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Abstract: In this paper, we study the Schur complement problem of §-SOB matrices, and prove
that the Schur complement of §-Sparse Ostrowski-Brauer (S-SOB) matrices is still in the same class
under certain conditions. Based on the Schur complement of S-SOB matrices, some upper bound
for the infinite norm of S-SOB matrices is obtained. Numerical examples are given to certify the
validity of the obtained results. By using the infinity norm bound, an error bound is given for the linear
complementarity problems of S-SOB matrices.
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1. Introduction

Schur complement of a matrix is widely used and has attracted the attention of many scholars. In
1979, the Schur complement question of a strictly diagonally dominant (SDD) matrix was studied by
Carlson and Markham [1]. They certified the Schur complement of SDD matrix is also an SDD matrix.
Before long, some renowned matrices such as doubly diagonally dominant matrices and Dashnic-
Zusmanovich (DZ) matrices were researched, and the results were analogous [2-5]. In 2020, Li et al.
proved that the Schur complements and the diagonal-Schur complements of Dashnic-Zusmanovich
type (DZ-type) matrices are DZ-type matrices under certain conditions in [6]. In 2023, Song and
Gao [7] proved that the Schur complements and the diagonal-Schur complements of CKV-type
matrices are CKV-B-type matrices under certain conditions. Furthermore, there are many conclusions
on Schur complements and diagonal-Schur complements for other classes of matrices, see [8—15].

The upper bound of the inverse infinite norm of the non-singular matrix is widely used in
mathematics, such as the convergence analysis of matrix splitting and matrix multiple splitting iterative
method for solving linear equations. A traditional way to find the upper bound of an infinite norm for
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the inverse of a nonsingular matrix is to use the definition and properties of a given matrix class,
see [16—19] for details. The first work was by Varah [19], who in 1975 gave the upper bound of the
infinite norm of the inverse of the SDD matrix. However, in some cases, the bounds of Varah may
yield larger values. In 2020, Li [20] obtained two upper bounds of the infinite norm of the inverse of
the SDD matrix based on Schur complement, and in 2021, Sang [21] obtained two upper bounds for
the infinity norm of DSDD matrices. In 2022, based on the Schur complement, Li and Wang obtained
some upper bounds for the infinity norm of the inverse of GDSDD matrices [22].

In this paper, n is a positive integer and N = {1, 2, ...,n}. Let S be any nonempty subsetof N,S C N,
S := N\S for the complement of §. C"™" denotes the set of complex matrices of all nxn. R™" denotes
the set of all n X n real matrices. / € R™" is an identity matrix, A = [a;;] € C"™", |A| = [la;;|]] € R™" and

A= ) laul 1A = > laul. i €N.

k+#i,keN k+#i,keS
The matrix A is known as the strictly diagonal dominance SDD matrix, abbreviated as A € SDD, if
|al~,-| > r,-(A),i € N.

Definition 1. /23] Let S be an arbitrary nonempty proper subset of the index set. A = [a;;] € C"™",n >
2, is called an S -SOB (S -Sparse Ostrowski-Brauer) matrix if

() laii| > rl.S (A)forallieS;
(i1) laj;| > rf(A) forall j€S;
(iii) For all i € S and all j € § such that a;; # 0,
lail = r} (A)]laj; > f”?(A)Fj(A); (1.1)
(iv) Foralli € S and all j € S such thata;; # 0,
llajil = rf (A)]lasl > 15 (A)ri(A). (12)

Definition 2. [24] A matrix A is called GDSDD matrix if J # 0 and there exists proper subsets N1, N,
of N such that Ny N N, = 0, Ny U N, = N and for any i € Ny and j € N»,

lail = " (A)]llajjl = r2A)] > r2(A)r" (A),
where J :={i € N : |a;| > ri(A)}.
Definition 3. [25] A matrix A is called an H-matrix, if its comparison matrix p(A) = [u;;] defined by

Mii = lail, pij = —lail, i,j € N,i# j
is an M-matrix, i.e., [u(A)]™! > 0.
It is shown in [1] that if A is an H-matrix, then,
()] > 147, (1.3)

Let A be an M-matrix, then det(A) > 0.
In addition, it was shown that §-SOB, SDD and GDSDD matrices are nonsingular H-matrix in [23,
26]. Varah [19] gave the following upper bound for the infinity norm of the inverse of SDD matrices:
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Theorem 1. [19] Let A = [a;;] be an SDD matrix. Then,

||A‘1||oo < max !

ieN |ai| = ri(A)’ (14

Theorem 2. [27] Let A = [a;;] € C™",n > 2, be an S-SOB matrix, where S C N,1 <|S| <n-1.
Then,

1
A oo < {max ——————, max js —=—,
:§l<55>;0 laii| — ”iS (A) S @=0 lajjl=r3 (4)
max ,'j(A, S), maXies,jes: fj,'(A, S)}, (15)
i€S,jes: a;;#0
a,-j¢0 J
where .
laj;| + ”f (A)

i€S,jes.

(A, S) = g ,
i [l — 75 (A)lla;| - ¥ (A)ri(A)

Theorem 3. [28] Let A = [a;;] € C™", n > 2, be an GDSDD matrix, where S C N, 1 <|S| <n-1.
Then,

la;;| - ryz(A) + rz{VQ(A)
A"l < max{max N N Y ari Ay’
25 laal = @)llagl = r*A)] = " (A} (4)

lail = " (A) + " (A)
max

J.
2 laal = i Allag) = 2] > 1> (A (4)

_iENZ

(1.6)

In this paper, based on the Schur complement, we present some upper bounds for the infinity norm
of the inverse of §-SOB matrices, and numerical examples are given to show the effectiveness of the
obtained results. In addition, applying these new bounds, a lower bound for the smallest singular value
of §-SOB matrices is obtained.

2. The Schur complement of S -SOB matrices

Given a matrix A = (al- j) € C™" that is nonsingular, @ = {iy, i, ..., it} s any nonempty proper subset
of N, |a| is the cardinality of @ (the number of elements in @, i.e., |a| = k), a =N —-a = {ji,--, Jji}
is the complement of @ with respect to N, A(a, @) is the submatrix of A lying in the rows indexed by
a and the columns indexed by @, A(«) is the leading submatrix of A whose row and column are both
indexed by «, and the elements of @ and of @ are both conventionally arranged in increasing order. If
A(a) 1s not singular, the matrix A/« is called the Schur complement of A with respect to A(a@). At this
point

Ala = A@) — A@, o)[A(@)] 'Aa, @).

Lemma 1. (Quotient formula [28,29]) Let A be a square matrix. Let B is a nonsingular principal
submatrix of A and C is a nonsingular principal submatrix of B. Then, B/C is a nonsingular principal
submatrix of A|C and A/B = (A/C)/(B/C), where B/C is the Schur complement of C in matrix B.
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Lemma 2. Let A = (a;;) € C™" be an S -SOB matrix, n > 2 and where a C S or a C S. Then, A(a) is
an SDD matrix.

Proof. When a C §, since A is an §-SOB matrix and |a;;| > rf(A) >ri(A)= 2, laglforallie€ a, we

k#ikea
have ri[A(@)] = X lagl = r{(A) and |a;| > ri[A(@)]. It is easy to obtain that A(@) is an § DD matrix.
k+#ikea
Homoplastically, sois @ € S. |

Lemma 3. Let A = (a;j) € C™" be an S-SOB matrix, n > 2 and «a be a subset of N. Then, A(@) is an
S -SOB matrix.

Proof. If S C a, since A is an S-SOB matrix, then,

(i) Foralli € S, la;| > r$ (A) = r} (A(@)), ]

(ii) Forall j € § Na, la;;| > rf(A) > rf““(A) = rJS.“"(A(a)),

(iii) For all i € S, j € S N« such that a;; # 0,

lail = rf A@Dllajl = laal = rf Al > 15 (A)ri(A) > rf (A5 (4)

= rf (A A),

(iv)Foralli€ S, je€ S Nnasuchthata; # 0,

llajil = 5" A@))laal = lagl = 5 @lail > 5 (A)r(A) > 15 (A)r ") (A)
S (A@)r " (A()).

Thus, A(@) is an S -SOB matrix and A(a) €{S-SOB}.
In a similar way, if § C @, A(@) is an S§-SOB matrix. Meanwhile, when « is contained neither in §
norin S, A(@) is an (S N @)-SOB matrix. Finally, A(a) €{S-SOB}. O

Lemma 4. Let A = (a;;) € C™" be an S-SOB matrix, n > 2 and let A be a matrix satisfying a;; =
0,a; > r(A)and aj; = 0,aj; > ri(A) fori€S§,je S.Ifa=1{i} C S, denote

laial = (A) —ri(A)
B =(bij) =| —lajil lajl=r;"0)  -r5@) |,
“lajal  =rNA) agl - (A)

where j, € (S \ @), j; € §, then B € {SGDDjs}.
Proof. Since A is an §-SOB matrix, if S g = {1, 2}, for all i € S, then,
onil = r{PB)lIbssl = 52B)] = [laii| = *M)]llay, ;.| - r(A)]
= [laiy) = s (Dlllaj, ;| - 7 (A)].

(b2l — 3" (B)llbsal — 3" (B)] = [lajl = 5 “(A) = llaji, Nl — ri (A)]
= laj,;l - riAlllaj;,| - 5 (A].

There exist four different cases.
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Case 1. When |aj_vi1| # 0, |ai1jx| # 0.
(i) If la;,;,| < rj,(A), from Definition 1, we have |a;,;,| > r; (A),

Ia,ml rS(A)]Iamll llaj, | — rS(A)]r (A)
rS (A)ri, (A) = 15 (A)r; (A)
r (A)r (A) > rS\Q(A)r (A) = rfB(B)rfB(B)

[by1l = 73 (B)I[lbssl — r3*(B)]

\%

(i) If |a; ;.| > rj,(A), laii,| = 1;,(A), we get

[1b11] = 732 (B)1[Ibs3] — 73 J(B)] = lai i | = rf (Allay,;,| - ri(A)] S 'i(A)’”iS_l A)
> ri\a(A)Vi(A) = 13 %(B)ry*(B).
(iii) If |a;, ;.| > r;.(A), lai,;| < r;,(A), we obtain
(11| = P B)Ibsal = 5P B)] = llai| = 15 Al = laii| = 75 (A)]r5(A)
ri (A)er(A) — riS1 (A)ri(A)
(A7, (A) > 15 (A (4) = R (B3 (B).

\%

Case 2. When |a;; | # 0, |a; ;| = 0, |a;,;,| > r;(A) the proof is analogous to (i) and (ii) in Case 1. We
obtain
(111l — r{ P (B)[lbssl — r3"(B)] > 13 *(B)r3(B).

Case 3. If |a;; | = 0O, |a;, | # O, then, |a; ;| > r; (A). By the same proof method as (ii) and (iii) in
Case 1, we have
(111 — 2 (B)]llbxs| — r3°(B)] > 11 (B)r3*(B).

Case 4. If |ajsi1| = O, |a,-1jj| = O, then, |a,-1,-1| > rl-l(A), |ajsj-s| > er(A), and
b1t — 73 #(B)I[Ibssl — r3*(B)] > r *(B)r*(B).

To sum up, the inequality [|b;;| - rS 5(B)]Ib3s| — S 5(B)] > rf_ B (B)rg ?(B) is held. In the same way, the
inequality [|bs| — rz’*(B)][Ib33| -, B(B)] > rg 5(B)r B(B) also holds. At last, we obtain B € {GDSDD3}
and B = u(B) is an M-matrix. By Definition 3, we know that detB > 0. The proof is completed. O

Theorem 4. Let A = (a;j) € C™" be an S-SOB matrix, n > 2 and let A be a matrix satisfying
aij =0, a; >ri(A)and a;; = 0, aj; > ri(A) fori € §,j € S. Denote AJa = (aljfjs)' If @ C S, then,

AJa € { GDSDDE\"5),

Proof. Note that a contains only one element. If @ = i; C S, forall j, € S \ «, j, € S, then we have

(14,1 - A [l - 15 Afe)] - S (A (A )

= laj; 1= Dl i = D e = D ) D )l

JweS\a, JweS, i €S iwES \a
w#t WS Jw JweS\

AIMS Mathematics Volume 8, Issue 11, 25815-25844.
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_ Qji iy ji Z 4 jiy i jiy
= y/y/ T Jow T T
tJt ai]” = tJw aiﬂ',
w#t
a P a . a .. a. .
Jst1¥11] Jst1 ™ Jw
X aj, - 22 = Dy, -
nn jweg. 1
w#t
_ Z q. . — L @iy Z q. . LisnGi
Jtlw JsJw
jweg allll JwES\a allll
S\a S
laj,i,|r; “(A) < laj,i,Ir; (A)
S\a Jitt Jsti1Tiy
> lajl =5 (A) = = | x|l | = (A) - =
Jii Jsis
[ e It |ai1i1| o I8 |ai1i1|
B S o S\a
- 1A (A) + —lahlllri' @ x | 5\ ( —|ah”|ril W
Jt Js
|ai1i1| |ai1i1|
= det[B/{1}] = detB > 0.
|ai1i1|

We have A/{i;} € { GDSDDEZS_\]{i1 })’S} for any i; € §. Consider that @ contains more than one element.
If iy € a, by the quotient formula (in [9] Theorem 2 (i1)), we have A/a = (A/{ii})/((A(@)/i)) €
{GDSDD;S_\,C“)’S }. The proof is completed. i

Corollary 1. Let A = (a;j)) € C"™" be an S-SOB matrix, n > 2 and let A be a matrix satisfying

aij = 0, a; > ri(A) and aj = 0, aj; > rj(A) fori € S,j € S. Denote Aja = (aljtjs)' Ifa C S,

ji €S, j, €8\ a then, Aja € (GDSDD’$\?).

Proof. The conclusion can be drawn by using the same proof method as Theorem 4. O

Corollary 2. Let A = (a;j)) € C™" be an S-SOB matrix, n > 2 and let A be a matrix satisfying

ai;j =0, a; > r(A)and a; =0, aj; > ri(A) fori € S,j € S. Denote Ala = (a’jtjs). If a is contained
neither in S norin S, j,€ S\ a, j, €S8 \ a, then Aja € {GDSDDf_\k“)’(S\“)}.

Proof. The proof is similar to ( [9], Theorem 2 (ii1)), so we get A/a = (A/(S N a))/(A(@)/(S Na)) €
(S\@),(S\e)
{GDSDD,”, }. O

Theorem 5. Let A = (a;;) € C"™" be an §-SOB matrix, n > 2 and denote A/a = (a'jtjs). Ifa =S or
« =8, then A/« is an SDD matrix.

Proof. 1If {i;} = a = S, for all j, € @, then we have

’ ’ ’
|ajrjt| - r]l(A/a) = |ajrjt| - : : |ajrjw|
Jwea,

WEL

ajtilailjw

=
=.
=
|

aj i
|aj,i1 |”?,(A)

|aili1 |

%

: i iy 2
laj ;| = r}(A) - Z el laj,| =1 (A) -
jwea iriy
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o lagalra)
laj,;| = (A) - ——.
S laiyi |

If aj; = 0, then we get )
—r(Al@) 2 laj,;| = r}(A) =0 > 0.

!’
la, ;|

If aj; # 0, then we obtain

, (A (A)  lajlr (A)
| —rj(Aa) > - >0

la
Judi |ai1i1| |ai1i1|

Hence, for any {i1} = @ = §, A/{i;} is an S DD matrix. Taking iy € @ = S and using the fact that A is
S DD, we know its Schur complement is as well. At last, we have A/a = (A/{i1})/(A(@)/{ii}) € {S DD}.

By the same argument, sois @ = §. m|

Corollary 3. Let A = (a;;) € C™" be an S-SOB matrix, n > 2 and denote A/a = (a'jt js)' IfS Cc aor
S c a, then A/« is an SDD matrix.

Proof. From Theorem 5, A/S is an S DD matrix, consequently, A/a = [A/S]/[(A(@)/S] € {SDD}.
Similarly, if S C «, we have A/a = [A/S]/[(A(@)/S] € {SDD}. m]

Finally, making a summary of part of the content: if « C S or @ C §, then A(a) € {SDD},
A/a € { GDSDD}; if S ¢ @ or S C a, then A(a) €{S-SOB}, A/a € {SDD}; if S = aor S = a,
then A(@) € {SDD}, A/a € {SDD}; if « is contained neither in S nor in S, then A(e) €{S-SOB},
A/a € {GDSDD}.

3. Schur complement-based infinity bounds for the inverse of S -SOB matrices

In order to obtain the upper bound of the infinite norm of the inverse of the §-SOB matrix, we need
to give the definition of a permutation matrix in which every row and every column of it has only one
element of 1 and all the other elements are 0. It is easy to see from the definition that permutation
matrices are also elementary matrices, so multiplication of any matrix only changes the position of the
matrix elements, but does not change the size of the matrix elements.

For a given nonempty proper subset a, there is a permutation matrix P such that

PTAP = ( A@) A(“’_&)) .
Ala,a) A(@)

We might as well assume that A(a) is nonsingular, let

(3.1

E(PTAP)F = (A(“) 0 )

0 A@-A@a)A@) A, @)

under the circumstances

~ I 0
E= (—A (@, ) A(a)™ 12)
and

P (11 -Al@) A (e, @))’

0 I

AIMS Mathematics Volume 8, Issue 11, 25815-25844.
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where I, (resp.l) is the identity matrix of order [ (resp.m). We know that if P is a permutation matrix,
then PT is also a permutation matrix, and ||P||, = 1. From the above we can obtain

IA™Y | = |IPF(EP"APF) "' EP" |,

— -1
1A o < NIFNIEPTAPF) ™ |l Ellco- (3.2)

Therefore, if the upper bounds of ||F|lw, [(EPTAPF) '|lw, and ||E|l. can be obtained, the upper
bounds of ||A7!||., can also be obtained, that is, the product of the above three norm bounds needs to be
calculated. It’s not hard to figure out

IElle = 1 + IA (@ @) A(@) I, (3.3)
IFlle = 1+ IA(@) " A (@, @) lleos (3.4

and
IEPTAPF) [l = max{lIA(@) 'l (A /@) lo}. (3.5)

In [20], Li gives an upper bound for ||E||., as follows:

Lemma 5. [20] Let A = [a,-.,-] € C™" be nonsingular with a;; # 0, fori € N, and @ # a C N. If A(@) is
nonsingular and

Max ey, j#i la jil

1 > max (k-1), (3.6)
ica |a;;]
then,
Hjlj‘_x lajil max jeq, jzi il B
IEllo < Z(a) = 1 + k - max l - max ————(k-1)] . (3.7)
ica |a;i| i€ |ai;]

Theorem 6. Let A = [aij] € C"™" be an S -SOB matrix and D = [d;;] € C"™". Then,

IR, S .
A" D|l. < max{ max laj;IR{(D) + r; (A)_RJ(D) ’
ies.jeS:ai#0 [laz| — r{ (A)laj;] — r; (A)rj (A)
|la;i|R;(D) + FJS- (A)R;(D)
max - ,
ieS,jeS:a;i#0 [|a ;| — "f(A)]|aii| - "f- (A)r; (A)
Ri(D) R;(D)

mx ROy RO e
ies:rS (=0 laz| — r7 (A) jeSir (=0 la ;| — rf (A)

where Ri(D) = Y |dyl.
keM

AIMS Mathematics Volume 8, Issue 11, 25815-25844.
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Proof. Since A = [ai j] € C"™" is an S -SOB matrix, we know from [1] that A is an H-matrix, [u(4)]™" >

|A7!]. Let
@Y= |A_1D|€ = ((1019 D2y eeey SDn)T,
lp = (/’l(A))_llDle = (lr//b'vl/Z, eeey l//n)Ta

and e = (1, ..., 1)" be an m-dimensional vector, consequently,

¥ = u(A)'|Dle > |A7Y||Dle > |A™' Dle = ¢, and u(AW = |Dle.

Because of S C N, ¢, = rilz}sx (Y}, ¥, = max {y}, it implies that
€ keS
lailyi = Y lawlp = D ldul, i € N.
keN,k+i keM

If , > ,, then,

Dl

lapplry = D lapdin

keM keN.k#p
= lapplyy - Z |yl — Z |a il
keS k#p keS k#p
2 lapplpp = Z laplry — Z |apilpy
keS k#p keS k#p

llay,| — (A, — 13 (A,

That is to say, if ¥, > i, rf; (A) =0, then,

DMyl = lay,| = r (A,

keM
and
kz |dpk|
_ eM
IA7' Dl = maxy; <y, < —H
ieN |app| - I’; (A)
kZ |l
M
< max <

ies:S (=0 |a;i| — 7’? (A)
If Y, > g, 15 (A) # 0, then,

D Myl = Tyl = 75 (A, = 73 (AN,

keM

and

D Mgl = lagglyg = D lagele > lagglsg = ry(A.

keM keNk#q

(3.9)

(3.10)

(3.11)

AIMS Mathematics Volume 8, Issue 11, 25815-25844.
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By Eq (3.10) Xlag| + Eq (3.11)xr5 (A), we have

lagql Y il + 75 (A) Y el = Hlagglllayl = r5(A)] = 75 (A)rg(A)W.

keM keM

Thus,

laggl 3 ldpil + 15 (A) X ldul
IA"'Dlle = maxy; <y, < = —
ieN lagqlllap,y| = r$(A)] = r$ (A)r,(A)
lajl 3 ldal + 15 (A) 3 |dal
keM keM

max - .
ies.jeS 20 [ lag] — rS (A)] = rS (A)r(A)

If y, >y, equally,

Dl = laglyy— > lagly

keM keNk#q
> |aqq|lr//q - Z |aqk|‘//q - Z |aqk|l//p
keS k+q keS kg

= [lag — (A, — 15 (A,

When 1 (A) = 0, 3 1dyel = Hagyl = 1 ()1,

2. ldgl

keM
|aqq| - }’g (A)

2 ldj

keM
max —————.
ieS:rs (A)=0 |a ;| — rJS_ (A)

-1 - <
A7 Dl|eo I{_leé}vx% <Yy

When 73 (A) # 0, then

Dl > lapplyy, = rp(A,

keM

DNyl > gyl = 75 (A = 75 (A,

keM
Eq (3.14) Xrg(A) + Eq (3.15)X]a,,|, we have
P (A) D Nl + lappl > ldgel = Hlapplllaggl = 75 (A)] = 5 (A)ry(A)h,.
keM keM

Consequently,

VS(A) Z |dpk| + |app| Z |qu|
max y; < lﬂq < keM keM

IA"Dll. = o - .
1eN |app|[|aqq| - I’q (A)] - l’q (A)rq(A)

AIMS Mathematics Volume 8, Issue 11
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laal X 1djl + 13 (A) X Idi

< omax L = (3.16)
ieS.jeS a0 |agl[laj;l — 3 (A)] = ri(A)ri(A)

The conclusion follows from inequalities Eqs (3.9), (3.12), (3.13) and (3.16). O
Replacing A and D in Theorem 6 with A(@) and A(«, @), respectively, yields Corollary 4.

Corollary 4. Let A = [aij] € C™ be an S-SOB matrix and @« € N, then, ||Fllo < 1 +

max{max %, Ba), y(a), A(a)}, where

Sl@) = max { o JagRlAG, @)+ A@IR (A, 3)]
st lail = S TA@]Nlag) — S [A@)1rj[A@)]
|la;|R[A(a, @)] + 7’5 [A(@)]IR;[A(a, @)]

max = )
sstanageo Lajjl = PV [A@)]lail - i [A(@)]r{A()]
. RlA@®] Rl
o lail = TA@] gsee g S0 Ax)] )
75 aay=0 L e j

laj;|Ri[A(, @)] + r° " [A(@)]R[Ae, @)]
v(a) = max{ max Sna)
st o LIl = rf [A@)laj;| = r; [A(a)]rj[A(a)]
lailR[A(e, @)] + i [A(@)]R;[A(e, @)]
max ma)
(S faya 20 [lajjl — [A(@)Nlail = r; S[A(@)]r[A(@)]
Rmman R[A(a, )] }
max _— mezslx Sna) .
i< lai| —r; [A(a)] g lajl —r; " TA(@)]

AP =0 3 [4@)1=0

|%mwam+ﬂwm@ [A(a, @)]
Ala) = max{ max A T )
oo Hail = re " LA@] Nl - " [A(@)]rj[A)]
lailR {A(@, @) + “‘”[A<a>]R~[A(a @)
,er%%()y( Sﬁa) (Sma)
o lajil = " A(@)lail - [A(@)]r[A(@)]

Rl ) max  —_RilA@ )]
_ie(Sna) |a| _ l’(.sna)[A(a)] ’ jeSna |a| _ r(grm)[A(al)] .
A5 pa@y=0 T T ay a0 T

Proof. Leta C S ora C §, A(a) be an S DD matrix (from Lemma 2). Thus,
Ri[A(a, @)]
IFlle =1+ IA@) A (@,@) llo < 1 + max —————.
ica |a;| — ri[A(a)]

From Lemma 3, we have
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()if § C a, A(@) is an S -SOB matrix, then

IFllo = 1+ [IA(@) A (@, @) [l < 1+

{ lajIRi[A(e, @)] + r° " [A(@)]R[Ae, @)]
max I‘rlle.’élx 3 )

im0 Llail = S TA@)]lag) = 1" [A(@)]rj[A(@)]

lailR[A@, @)] + r; [A(@)R;[A(e, @)]

b

max = )
sty agl = P TA@)lail - r§[A@)]rilA@)]
Lo _RA@a] o R[A@.)] }
5o 19 =T TA@T 50 aj =1 A )]

Hence, ||Fllo < 1 + B(@).

Q) If S c a, A(a) is an S-SOB matrix, then

IFlle = 1 +A(@)"A (@, @) |l < 1+

{ lajIRi[A(a, @] + r° "[A@)IR[A(e, @)]
max max - 5o ,
st il = 7 TA@]laj) = i " [A(@)]r,[A@)]

lailR[A(@, @)] + r [A@]R{[A(e, @)]
max p )

st lajl = 2" TA@]lasl = 3 [A(@)]ri[A@)]
Ri[A(a, )] Ri[A(e, @)] }
max =——————, max o .

= lagl - P [A(@)] ’ lajl =7, "TA(@)]

50D 4 (@)1=0 i} A@]=0

Accordingly, ||Flle < 1 + y(@).
(3) If a is contained neither in S norin S, A(a) is an (S N @)-SOB matrix, then we have

la;/IRIA(, @)] + " [A(@)IR;[A(a, @)]
max gﬁf Sna) Sna) ’
im0 llaal = 1"V LA@)]lag,) - 1" [A@)]r[A(@)]

lailR[A(@, @)] + r* " [A(@)IR A, @)]

IFllo = 1+ IA(@) ' A (@, @) |l < 1+

re%%ﬁ Sna) (SNa) ’
ooy lagl = rS " LA@laal - " [A@)IR[A@)]
Ri[A(a, )] R;[A(, @)] B
P (S ) S §na) = Al
509 4 @)1=0 il = r; [A@)] S mj‘”[A(a)]:O lajil = Tj [A(e)]
Hence, ||F|| < 1 + A(@). The proof is completed. O

Lemma 6. Let A = [a,-j] € C™" be an S -SOB matrix and x = [u(A(@)]”'y?, wherea« C S, ora C S.
Let x = (.X1,XZ,' o 9~xk)’ y= (.YIay27' o ’yk)’ Vi > 0’ Xg = Max xi, then
lrea

0 < x;x < max A

Y ea 3.17
veo Jagsl - oAy -17)
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Proof. Note that x = [u(A(a))]™'y", so [u(A(a))]x = y'. Forall @ € S, or @ € S, from Lemma 2,
u(A(@)) is an H-matrix, so [u(A(a))]™! > 0 by Eq (3.1). Then

Vo = lai g = > laii x> lag g = > lay i xe,

i€ i€

i Consequently, 0 < x; < max i € a. O

which gives x, < = o —
g 8 7 laigigh= X laigiy] — laigigl=ri (A) iea lawil=ri(A)?
lyEa

Lemma 7. Let A = [ai j] € C™" be an S -SOB matrix, x, y' from Lemma 6, if a is contained neither in

S norin S, x, = max x;, then
lea

0<x <myr(a), ix € a, (3.18)

where

S na)
(@) = max{ max lalvi + 1, [A@D;
Y - ie(SNa), (SNa) S na) ’
o lail = r7 " TA@]ajjl — 7 "V [A(@)]rj[Ala)]
laily; + " TA@)y;
max

S llagl = 1O A@ Nl - K TA@)]rA@)]

Proof. When « is contained neither in S nor in S, A(@) is an (S N @)-SOB matrix, so is u(A(@)). Thus,
I(A@)]™"'Y Nleo = [14]le = max xg.
Iea

Replacing A and D in Theorem 6 with [u(A(a))]™" and y7, respectively, yields

. (S‘ﬁa)A '
I[1(A@))] ™'y |l < max{ max _ lajjlyi + 17 L S(f)])’; ’
o llaal = 1" TA@)lal - 12" A@)]r[A@)]

laily; + ry " A@)]y:

max —
e lajil = "A@)= r [A@)]IrilA@)]
lajly: + ”,(Sﬂa)(A)yj
= max{ max

i€(SNa), SN S N ’
o laal = r " (A)]lag = " A)(A)
SN
laily; + " (A)y;
nax Gna) (Sne) b= mr(@).
e(Sna),
s Hagl = " @M)lay = 00 A)re(A)

Which implies that: 0 < x; < myr(@)), i € a. O

For the sake of convenience, assume that the symbol of A/« in this part is the same as in the second
part and denote:

T
Vi, = (@i jins = 5 Qi )s Wi, = (@i s Qinjys = 5 Aigj,)" s
T
|Vj,| = (laj,ill, |aj,iz|a T, |aj,ik|)a |Wj3| = (lailjxl’ |(1i2jx|, T, |aikjs|) .

I=(,1,---, D7 is an k order column vector.
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Theorem 7. Let A = (a;;) € C"™" be an S -SOB matrix, n > 2 and A is a matrix satisfying a;; = 0, a;; >
ri(A)and aj; = 0,a;; > ri(A) fori€ S, j€ S. Denote AJa = (a;'tjs)' Ifa C S, then,

Ri[A(a, )]
1A e < (@) 1+TT11% o = rA@] 01(a),

1
where 0, (@) = max{r?eatlyx @) m(a)},

m(a) = 7
lajl = 7 (A) + 17 (A) + max 2! e (A) + ()]
max{max )
ie(S\a), hi .
Jjes »J
lail = 77 (A) + F5\(A) + max s (A + 1 (A)]
S I, )
Jjes ’

h,=WWWFWM—MMMMM*§:M4
ke(S\a)

X Iaul 3 (A) = v l[uA@)] lZ""’kl]

keS

- rS(A)Ivll[u(A(a))] 1Z|Wk|

keS

X

r5(A) + v luA@)]™ Z |Wk|]~

ke(S\a)

Proof. By Lemma 2, we know A(e) is an S DD matrix. Applying Varah’s bound to A(«@), we get

1
1A(@) "l < max ——————. (3.19)
laiil = ri(A(a))
By Corollary 4, we have
Ri[A(e, @
IFlle < 1+ max x JilA@ ] (3.20)

co lai| - rilA(@)]
By Theorem 4, it is easy to know A/« € { GDSDDﬁlS_\k“)’S }. Therefore, from Theorem 3,
IA/@) I < ] ]
a1 =1 (Ala) + r} (Al e)
=3 A Dl | = 1 (Afa)] = 7 (Afa)r (A fe)
— (A fa) + (Al e)

max{ max
HeS . ] o
Js€S JtJt

;]

max . - }.
s, 11| S\ 3 B S\a)
SO lld = YA ollld; | = (Al a)] = (Al V(A @)

And then

[l = 7\ )llld, | = 5 (Afe)] = F (A fa)r (A )
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> il = 75 A) = @A@Y |wjk|]

P A) + v lluA@)T™ ) 1wl

JkES\@)

*floasd - 5 (A) - v, lluA@)] IZM}
JkeS

Jjx€S jre(S\@)

a; ;| = (Al + 15 (Al)
< laj,j,l = 75 (A) + 75 (A) + v TCA@)T™ Y Iwil + v [u(A@)] ™ ) Il

k€S k€S

= la,j,| = 75, (A) + 75 (A) + (v + v DlCA@)T ™ ) I

< laj ) = 73 (A) + A + (vi] + v;) max

jkef
Yv

— 2 I(by (3.18
Xl - ey Y GA8)

S (A)
=la; ;|- r (A) + rS (A) + max —————[r(A) + e (A)].

Similarly,

Let

x rf\”)(A)+|Vj5|[H(A(CV))]_1 2, il

ivea |, | — i (A)" 7

0= A @) + A @) < a1 = A + 1 A)
A
+max ————=[rj(A) + rj (A)].

e |a;,,| — ri(A)

s = Mgl = 04 = W llpA@DIT D wyd

JkES\@)

xlaj,j,| = 5, (A) = v, [u(A@)]” Zm} l|vj,|m<A(a>)]*Z|w,k|‘

jkES jkES

> 0.

JkeS\a)

Furthermore, by Eqs (3.21)—(3.23), we have

AIMS Mathematics

1A /)l < »
( )
|Clhh| - l" (A) + }’S(A) + maX m ar(A) + I’?;(A)]
max{ max ,
g o

><[rg.f\“>(A)+|vjs|[u(A(cv))]‘1 Z wil| > 0.

(3.21)

(3.22)

(3.23)
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S\o)
(S \@) (S\a) (A) o
laj ;| = (A) +r; (A + max m[” (A) + 1 (A)]
max !

jr€(S\a), .o
s hm

g S s (4)
lal = r (A) + 17 (A) + max GZHGes [ (A) + 1 (A)]
= maxymax s
{ie(S\fr), hi .
jes o)

(e a (S @) a
@il = 17V (A) + 1 V(A) + max R [ (A) + 1 (A)]

IEI(IS.’:\I‘S)( hij ) (3.24)
jes g
Finally, by Egs (3.2), (3.7), (3.19), (3.20) and (3.24), the conclusion follows. O

The following inference can be naturally drawn from Theorem 7:

Corollary 5. Let A = (a;;) € C™" be an S -SOB matrix, n > 2 and A be a matrix satisfying a;; = 0, a; >
ri(A)and aj; = 0,a;; > ri(A) fori €S, j € S. Denote AJa = (aljtjs). Ifa C S, then,

! Ri[A(a, @)]
A" |l < (@) 1+Hll% o = rA@] 0(a),

where 6,(a@) = max{rrllez(lyx m, m(a)},

m(a) =

jal = A + 12\ (A) + rrvleax LA (A) + F(A)]
max{n’_gx —
JjeS\a) L]

lai;| — rS (A) + r; S(A) + maX ™ | r“(A) [r(A) + r"(A)]
max I8

€S, .o
jeS\a) i j

b

2i; = |lail = rf (4) = illp(A@)] ™ ) |wk|}

x[lajil = @A) = AT ] |wk|]

ke(S\a)

X

A + Willa(AE@)]™ ) Iwil

keS

- (S\“)(A)IVIUI(A(Q)) D il

ke(S\a)

Theorem 8. Let A = (a;j) € C™" be an S -SOB matrix, n > 2 and A be a matrix satisfying a;; = 0, a;;

r{A)and a;; = 0,a;; > ri(A) fori € S, j € S. Denote Ala = (a'j[js). If a is contained neither in S nor
in§, then,
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1A Nl < (@) [1 + A(@)] 65(a),
where 63(a) = max{d(a), n3(a)},

lajil + rS"(A(@))
01(a) = max{ max oo G ,
SO0 [agl — rS"(A@)laj] — FS"(A@)r(A@))

1

lail + " [(A@))]
max

e llajil = " (A@)llail - " (A@)riA@)

jajil = r$A) + A + [r(A) + 2 (A)]my, (@)

J
@) = max{max s
(@) (max T
je\a) bJ
S S
lail = 1>\ (A) + VA + [1(A) + A @
max .
v y

fii = laid =@ = nliuA@) ) |wk|]

ke(S\a)

X (lajjl = ' 7A) = v lluA@nl ™ |wk|]

ke(S\a)

= [A) + MA@ ] |wk|]

ke(S\a)

x[FAOA) + @A@Y |wk|] :

| ke(S\a)
Proof. By Lemma 3, we know A(e) is an (S N @)-SOB matrix. Applying the bound of Theorem 2 to
A(a), we get

- S na)
lA(@) ™"l < max{max - lajjl +7; (Ag(rfl)) |
s laal = " (A@)lag] = r* " (A@)r(A(@)
lail + " [(A@)]

max o oo } = 01(a). (3.25)
e Lajl =17 P (A@)]laal — ;" (Al@)ri(Al@))

By Corollary 4, we have
IFll <1+ A(a). (3.26)

By Corollary 2, we know A/« € { GDSDD;S_\,CQ)’(S_\“)}. Therefore,

I(A/) Ml <
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S\ S\a
| jsjsl 7'35\ )(A/CL’)'FI";’\ )(A/a’)
max{ max -

e\, 11,/ S ’ S S S ’
i a1 =2 @l | = Al = A A )
la

et
il =15 VAl + A )
max ' ' } (3.27)

jre(S\a), 4 S 4 S S S :
s lld, | =@ lollld, |-\ )] - Ay (A )

And then,

Ha./l‘jt

| = @/l ;| - A )] - F VA a)r V(A )

\%

a1 = 5\ (A) = vy lA@) ™ |w,,k|]

JkeS\a)

xlaj i) = ) = v luA@) ™ |wjk|]

jkeS\a)

= |5 + iA@Y sl

JjreS\a)

X[ + ViA@Y Iyl > 0.

JkES\@)

N N S S
a1 = 0 A @) + 10 A ) <laj | - A + 15 A)

HVlA@DIT DT wil + illuA@)]™ > wyl

JjkeS\@) Jjre@\e)

= laj, 1= 5\(A) + F5\0(A) + (vl + Wi DA@)]™ > wyl,
Jre@\a)

Lety" =y1= X Iwl y" from Lemma 7, we get
JkES\@)

a1 = 1A @) + (A )
< lays | = 75770 7 VA + vy v ]
=l = 13y DAY + 1V + [ (A) + 7 (A (@) (3.28)

In like manner, lety” =y, = 3 |w;l, y" from Lemma 7, we get
JkE(S\a)

| = 2@ ) + V(A @) < a0 VA + 0 O(A)

+[15(A) + 1 (A)]7y, (). (3.29)
Let

Fiie = laj;l— rf\co(A) — vl [(A@)] ! Z w, |

JkeS\a)
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X flag ] = 5O ~ WA@Yyl

Jjre@\a)

= [0 + viluAep D wld

jkeS\a)

XA + @@ ) .

JkeS\a)

Furthermore, by Eqs (3.28)—(3.30), we have

-1
IA/a) e <
S S
laj il = 2 A) + 72\ (A) + [F9(A) + 2 (A)]my, (@)
max{ max : ‘ )
i Jivis
S S
. jaj il = 1A + 5 OA) + [r9(A) + 1 (A)]my, (@)
g Jivi
{ jajil = r$ A + 1A + [r(A) + 1Ay, (@)
= maxymax - s
i fii
S S
lail = i\ (A) + KA + [ (A) + r(A)]my, (@)
max .
ie(S\a), f . }
je\o) bJ

Finally, by Eqgs (3.2), (3.7), (3.25), (3.26) and (3.31), the conclusion follows.
Theorem 9. Let A = [a;;| € C"™" be an S-SOB matrix, ¢ # = S. If Eq (3.7) holds, then,

|+ max RlA@DL ],

-1
A e < (@) 1+ max === | O

_ 1
where 0,(a) = max{ iez(ilx G A@) (@)},

1

(@) = - -
TS = B @A)~ llA@)I 3 il

keS
Expressly, when ¢ # @ = § = {i},
aj; dji
A Yl < [1 + max ity max lazd 0,().
jes lail jes lail
0, (@) = max{;~, m,(@)},
2(@) = ma !
@) = max —.
T4 5 jajirs ()

o3 -
= agl - V]S(A) -

laii

(3.30)

(3.31)
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Proof. By Lemma 2, we know A(a) is an S DD matrix. ||A(a)™!|| is the same as Eq (3.19), and ||F||.
is the same as Eq (3.20). By Theorem 5, knowing that A/« is an S DD matrix. Therefore,

1
I(A/@) e < max
ald,;|-r(Ale)
1
< max
ica lag,l =5 (A) = v lluA@)]™ X w
JjkeS
1
= max .
WS gl = 15 (A) = v l[uA@)]™ X [w),]
Jk€S
1
— 1 = n4. (3.32)
feS Iaul—rS(A)—Ivjl[ﬂ(A(a))] 2 Wil
keS
Finally, by Eqgs (3.2), (3.7), (3.19), (3.20) and (3.32), the conclusion follows. O

A proof similar to Theorem 9 leads to the results.

Corollary 6. Let A = [a,»j] € C™" be an S -SOB matrix, where ¢ # a = §. If Eq (3.7) holds, then,

1 + max _rilA@ )] 0s(a),

A7 oo <
IA e < (@) ica |ay| — ri[A(@)]

_ 1
where 05(a) = max{r?ez(lyx ana@y 1@},

1
U Jaud =17 (A) = illu(A@)]! Z il

ns(a) =

Distinguishingly, when ¢ # a = § = {i},

A" | < 1+max| ”|H1+ la ”']9( ).

|all| JES |a11|

0.(e) = max{lal—ﬁl, n5(@)},

1
n5(@) = max

Jjes S _ lajilr? (A) ©
lajil - 5 (A) — @

laiil

Theorem 10. Let A = [ai j] € C™" be an S -SOB matrix, where S C a. If Eq (3.7) holds, then,
1A oo < C(@)[1 + B(@)]06(a),
where 05(a) = max{6,(a), ns(a)},

lajil + " (A(a))
02(a) = max{ max : = ,
SIS0 [agl — rf (Al@)]lajjl - 1" (A@)ri(A@)
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jail + " [(A(@))]

max ’
ies /E(Sﬂa) [aj;| - (Sn“)(A(a))]|a”| rS(A(a))Fi(A(Q))
1 1 }
,Esm,jsﬁ) |aii] — rS(A(a’)) ieS /e<s§a) la;i| — r(Sma)(A(a)) .

50 (4070 =0 T

(@) = max 1
Ne\&) = S\ .
€S\ |a] — r\(A) = illpA@)] T wil
ke(S\a)

Proof. A(a) is an §-SOB matrix (by Lemma 3). Thus,

i lajil + 1S (A(@))
A(@) " [lo < max{ max — ;
S0 [agl — rf (Al@)]lajil - 1" (A@)ri(A@)

lai + 1" [(A@))]

max (Sm) ,
S lajl = (A(@)]lail = 13 (A(@)ri(A@))
1 1
egne%ny) rS A €S, e(aSny) (Sﬂ(y) } B 62(0)
('mf)m( " lail = rf (A(@))’ e lajl = 1 " (A@))
From Corollary 4, we know
IFlle <1+ B(a).

By Corollary 3, we obtain A/a is an S DD matrix. Therefore,

1
I(A/a) 'l < max _
(S G\ 1
rES aj | =i A) = Vi llA@)]T X w;l
e \a)

ma !
= X — .
S fag| = 1 V(A) = Pl A@)T 3w

ke(S\@)

Finally, by Eqgs (3.2), (3.7), (3.33), (3.34) and (3.35), the conclusion follows.
According to Theorem 10, the following result will come out naturally.

Corollary 7. Let A = [al-j] € C™" be an S -SOB matrix, S C a. If Eq (3.7) holds, then

1A e < £(@)I1 + Y(@)]6+(a),
where 6;(a) = max{ds(a@), n7(a)},

lajjl + 15 (A(a))
03(a) = max{max Sho) 5 ,
S [lag) = 1" (A@)]laj| - 13 (A@)ri(A))

Jjes

(3.33)

(3.34)

(3.35)
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lail + " [(A(@))]

hax G Sna) ’
s lagil = ri (ANl = i ™ (Al@)ri(A(a))
1 1
max max
iE(ngSla)‘ |ai,-| — rlgSﬂa)(A(a,)) IE(jSEr;Q) |a]]| - rS (A(CY))

1
e(S\a) lail =\ A -illpA@)] Y el

ke(S\a)

Theorem 11. Let A = (a;;) € C™" be an S -SOB matrix, n > 3 and let A satisfy that when a;; = 0, a;; >
riAyand aj; = 0,aj; > rj(A) fori€§, j e S. Denote AJa = (alj,js)’ then,

(@) =

A"l < T(A) = minT,(A).
ieN
el gl

where Ti(A) = (1 + Z—)(1 + Z—)T,(A),

|aii |aii

ri(A) = max{ﬁ T'(A)}.

lcwl = 2 lepl + X Iyl

pES, PES,

ki DpEI
I'(A) = max{ max ”
g el = % leleul = % legh = % lewl 3 1ol

pesS, PES, peS,

p:t] i pEk,i p#L p#i

|cjj| Z |ij| + Z |Ckp|

peS

pi/ i pil

max %
;{i(fs\\“')) (lcjjl - Z |ij|)(|ckk| 2 |Ckp|) - 2 |ckp| Z |cjp|
ih pes, pes,
P¢/1 p#k.i Pil pEi
ajiaix

and Cjk = Aji —

aii

Proof. Since A is an S-SOB matrix, by Lemma 2 and Theorem 5, we know A(a) and A/a are
nonsingular. Therefore, taking @ = {i}, then A(e@) = a;;, ¥ = N — {i}, and

) 1
lA(@) | < o (3.36)
max |a;,;| mr lail
Il = 1 + 2= =1+-Z (3.37)
|ctji |ctji
max |a;;,| max i
s€a j#i
1Fllo =1+ =1+~ (3.38)
|aji| |aji|
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Because A/a = (a'].[js), let Ia'jtjxl = la;,j, — %I = |c;,;|(is js € (N \ {i})). By calculation, we obtain
for j, € (S \ {i}), j; € (S \ {i}),

(S\{ih) = =
rjt (A/a’/) - Z |C.I-tjp| - Z |ijjl7|’

Jpe(S\iih), =
Jp#it Jp#iti
S\{i
PO Ay = Y el = D 1)
Jpe@\1ih) ipeS.
Jp#i
.
r;lv\{l})(A/Ol) = Z |Cj5j,,| = Z |Cj_;jp|’
Jpe@\(iD, JipeS,
Jp#is Jp#i
S\hH
AWy = Y el = ) el
JpES\IiD IpsS.
Jp#i

By Eq (3.27), we have

el = 20 lekpl + 22 lejpl

I(4/@) ™l < max| W
a o S mMaxy max
i (el = X lepDlend = 2 leph = X lewpl X lejpl”
PES, pes, PES, pes,
PE)i p#k.i P# p#i

el = 2 lepl + 3 lel
pes, PES,

p#Ji p#i

max 1. (3.39)
jsi (el = % lephlend = 2 legh = % legl 3 Iyl
PES, pes, PES, pes,
P#ji p#k,i P#i p#i
Finally, by Eqgs (3.36), (3.37), (3.38) and (3.39) the conclusion follows. O
We illustrate our results by the following examples:
Example 1. Consider matrix A as a tri-diagonal n X n matrix
n+|sin(1)]  bcos(2) e bcos(n — 1) bcos(n) |
sin(2) n+ |sin(2)| - bcos(n — 1) bcos(n)
A= : . .. .. :
sin(n—1) - sinln—1) n+|sin(n—1) bcos(n)
sin(n) e sin(n) sin(n) n+ |sin(n)|_m

Let b = 1.5, n = 10000. We get that matrix A is an S DD matrix. It is easy to verify matrix A is an

S DD matrix, so it is also a S-SOB, DS DD, GDS DD and DZ matrix. Therefore, from Theorem 1, we
put the result in Table 1.

Actually, ||[A7!|| = 0.0002. This example shows that the boundary in Theorem 11 is superior to
other theorems in some cases.
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Table 1. Upper bounds of matrix A in Example 1.
b=15 n=10000

Bound in Theorem 1 0.2786
Bound in Theorem 2 0.2685
Bound in Theorem 3 0.2485
Bound in [20, Theorem 3] 0.3954
Bound in [31, Corollary 1] 0.2786
Bound in [21, Theorem 1.2] 0.2731
Bound in [21, Corollary 2.6] 0.1937
Bound in Theorem 11 0.1904

Example 2. Consider matrix

[16.81 0.15 0.65 0.7 043 027 075 084 035 0.07]
1.9 8§ 003 0.03 338 067 025 225 083 1.05
0.12 095 11.84 027 0.76 065 05 081 0.58 0.53
091 048 093 1204 079 0.16 0.69 024 054 0.77
063 08 067 009 918 1.11 089 692 091 093
0.09 0.14 0.75 0.82 048 1549 095 035 028 0.12|
027 042 074 069 044 095 1254 0.19 0.75 0.56
054 091 039 031 064 034 0.13 1125 0.75 0.46
095 079 065 095 070 058 0.14 0.61 1038 0.01

1096 095 0.17 0.03 075 022 025 047 056 17.33]

By computation, the matrix A is an §-SOB matrix and S = {2, 3,5}. According to Theorem 2, we
obtain

A~ | < 1.7202.

According to Theorem 11, it is easy to get
A" [l < 0.5061.

In practice, ||A7!|| = 0.2155. Obviously, the boundary in Theorem 11 is superior to Theorem 2 in
some cases.

Example 3. Consider matrix
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Obviously, the matrix A is an SDD matrix, and it’s also an §-SOB matrix and S = {2, 3,4, 5, 8}.
According to Theorem 1, we can obtain

A"l < 0.0909.
According to Theorem 2, we can obtain

A"l < 0.0860.
According to Theorem 11, we can obtain

A7 |0 < 0.0842.

In fact, ||[A7Yl. = 0.0497. This example shows that the boundary in Theorem 11 is superior to
Theorems 1 and 2 in some cases.

4. Error bounds for LCPs of S -SOB matrices

In this section, we will apply the result in Section 3 to the linear complementarity problems (LCPs),
to obtain two kinds of error bounds for LCPs of §-SOB matrices. We first need to give some lemmas
that would be used in the following theorems:

Lemma 8. [29] Lety > 0andn > 0, for any x € [0, 1],

1 < 1 nx < ﬂ.

l—x+yx ™ minfy,1} 1—-x+yx " y

Lemma 9. Suppose that M = (m;;) € R™" is an S-SOB matrix with positive diagonal entries, let

M =1- D+ DM = (i), 4.1)

then, M is also a real S-SOB matrix with positive diagonal entries, where D = diag(d,,--- ,d,), d; €
[0, 1].

Proof. Note that
1 —d,' +d,‘m,'j, 1= j,
mij =
a’im,-j, I+ ]

Hence, foreachi€ S, j€ S,
il = 1 = d; + dmy; > domy; > dir¥ (M) = 7 (M),
|l’7’ljj| =1 —dj +djmjj > dim,-i > d,rlS_(M) = I"f(M)
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Then, foranyi€ S, j€ S, d; € (0, 1), we have

(il = r} WDyl = (dilmil = dir? (M)l jlm
= dd (lmlll rS(M))lmJJ|

> ddjr (M)riM) =r; (M)rj(M)

Foranyi€ S, j€ S, we get
(| = rs (D)l = (djlmy; — d;r§ (M)d ;]
= didj(lmjjl - "JS~(M))|mii|
> did;r} (M)riM) = r (M)ri(M).
Whend; =0,m; =1 —d; + dm;; = 1, we obtain
(il — r; (M)l = 1> 0 = rf(M)ri(M),

(il = 73 (M| = 1> 0 = rf (M)r;(M).

When d; = 1, m;; = 1 — d; + dim;; = m;;, then

(il — rf ()il = (myl — rf M)yl > 5 (M)Yr(M) = 1§ (M)ri(M),

(| = rs (RNl = (m | = 15 (M)lmg| > rf (M)ri(M) = r; (M)ri(M).

As d; € [0, 1], conditions (i)—(iv) in Definition 1 are fulfilled for all i € S and j € §. So the

conclusion follows.

O

Lemma 9 indicates that M is an S-SOB matrix when M is an S-SOB matrix. We will present an
error bound for the linear complementarity problem of S -SOB matrices. The following theorem is one
of our main results, which gives an upper bound on the condition constant maxejo 112 ||(/ —D + DAY Yo

when A is an S -SOB matrix.

Theorem 12. Let A = (a;;) € R™" be an S-SOB matrix with positive diagonal entries, and A=

I — D + DA, where D = diag(d;) with 0 < d; < 1. Then

d;a; 1
max ||({ = D + DA) '] < min (1 +max{| ! " dja;)(1 +ma { ij , d;a;j}) max{—
de[0,1]" iEN J;Q’ a;; j# ai;; ii
where

al\tau ajp ajpdji
1+ + ZI’ES i el
AjiAk p#i ajj aiidjj

¢ (A (A) = (T + 3 o) (G + 3 2o
= A(A),

[d; j] =

L 1LAA), N (A))

AIMS Mathematics Volume 8, Issue 11, 25815-25844.



25841

ajidik Z Akp Afp Qi

1+
aiiajj Ak AiiAkk
S S _ kp kiGip N  djp ajidip
A (A) — (D 22 4 3, B2 4 3, i)
= A(A),
_ l=di+djaj; _ ajaij ik _ ajidik
andC/S(A) - 1-d;+day a;idjj pes aijj pes a,-,-ajj'
p;tj,} pij.}'

Proof. Because A = (d@;;) = (I — D + DA), we know A is an S-S OB matrix with positive diagonal

entries from Lemma 9. By Theorem 11, the following inequality holds
lA]le < maxT'(A) = m}\}l [i(A),
1€

max |dj; max |d;
ma ma |

where [y(A) = (1 + Z——)(1 + Z—)[i(A),

i(A) = max{;, ' (A)}.
||

|l = 2 Iekpl + 20 1l

peS, pES,
;) o~ +k,i p#I
I' (A) = max{ max — — — L ~ — -
s (151 = X 15Dl = 2 1cD) = 2 Iekpl 2 15,1
ke(S\{i}) pes, pes, PpES, pes,
PEJ p#k,i p#i p#i
|Gl — 2 1cGpl + X lewl
pES, PES,
max P#EJ p#i }
! { ~ ~ ~ ~ ~ ~ )
v (I3 = 2 1Dl — X2 Ickpl) = 2 Ickpl 2 15l
ke(S\(ih) s o) = for)
PEi pk.i p#i pi

~ o~ Gjidik
and Cjk = Ajx a

Since A is a S -SOB matrix, we have d; = 1 — d; + d;a; and di; = dia;j for all i, j € N.

max /Je¢1\11 |d]a],| max Jje;\ll |djaﬂ|

max_,fg, |l
_ (By Lemma 8)

1+ =l+——<1+ -
|l 1 —d; + dia;; min{a;;, 1}
= 1 (493 sy 42
= L+ max{=—=.da;}. (4.2)
J#
Similarly, we have
max jev, |dj| dia;;
1+ —2—— < 1 +max{—2, dia;;}. (4.3)
|l aij
By Lemma 8, it is easy to get
4.4)

1
= <max{—. 1},
di 1-di+da; max{aii }
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Denote 1 - d; + d;a;; = max;cn{1l — d; + d;a;}. From Lemmas 8 and 9, we get

|C7ck| - Z |C;p| + Z |C;p|

pES, pES,

p#k,i pEL
(il = 2 IipDcid = 2 Ieph) — 2 Ickpl 2 165
PES, peS, PES, peS,
pEJI p#k,i p#i p#i
akidij _ 4jp _ Qjpdji
- L+ anan T Z’;ff,»‘ ay + Z’;Ef,-’ aiidjj
- S A ' _ Akp + agiQip ajp + ajiap
S']( )CJS (]g;‘ Akk [)625, Qii Akl )(pé ajj pé’ aiiajj)
p#i p#EL p#i p#i
= A(A), 4.5)
_ l-dj+djaj;  ajiaij ajx ajidik S
where §f (A) = Timdar ey T B a2 aay In similar way, we know
P#EJ PEJ

¢l = 2 1€5pl + 22 Ickpl

peS, peS,
p#k,i p#EL
1G1 = 2 16506l = 2 l6pD) = % Il 3 Il
PES, pes, PES, peS,
PEJI p#kii p#i p#i
ajidik aﬂ Afpdii
1+ ajiajj + Z Z [ + QjiAkk
peS, peS,
< p#k,i p#ki
= S S Akp idip 4jp 4jidip
Sk Sk ( ;gg, akk % ajiay ) (pszé ajj ])Ezb aiia_i.f)
P# P# pEi pEi
= A(A). (4.6)
So, from Eqs (4.2)—(4.6) the conclusion follows. This proof is completed. O

5. Conclusions

Based on the fact that the Schur complement of the §-SOB matrix is a GDS DD matrix, we give an
infinity norm bound for the inverse of the §-SOB matrix based on the Schur complement. By using
the infinity norm bound for the inverse of the §-SOB matrix, an error bound is given for the linear
complementarity problem of the §-SOB matrix.
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