doi.org/10.1016/j.dam.2022.10.009 doi: 10.1016/j.dam.2022.10.009
    [4] A. Ali, K. C. Das, D. Dimitrov, B. Furtula, Atom-bond connectivity index of graphs: a review over extremal results and bounds, Discrete Math. Lett., 5 (2021), 68–93. http://dx.doi.org/10.47443/dml.2020.0069 doi: 10.47443/dml.2020.0069
    [5] A. Ali, B. Furtula, I. Gutman, Inverse sum indeg index: bounds and extremal results, Rocky Mountain J. Math., 2024, In press.
    [6] A. Ali, B. Furtula, I. Redžepović, I. Gutman, Atom-bond sum-connectivity index, J. Math. Chem., 60 (2022), 2081–2093. https://doi.org/10.1007/s10910-022-01403-1 doi: 10.1007/s10910-022-01403-1
    [7] A. Ali, I. Gutman, B. Furtula, A. M. Albalahi, A. E. Hamza, On chemical and mathematical characteristics of generalized degree-based molecular descriptors, submitted for publication, 2024.
    [8] A. Ali, I. Gutman, B. Furtula, I. Redžepović, T. Došlić, Z. Raza, Extremal results and bounds for atom-bond sum-connectivity index, MATCH Commun. Math. Comput. Chem., 92 (2024), 271–314. https://doi.org/10.46793/match.92-2.271A doi: 10.46793/match.92-2.271A
    [9] A. Ali, I. Gutman, I. Redžepović, A. M. Albalahi, Z. Raza, A. E. Hamza, Symmetric division deg index: extremal results and bounds, MATCH Commun. Math. Comput. Chem., 90 (2023), 263–299. https://doi.org/10.46793/match.90-2.263A doi: 10.46793/match.90-2.263A
    [10] A. Ali, I. Gutman, H. Saber, A. M. Alanazi, On bond incident degree indices of $(n, m)$-graphs, MATCH Commun. Math. Comput. Chem., 87 (2022), 89–96. https://doi.org/10.46793/match.87-1.089A doi: 10.46793/match.87-1.089A
    [11] A. Ali, L. Zhong, I. Gutman, Harmonic index and its generalization: extremal results and bounds, MATCH Commun. Math. Comput. Chem., 81 (2019), 249–311.
    [12] A. Bickle, Zagreb indices of maximal $k$-degenerate graphs, Australas. J. Comb., 89 (2024), 167–178.
    [13] J. A. Bondy, U. S. R. Murty, Graph theory, Springer, 2008.
    [14] B. Borovicanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem., 78 (2017), 17–100.
    [15] R. A. Brualdi, J. L. Goldwasser, Permanent of the Laplacian matrix of trees and bipartite graphs, Discrete Math., 48 (1984), 1–21. https://doi.org/10.1016/0012-365X(84)90127-4 doi: 10.1016/0012-365X(84)90127-4
    [16] G. Chartrand, L. Lesniak, P. Zhang, Graphs & digraphs, New York: Chapman and Hall/CRC, 2015. https://doi.org/10.1201/b19731
    [17] H. L. Chen, W. H. Li, J. Wang, Extremal values on the Sombor index of trees, MATCH Commun. Math. Comput. Chem., 87 (2022), 23–49. https://doi.org/10.46793/match.87-1.023C doi: 10.46793/match.87-1.023C
    [18] D. Desmecht, V. Dubois, Correlation of the molecular cross-sectional area of organic monofunctional compounds with topological descriptors, J. Chem. Inform. Model., 64 (2024), 3248–3259. https://doi.org/10.1021/acs.jcim.3c01787 doi: 10.1021/acs.jcim.3c01787
    [19] J. Devillers, A. T. Balaban, Topological indices and related descriptors in QSAR and QSPR, Gordon and Breach Science Publishers, 1999.
    [20] D. Dimitrov, Z. B. Du, The ABC index conundrum's complete solution, MATCH Commun. Math. Comput. Chem., 91 (2024), 5–38. https://doi.org/10.46793/match.91-1.005D doi: 10.46793/match.91-1.005D
    [21] J. W. Du, X. L. Sun, On symmetric division deg index of trees with given parameters, AIMS Math., 6 (2021), 6528–6541. https://doi.org/10.3934/math.2021384 doi: 10.3934/math.2021384
    [22] Z. B. Du, B. Zhou, N. Trinajstic, Minimum sum-connectivity indices of trees and unicyclic graphs of a given matching number, J. Math. Chem., 47 (2010), 842–855. https://doi.org/10.1007/s10910-009-9604-7 doi: 10.1007/s10910-009-9604-7
    [23] S. Fajtlowicz, On conjectures of Graffiti. Ⅱ, Congr. Num., 60 (1987), 189–197.
    [24] B. Furtula, I. Gutman, Ž. K. Vukićević, G. Lekishvili, G. Popivoda, On an old/new degree-based topological index, Bull. Acad. Serbe Sci. Arts, 40 (2015), 19–31.
    [25] I. Gutman, Degree-based topological indices, Croat. Chem. Acta, 86 (2013), 351–361. http://dx.doi.org/10.5562/cca2294 doi: 10.5562/cca2294
    [26] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem., 86 (2021), 11–16.
    [27] I. Gutman, B. Furtula, Novel molecular structure descriptors-theory and applications I, University of Kragujevac, 2010.
    [28] J. L. Gross, J. Yellen, Graph theory and its applications, 2 Eds., Chapman and Hall/CRC, 2005.
    [29] I. Gutman, B. Furtula, M. S. Oz, Geometric approach to vertex-degree-based topological indices–Elliptic Sombor index, theory and application, Int. J. Quantum Chem., 124 (2024), e27346. https://doi.org/10.1002/qua.27346 doi: 10.1002/qua.27346
    [30] L. S. G. Leite, S. Banerjee, Y. H. Wei, J. Elowitt, A. E. Clark, Modern chemical graph theory, WIREs Comput. Mol. Sci., 14 (2024), e1729. https://doi.org/10.1002/wcms.1729 doi: 10.1002/wcms.1729
    [31] X. L. Li, J. X. Liu, L. P. Zhong, Trees with a given order and matching number that have maximum general Randić index, Discrete Math., 310 (2010), 2249–2257. https://doi.org/10.1016/j.disc.2010.04.028 doi: 10.1016/j.disc.2010.04.028
    [32] X. L. Li, D. N. Peng, Extremal problems for graphical function-indices and $f$-weighted adjacency matrix, Discrete Math. Lett., 9 (2022), 57–66. https://doi.org/10.47443/dml.2021.s210 doi: 10.47443/dml.2021.s210
    [33] H. C. Liu, I. Gutman, L. H. You, Y. F. Huang, Sombor index: review of extremal results and bounds, J. Math. Chem., 60 (2022), 771–798. https://doi.org/10.1007/s10910-022-01333-y doi: 10.1007/s10910-022-01333-y
    [34] M. Lu, L. Z. Zhang, F. Tian, On the Randić index of acyclic conjugated molecules, J. Math. Chem., 38 (2005), 677–684. https://doi.org/10.1007/s10910-005-6892-4 doi: 10.1007/s10910-005-6892-4
    [35] J. B. Lv, J. Li, On the harmonic index and the matching number of a tree, Ars Combin., 116 (2014), 407–416.
    [36] I. Ž. Milovanović, A. Ali, Z. Raza, On the modified misbalance rodeg index, Contrib. Math., 9 (2024), 33–37. https://doi.org/10.47443/cm.2024.005 doi: 10.47443/cm.2024.005
    [37] I. Nadeem, S. Siddique, Y. L. Shang, Some inequalities between general Randić-type graph invariants, J. Math., 2024 (2024), 8204742. https://doi.org/10.1155/2024/8204742 doi: 10.1155/2024/8204742
    [38] S. Noureen, R. Batool, A. M. Albalahi, Y. L. Shang, T. Alraqad, A. Ali, On tricyclic graphs with maximum atom-bond sum-connectivity index, Heliyon, 10 (2024), e33841. https://doi.org/10.1016/j.heliyon.2024.e33841 doi: 10.1016/j.heliyon.2024.e33841
    [39] M. Randić, Characterization of molecular branching, J. Amer. Chem. Soc., 97 (1975), 6609–6615. https://doi.org/10.1021/ja00856a001 doi: 10.1021/ja00856a001
    [40] B. A. Rather, H. A. Ganie, Y. L. Shang, On the signless Laplacian ABC-spectral properties of a graph, Mathematics, 12 (2024), 1–23. https://doi.org/10.3390/math12152366 doi: 10.3390/math12152366
    [41] Z. Raza, S. Akhter, Y. L. Shang, Expected value of first Zagreb connection index in random cyclooctatetraene chain, random polyphenyls chain, and random chain network, Front. Chem., 10 (2023), 1067874. https://doi.org/10.3389/fchem.2022.1067874 doi: 10.3389/fchem.2022.1067874
    [42] Y. L. Shang, Sombor index and degree-related properties of simplicial networks, Appl. Math. Comput., 419 (2022), 126881. https://doi.org/10.1016/j.amc.2021.126881 doi: 10.1016/j.amc.2021.126881
    [43] E. Swartz, T. Vetrík, Survey on the general Randic index: extremal results and bounds, Rocky Mountain J. Math., 52 (2022), 1177–1203. http://dx.doi.org/10.1216/rmj.2022.52.1177 doi: 10.1216/rmj.2022.52.1177
    [44] Z. K. Tang, Y. P. Li, H. Y. Deng, Elliptic Sombor index of trees and unicyclic graphs, Electron. J. Math., 7 (2024), 19–34. https://doi.org/10.47443/ejm.2024.009 doi: 10.47443/ejm.2024.009
    [45] Z. K. Tang, Y. P. Li, H. Y. Deng, The Euler Sombor index of a graph, Int. J. Quantum Chem., 124 (2024), e27387. https://doi.org/10.1002/qua.27387 doi: 10.1002/qua.27387
    [46] I. Tomescu, Maximum bond incident degree indices of trees with given independence number, MATCH Commun. Math. Comput. Chem., 93 (2025), 567–574. https://doi.org/10.46793/match.93-2.567T doi: 10.46793/match.93-2.567T
    [47] I. Tomescu, M. K. Jamil, Maximum general sum-connectivity index for trees with given independence number, MATCH Commun. Math. Comput. Chem., 72 (2014), 715–722.
    [48] N. Trinajstić, Chemical graph theory, 2 Eds., Boca Raton: CRC Press, 1992. https://doi.org/10.1201/9781315139111
    [49] D. Vukičević, M. Gašperov, Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta, 83 (2010), 243–260.
    [50] S. Wagner, H. Wang, Introduction to chemical graph theory, New York: Chapman and Hall/CRC, 2018. https://doi.org/10.1201/9780429450532
    [51] P. C. Wei, M. H. Liu, I. Gutman, On (exponential) bond incident degree indices of graphs, Discrete Appl. Math., 336 (2023), 141–147. https://doi.org/10.1016/j.dam.2023.04.011 doi: 10.1016/j.dam.2023.04.011
    [52] R. L. Zheng, P. F. Su, X. A. Jin, Arithmetic-geometric matrix of graphs and its applications, Appl. Math. Comput., 442 (2023), 127764. https://doi.org/10.1016/j.amc.2022.127764 doi: 10.1016/j.amc.2022.127764
    [53] T. Zhou, Z. Lin, L. Y. Miao, The extremal Sombor index of trees and unicyclic graphs with given matching number, J. Discrete Math. Sci. Cryptogr., 2022, 1–12. https://doi.org/10.1080/09720529.2021.2015090 doi: 10.1080/09720529.2021.2015090
    [54] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem., 46 (2009), 1252–1270. https://doi.org/10.1007/s10910-008-9515-z doi: 10.1007/s10910-008-9515-z
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(293) PDF downloads(47) Cited by(0)

Article outline

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog