In this paper, we study the Schur complement problem of $ S $-SOB matrices, and prove that the Schur complement of $ S $-Sparse Ostrowski-Brauer ($ S $-SOB) matrices is still in the same class under certain conditions. Based on the Schur complement of $ S $-SOB matrices, some upper bound for the infinite norm of $ S $-SOB matrices is obtained. Numerical examples are given to certify the validity of the obtained results. By using the infinity norm bound, an error bound is given for the linear complementarity problems of $ S $-SOB matrices.
Citation: Dizhen Ao, Yan Liu, Feng Wang, Lanlan Liu. Schur complement-based infinity norm bounds for the inverse of $ S $-Sparse Ostrowski Brauer matrices[J]. AIMS Mathematics, 2023, 8(11): 25815-25844. doi: 10.3934/math.20231317
In this paper, we study the Schur complement problem of $ S $-SOB matrices, and prove that the Schur complement of $ S $-Sparse Ostrowski-Brauer ($ S $-SOB) matrices is still in the same class under certain conditions. Based on the Schur complement of $ S $-SOB matrices, some upper bound for the infinite norm of $ S $-SOB matrices is obtained. Numerical examples are given to certify the validity of the obtained results. By using the infinity norm bound, an error bound is given for the linear complementarity problems of $ S $-SOB matrices.
[1] | D. Carlson, T. Markham, Schur complements of diagonally dominant matrices, Czech. Math. J., 29 (1979), 246–251. |
[2] | L. Cvetkovi$\acute{c}$, V. Kosti$\acute{c}$, M, Kova$\breve{c}$evi$\acute{c}$, T. Szulc, Further results on H-matrices and their Schur complement, Appl. Math. Comput., 198 (2008), 506–510. https://doi.org/10.1016/j.amc.2007.09.001 doi: 10.1016/j.amc.2007.09.001 |
[3] | L. Cvetkovi$\acute{c}$, M. Nedovi$\acute{c}$, Special H-matrices and their Schur and diagonal-Schur complements, Appl. Math. Comput., 208 (2009), 225–230. https://doi.org/10.1016/j.amc.2008.11.040 doi: 10.1016/j.amc.2008.11.040 |
[4] | K. D. Ikramov, Invariance of the Brauer diagonal dominance in gaussian elimination, Moscow University Computational Mathematics and Cybernetics, 2 (1989), 91–94. |
[5] | B. S. Li, M. J. Tsatsomeros, Doubly diagonally dominant matrices, Linear Algebra Appl., 261 (1997), 221–235. https://doi.org/10.1016/S0024-3795(96)00406-5 doi: 10.1016/S0024-3795(96)00406-5 |
[6] | C. Q. Li, Z. Y. Huang, J. X. Zhao, On Schur complements of Dashnic-Zusmanovich type matrices, Linear Multilinear A., 70 (2020), 4071–4096. https://doi.org/10.1080/03081087.2020.1863317 doi: 10.1080/03081087.2020.1863317 |
[7] | X. N. Song, L. Gao, On Schur Complements of Cvetkovi$\acute{c}$-Kosti$\acute{c}$-Varga type matrices, Bull. Malays. Math. Sci. Soc., 46 (2023), 49. https://doi.org/10.1007/s40840-022-01440-8 doi: 10.1007/s40840-022-01440-8 |
[8] | C. R. Johnson, Inverse M-matrices, Linear Algebra Appl., 47 (1982), 195–216. https://doi.org/10.1016/0024-3795(82)90238-5 |
[9] | J. Z. Liu, Y. Q. Huang, F. Z. Zhang, The Schur complements of generalized doubly diagonally dominant matrices, Linear Algebra Appl., 378 (2004), 231–244. https://doi.org/10.1016/j.laa.2003.09.012 doi: 10.1016/j.laa.2003.09.012 |
[10] | R. L. Smith, Some interlacing propeties of the Schur complement theory of a Hermitian matrix, Linear Algebra Appl., 177 (1992), 137–144. https://doi.org/10.1016/0024-3795(92)90321-Z doi: 10.1016/0024-3795(92)90321-Z |
[11] | L. S. Dashnic, M. S. Zusmanovich, On some regularity criteria for matrices and localization of their spectra, Zh. Vychisl. Mat. Mat. Fiz., 10 (1970), 1092–1097. |
[12] | R. A. Horn, C. R. Johnson, Topics in matrix analysis, Cambridge: Cambridge University Press, 1991. |
[13] | J. Z. Liu, J. C. Li, Z. H. Huang, X. Kong, Some properties of Schur complements and diagonal-Schur complements of diagonally dominant matrices, Linear Algebra Appl., 428 (2008), 1009–1030. https://doi.org/10.1016/j.laa.2007.09.008 doi: 10.1016/j.laa.2007.09.008 |
[14] | Y. T. Li, S. P. Ouyang, S. J. Cao, R. W. Wang, On diagonal-Schur complements of block diagonally dominant matrices, Appl. Math. Comput., 216 (2010), 1383–1392. https://doi.org/10.1016/j.amc.2010.02.038 doi: 10.1016/j.amc.2010.02.038 |
[15] | M. Nedovi$\acute{c}$, L. Cvetkovi$\acute{c}$, The Schur complement of PH-matrices, Appl. Math. Comput., 362 (2019), 124541. https://doi.org/10.1016/j.amc.2019.06.055 doi: 10.1016/j.amc.2019.06.055 |
[16] | V. R. Kosti$\acute{c}$, L. Cvetkovi$\acute{c}$, D. L. Cvetkovi$\acute{c}$, Pseudospectra localizations and their applications, Numer. Linear Algebr., 23 (2016), 356–372. https://doi.org/10.1002/nla.2028 doi: 10.1002/nla.2028 |
[17] | C. Q. Li, L. Cvetkovi$\acute{c}$, Y. M. Wei, J. X. Zhao, An infinity norm bound for the inverse of Dashnic-Zusmanovich type matrices with applications, Linear Algebra Appl., 565 (2019), 99–122. https://doi.org/10.1016/j.laa.2018.12.013 doi: 10.1016/j.laa.2018.12.013 |
[18] | J. Z. Liu, J. Zhang, Y. Liu, The Schur complement of strictly doubly diagonally dominant matrices and its application, Linear Algebra Appl., 437 (2012), 168–183. https://doi.org/10.1016/j.laa.2012.02.001 doi: 10.1016/j.laa.2012.02.001 |
[19] | J. M. Varah, A lower bound for the smallest singular value of a matrix, Linear Algebra Appl., 11 (1975), 3–5. https://doi.org/10.1016/0024-3795(75)90112-3 doi: 10.1016/0024-3795(75)90112-3 |
[20] | C. Q. Li, Schur complement-based infinity norm bounds for the inverse of SDD matrices, Bull. Malays. Math. Sci. Soc., 43 (2020), 3829–3845. https://doi.org/10.1007/s40840-020-00895-x doi: 10.1007/s40840-020-00895-x |
[21] | C. L. Sang, Schur complement-based infinity norm bounds for the inverse of DSDD matrices, Bull. Iran. Math. Soc., 47 (2021), 1379–1398. https://doi.org/10.1007/s41980-020-00447-w doi: 10.1007/s41980-020-00447-w |
[22] | Y. Li, Y. Wang, Schur complement-based infinity norm bounds for the inverse of GDSDD matrices, Mathematics, 10 (2022), 186–214. |
[23] | L. Y. Kolotilina, A new subclass of the class of nonsingular H-matrices and related inclusion sets for eigenvalues and singular values, J. Math. Sci., 240 (2019), 813–821. https://doi.org/10.1007/s10958-019-04398-4 doi: 10.1007/s10958-019-04398-4 |
[24] | Y. M. Gao, X. H. Wang, Criteria for generalized diagonally dominant matrices and M-matrices, Linear Algebra Appl., 169 (1992), 257–268. https://doi.org/10.1016/0024-3795(92)90182-A doi: 10.1016/0024-3795(92)90182-A |
[25] | R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge: Cambridge University Press, 1985. |
[26] | L. Cvetkovi, H-matrix theory vs. eigenvalue localization, Numer. Algorithms, 42 (2016), 229–245. https://doi.org/10.1007/s11075-006-9029-3 doi: 10.1007/s11075-006-9029-3 |
[27] | L. Y. Kolotilina, Some bounds for inverses involving matrix sparsity pattern, Journal of Mathematical Sciences, 249 (2020), 242–255. |
[28] | N. Moraa, Upper bounds for the infinity norm of the inverse of SDD and S-SDD matrices, J. Comput. Appl. Math., 206 (2007), 667–678. https://doi.org/10.1016/j.cam.2006.08.013 doi: 10.1016/j.cam.2006.08.013 |
[29] | C. Q. Li, Y. T. Li, Note on error bounds for linear complementarity problem for $B$-matrix, Appl. Math. Lett., 57 (2016), 108–113. https://doi.org/10.1016/j.aml.2016.01.013 doi: 10.1016/j.aml.2016.01.013 |